
SIEMENS

5vV23809-K305-C10 3.3vV23809-K305-C310

850 nm Multimode 1.3 GBd Gigabit Ethernet Transceiver 1x9

Preliminary Data Sheet

FEATURES

- Compliant with existing standards (IEEE Draft P 802.3z/D2)
- Compact integrated transceiver unit with
 VCSEL laser diode transmitter
 - Integrated receiver
 - Duplex SC receptacle
- Class 1 FDA and IEC laser safety compliant
- Single power supply (5 V and 3.3 V)
- Signal detect indicator
- PECL differential inputs and outputs
- Wave solderable and washable
- Process plug included
- · For distances of up to 300 m on multimode fiber

Maximum Ratings

Package Power Dissipation ⁽¹⁾	1.5 W
Supply voltage (V _{CC} -V _{EE})	6 V
Data Input Levels (PECL)	V _{CC} +0.5 V
Differential Data Input Voltage	
Operating Case Temperature	0 to 70°C
Storage Ambient Temperature	40°C to 85°C
Soldering Conditions Temp/Time	
(MIL-STD 883C, Method 2003)	
N	

Note

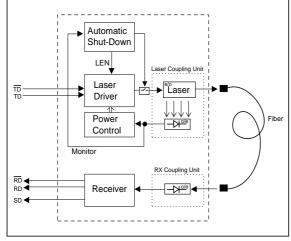
1. For V_{CC}-V_{EE} (min, max). 50% duty cycle. The supply current does not include the load drive current of the receiver output. Add max. 45 mA for the three outputs. Load is 50 Ω to V_{CC}-2 V.

DESCRIPTION

This data sheet describes Siemens Gigabit Ethernet multimode transceiver. It is based on the Physical Medium Depend (PMD) sublayer and baseband medium, type 1000BASE-SX (short wavelength).

The appropriate fiber optic cable is 62.5 mm or 50 mm multimode fiber with duplex SC connector.

The Siemens Gigabit Ethernet multimode transceiver is a single unit comprised of a transmitter, a receiver, and an SC receptacle. It thereby frees the customer from many alignment and PC board layout concerns. The module is designed for low cost LAN, WAN and Gigabit Ethernet applications. It can be used as the network end device *(continued next page)*


(continued from previous page) interface in mainframes, workstations, servers, and storage devices, and in a broad range of network devices such as bridges, routers, intelligent hubs, and local and wide area switches.

This transceiver operates at 1.3 Gbits per second from a single power supply (+5 V or 3.3 V). The full differential data inputs and outputs are PECL compatible.

Functional Description of 1x9 Pin Row Transceiver

This transceiver is designed to transmit serial data via multimode cable.

Figure 1. Functional diagram

The receiver component converts the optical serial data into PECL compatible electrical data (RD and RDnot). The Signal Detect (SD, active high) shows whether an optical signal is present.

The transmitter converts electrical PECL compatible serial data (TD and TDnot) into optical serial data. It contains a laser driver circuit which drives the modulation and bias current of the laser diode. The currents are controlled by a power control circuit to guarantee a constant output power of the laser over temperature and aging. The power control uses the output of the monitor pin diode (mechanically built into the laser coupling unit) for the controlling function to prevent the laser power from exceeding the operating limits.

This module assures single fault condition with an integrated automatic shutdown circuit, which disables the laser when it detects transmitter failures. A reset is only possible by turning the power off, then on again.

The transceiver contains a supervisory circuit to control the power supply This circuit makes an internal reset signal whenever the supply voltage declines below the reset threshold. It keeps the reset signal active for at least 140 milliseconds after the voltage has risen above the reset threshold. During this time the laser is inactive.

TECHNICAL DATA

Recommended Operating Conditions

Parameter		Symbol	Min.	Тур.	Max.	Units	
Case Temperatu	ire	Т _С	0		70	°C	
Power Supply	(K305–C10)	V _{cc} -V _{ee}	4.75	5.0	5.25	V	
Voltage	(K305–C310)	1	3.0	3.3	3.6		
Supply Current	(K305-C10) ⁽¹⁾	I _{cc}		TBD	TBD	mA	
	(K301-C310) ⁽¹⁾	1			TBD		
Transmitter							
Data Input High	Voltage	Vuu-Vaa	-1165		-880	mV	

Receiver				
Input Data Rise/Fall time, 10–90%	t _R , t _F	100	750	ps
Data Input Low Voltage	$V_{IL}-V_{CC}$	-1810	-1475	
Data Input High Voltage	$V_{IH}-V_{CC}$	-1165	-880	mV

Input Center Wavelength		λ _C	1270		1355	mm
	1 For $V_{00} = V_{00}$ (min max) 50% duty	cycle The	sunnly c	urrent c	loes not i	nclude

. For $V_{CC}-V_{EE}$ (min, max), 50% duty cycle. The supply current does not include the load drive current of the receiver output. Add max, 45 mA for the three outputs. Load is 50 Ω to V_{CC} -2 V.

Electro-Optical Characteristics

Transmitter	Symbol	Min.	Тур.	Max.	Units
Launched Power (Average) ⁽¹⁾	Po	-10		-4	dBm
Center Wavelength	I _C	830	850	860	nm
Spectral Width (RMS)	σ_{λ}			0.85	
Relative Intensity Noise	RIN			-117	dB/Hz
Extinction Ratio (dynamic)	ER	9			dB
Reset Threshold ⁽²⁾	V _{th}		2.9		V
Reset Time Out ⁽²⁾	T _{res}	140	240	560	ms
Receiver	Symbol	Min.	Тур.	Max.	Units
Sensitivity (Average Power) ⁽³⁾	P _{IN}		-19	-17	dBm
Saturation (Average Power)	P _{SAT}			0	
Signal Detect Assert Level ⁽⁴⁾	P _{SDA}		TBD	TBD	
Signal Detect Deassert Level ⁽⁵⁾	P _{SDD}	TBD	TBD		
Signal Detect Hysteresis	P _{SDA} -P _{SDD}		1.5]	dB
Output LO Voltage ⁽⁶⁾	V _{OL} -V _{CC}	-1950		-1600	mV
Output HI Voltage ⁽⁶⁾	V _{OH} -V _{CC}	-980		-720	
Output Data Rise-/Fall Time, 20–80%	t _R , t _F			375	ps
Return Loss of Receiver	A _{RL}	12			dB

Notes

- 1. Into multimode fiiber, 62.5 μm or 50 μm diameter.
- 2. Laser power is shut down if power supply is below V_{TH} and switched on if power supply is above V_{TH} after $T_{res}.$
- 3. Minimum average optical power at which the BER is less than 1 x 10E-12 or lower. Measured with a 2^7 -1 NRZ PRBS and ER=9dB.
- An increase in optical power above the specified level will cause the SIGNAL DETECT output to switch from a LO state to a HI state.
- 5. A decrease in optical power below the specified level will cause the SIGNAL DETECT to change from a HI state to a LO state.
- 6. PECL 10K compatible. Load is 50 Ω into V_{CC}=2 V. Measured under DC conditions. For dynamic measurements a tolerance of 50 mV should be added. V_{CC}=5 V.

PIN Description

Pin Nam	e	Level/Logic	Pin #	Description	
RxVee	Rx Ground	Power Supply	1	Negative power supply, normally ground	
RD	Rx Output Data	PECL Output	2	Receiver output date	
RDn	-		3	Inverted receiver output data	
SD	RX Signal Detect	PECL Outpu active high	4	A high level on this output shows that there is an optical signal.	
RxVcc	Rx 3V/5V	Power Supply	5	Positive power supply, 3 V/5 V	
TxVcc	Tx 3V/5V		6		
TDn	Tx Input Data	PECL Input	7	Inverted transmitter input data	
TD	-		8	Transmitter input data	
TxVee	Tx Ground	Power Supply	9	Negative power supply, normally ground	
Case	Support	Mech. Support	S1/2	Support stud (floating)	

LASER SAFETY

This multimode Gigabit Ethernet transceiver is a Class 1 laser product. It complies with IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated under recommended operating conditions.

Caution

The use of optical instruments with this product will increase eye hazard!

General Restrictions

Classification is only valid if the module is operated within the specified temperature and voltage limits. The system using the module must provide power supply protection that guarantees that the system power source will cease to provide power if the maximum recommended operation limit or more is detected on the +5V at the power source. The temperature of the module case must be in the temperature range given in the recommended case operating limits. These limits guarantee the laser safety.

Usage Restrictions

The optical ports of the modules shall be terminated with an optical connector or with a dust plug.

APPLICATION NOTE FOR 1X9 PIN ROW TRANSCEIVER

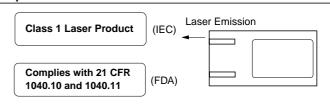
Figure 2. Schematic

▲ VCC-RX VCC-TX VCC-RX VCC ٨ \oplus \oplus \cap \cap (C1 C2 C1/3=4.7 µF GND GNE R1 R5 VCC-TX R3 R7 C2/4=4.7 µF GND GND C5=100 nF Δ GND RxD L2 L1/2=1 µH TxD -► RxD - SD TxDn C3 C2 R1/3/5/7=82 Ohm for 5 V VCC-ТХ =127 Ohm for 3.3 V R2 R4 R R8 R2/4/6/8=130 Ohm for 5 V GND GND VCC-RX =83 Ohm for 3.3 V R9=500 Ohm for 5 V Transceiver GNDGND ดี่พิด ดี่พิดดี่พิด =200 Ohm for 3.3 V

The power supply filtering is required for good EMI performance. Use short tracks from the inductor L1/L2 to the module V_{CC} -RX/ V_{CC} -TX. The transceiver contains an automatic

shutdown circuit. Reset is only possible if the power is turned off, then on again. (V_{CC} -TX switched below V_{TH}). Application board available on request.

V23809-K305-C10/310, 850 nm Multimode 1.3 GBd Gigabit Ethernet Transceiver 1X9


Note:

Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (j)).

Laser data

Wavelength	850 nm
Total output power (as defined by IEC: 50 mm aperture at 10 cm distance)	<380 µW
Total output power (as defined FDA: 7 mm aperture at 20 cm distance)	<70 µW
Beam divergence	12°

Required labels

