# **SIEMENS**

# 10 dB V23809-C8-C10 8 dB V23809-C8-C11 Multimode 1300 nm LED ATM 155/194 MBd Transceiver



# **FEATURES**

- Fully compliant with all major standards
- Compact integrated transceiver unit with duplex SC • receptacle
- Single power supply with 3.0 V to 5.5 V range .
- Extremely low power consumption < 0.7 W at 3.3 V ٠
- **Excellent EMI performance**
- PECL 100K compatible differential inputs and outputs •
- System optimized for 62.5/50  $\mu$ m graded index fiber ٠
- Industry standard multisource footprint
- Very low profile for high slot density
- Wave solderable and washable with process plug •
- Test board available
- UL-94 V-0 certified •
- ESD Class 2 per MIL-STD 883 Method 3015 ٠
- Compliant with FCC (Class B) and EN 55022
- For distances of up to 2 km



#### **APPLICATIONS**

- ATM switches/bridges/ routers
- · High speed computer links

W

W

- · Local area networks · High definition digital
- television
- · Switching systems

#### Maximum Ratings (Absolute maximum stress)

Exceeding any one of these values may destroy the device immediately. However, the electro-optical characteristics described in the following tables are only valid for use under the recommended op-

| erating conditions.                                |                                    |
|----------------------------------------------------|------------------------------------|
| Package Power Dissipation (PD)                     |                                    |
| 5 V                                                | 1 W                                |
| 3.3 V                                              | 0.7 W                              |
| Supply Voltage (V <sub>CC</sub> -V <sub>FF</sub> ) | –0.5 to 7 V                        |
| Data Input Levels (VIN) PECL                       | V <sub>FF</sub> –V <sub>CC</sub> V |
| Differential Data Input Voltage                    |                                    |
| Operating Case Temperature                         | 0 to 85°C                          |
| Storage Ambient temperature                        | 40°C to 85°C                       |
| Soldering Conditions Temp/Time                     |                                    |
|                                                    | 270/1000/2                         |

(T<sub>sold</sub>) MIL-STD 883C, Method 2003 ..... 270/10°C/s. ESD Resistance (all pins to VFF, Human Body) ...... 1.5 kV

# DESCRIPTION

This data sheet describes the Siemens ATM Transceiver, which belongs to the Siemens Multistandard Transceiver Family. It is fully compliant with the proposed Asynchronous Transfer Mode ATM OC-3 proposed standard.

ATM is being developed because of the need for multimedia applications, including real-time transmission. The data rate is scalable and the ATM protocol is the basis of the broadband public networks being standardized in the International Telegraph and Telephone Consultative Committee (CCITT). ATM can also be used in local private applications.

The Siemens low cost ATM transceiver is a single unit comprised of a transmitter, a receiver and an SC receptacle. This frees the customer from many alignment and PC board layout concerns. The modules are designed for low cost applications.

The inputs/outputs are PECL compatible and the unit operates from 3.0 V to 5.5 V power supply. As an option, the data output stages can be switched to static levels during absence of light, as indicated by the Signal Detect function. It can be directly interfaced with available chipsets.

The excellent performance of the Siemens Multistandard Transceiver Family is the result of long term experience. The reliability of our modules is proven by high volume production.

# **Recommended Operating Conditions**

| Parameter                             | Sym.                             | Min.  | Тур. | Max.  | Units |
|---------------------------------------|----------------------------------|-------|------|-------|-------|
| Ambient Temperature                   | Т <sub>С</sub>                   | 0     |      | 70    | °C    |
| Power Supply Voltage                  | $V_{CC}-V_{EE}$                  | 3     |      | 5.5   | V     |
| Supply Current 3.3 V                  | I <sub>CC</sub>                  |       |      | 190   | mA    |
| Supply Current 5 V <sup>(1)</sup>     |                                  |       |      | 210   |       |
| Transmitter                           |                                  |       |      |       |       |
| Data Input High Voltage               | V <sub>IH</sub> -V <sub>CC</sub> | -1165 |      | -880  | mV    |
| Data Input Low Voltage                | V <sub>IL</sub> -V <sub>CC</sub> | -1810 |      | -1475 |       |
| Threshold Voltage V <sub>bb</sub> -   |                                  | -1420 |      | -1240 |       |
| Input Data Rise/Fall, 20–80%          | t <sub>R</sub> , t <sub>F</sub>  | 0.4   |      | 1.3   | ns    |
| Data High Time <sup>(2)</sup>         | t <sub>on</sub>                  |       |      | 1000  |       |
| Receiver                              |                                  |       |      |       |       |
| Output Current                        | I <sub>O</sub>                   |       |      | 25    | mA    |
| Input duty Cycle Distortion           | t <sub>DCD</sub>                 |       |      | 1.0   | ns    |
| Input Data Dependent Jitter           | t <sub>DDj</sub>                 |       |      |       |       |
| Input Random Jitter                   | t <sub>Rj</sub>                  |       |      | 0.76  |       |
| Input Center Wavelength               | I <sub>C</sub>                   | 1260  |      | 1380  | nm    |
| Electrical Output Load <sup>(3)</sup> | RL                               |       | 50   |       | Ω     |

# Notes:

- 1. For Vcc-Vee (min., max.) 50% duty cycle. The supply current (lcc2 + lcc3) does not include the load drive current (lcc1). Add max. 45 mA for the three outputs. Load is 50  $\Omega$  into V<sub>CC</sub> –2V
- 2. To maintain good LED reliability, the device should not be held in the ON-state for more than the specified time. Normal operation should be done with 50% duty cycle
- 3. To achieve proper PECL output levels the 50  $\Omega$  termination should be done to V<sub>CC</sub> –V. For correct termination see the application note.

# Reliability (Qualification Results)

| Test Temperature (HTB)   | 85°C / 358K |
|--------------------------|-------------|
| Reference Temperature    | 25°C / 298K |
| Duration of HTB Test     | >5000 hrs   |
| Activation Energy        | 0.7 eV      |
| Confidence Level         | 60 %        |
| Number of tested modules | >120        |

#### **Transmitter Electro-Optical Characteristics**

| Transmitter                                                                      | Sym.                      | Min. | Тур. | Max. | Units |
|----------------------------------------------------------------------------------|---------------------------|------|------|------|-------|
| Data Rate                                                                        | DR                        |      |      | 170  | MBaud |
| Launched Power (Aver-<br>age) into 62.5µm Fiber<br>for -C8-C10 <sup>(1, 4)</sup> | Po                        | -20  | -16  | -14  | dBm   |
| Launched Power (Aver-<br>age) into 62.5µm Fiber<br>for -C8-C11 <sup>(1, 4)</sup> |                           | -22  | -17  |      |       |
| Center Wavelength <sup>(2, 4)</sup>                                              | λC                        | 1270 |      | 1360 | nm    |
| Spectral Width<br>(FWHM) <sup>(3, 4)</sup>                                       | Δλ                        |      |      | 170  |       |
| Output Rise/Fall Time,<br>10–90% <sup>(4, 5)</sup>                               | t <sub>R</sub> , t<br>R'F | 0.6  |      | 2.5  | ns    |
| Temperature Coefficient<br>of Optical Optput Power                               | ТСр                       |      |      | 0.03 | dB/°C |
| Extinction Ratio<br>(dynamic) <sup>(4, 6)</sup>                                  | ER                        |      |      | 10   | %     |
| Duty Cycle<br>Distortion <sup>(7)</sup>                                          | t <sub>DCD</sub>          |      |      | 0.6  | ns    |
| Data Dependent<br>Jitter <sup>(7)</sup>                                          | t <sub>DDJ</sub>          |      |      | 0.3  |       |
| Random Jitter <sup>(7)</sup>                                                     | t <sub>RJ</sub>           |      |      | 0.6  |       |

#### Notes

- Measured at the end of 5 meters of 62.5/125/0.275 graded index fiber using calibrated power meter and a precision test ferrule. Cladding modes are removed. Values valid for EOL and worst-case temperature.
- 2. Center wavelength is defined as the midpoint between the two 50% levels of the optical spectrum of the LED.
- 3. Spectral width (full width, half max) is defined as the difference between 50% levels of the optical spectrum of the LED.
- 4. The input data pattern is a 12.5 MHz square wave pattern.
- 10 to 90% levels. Measured using the 12.5 MHz square wave pattern with an optoelectronic measurement system (detector and oscilloscope) having 3 dB bandwidth ranging from less than 0.1 MHz to more than 750 MHz.
- 6. Extinction Ratio is defined as PL/PH x 100%. Measurement system as in Note 5.
- 7. The test method is not yet mentioned in the ATM standard draft. The FDDI test routines apply as long as these are not changed.

# **Receiver Electro-Optical Characteristics**

| Receiver                                             | Sym.                                   | Min.  | Тур.  | Max.  | Units |
|------------------------------------------------------|----------------------------------------|-------|-------|-------|-------|
| Data Rate                                            | Dr                                     | 5     |       | 170   | MBaud |
| Sensitivity (Average<br>Power) <sup>(1)</sup>        | P <sub>IN</sub>                        |       | -32   | -30   | dBm   |
| Sensitivity (Average<br>Power) Center <sup>(2)</sup> |                                        |       | -35.5 |       |       |
| Saturation (Average<br>Power) <sup>(2)</sup>         | P <sub>SAT</sub>                       | -14   | -11   |       |       |
| Duty Cycle Distortion <sup>(3, 6)</sup>              | t <sub>DCD</sub>                       |       |       | 1     | ns    |
| Deterministic Jitter <sup>(4, 6)</sup>               | t <sub>DJ</sub>                        | ]     |       | 1     |       |
| Random Jitter <sup>(5, 6)</sup>                      | t <sub>RJ</sub>                        |       |       |       |       |
| Signal Detect<br>Assert Level <sup>(7)</sup>         | P <sub>SDA</sub>                       | -42.5 |       | -30   | dBm   |
| Signal Detect<br>Deassert Level <sup>(8)</sup>       | P <sub>SDD</sub>                       | -45   |       | -31.5 |       |
| Signal Detect Hysteresis                             | P <sub>SDA</sub> -<br>P <sub>SDD</sub> | 1.5   |       |       | dB    |
| Output LO Voltage <sup>(9)</sup>                     | V <sub>OL</sub> -<br>V <sub>CC</sub>   | -1810 |       | -1620 | mV    |
| Output HI Voltage <sup>(9)</sup>                     | V <sub>OH</sub> -<br>V <sub>CC</sub>   | -1025 |       | -880  |       |
| Output Data Rise/Fall<br>Time, 20–80%                | t <sub>R</sub> , t <sub>F</sub>        |       |       | 1.3   | ns    |
| Output SD Rise/Fall Time, 20–80%                     |                                        |       |       | 40    |       |

#### Notes

- 1. For a bit error rate (BER) of less than 1x10E-12 over a receiver eye opening of least 1.5 ns. Measured with a 2<sup>7</sup>-1 PRBS at 194 MBd.
- 2. For a BER of less than 1x10E-12. Measured in the center of the eye opening with a  $2^7$ -1 PRBS at 194 MBaud.
- 3. Measured at an average optical power level of -20 dBm with a 62.5 MHz square wave.
- 4. Measured at an average optical power level of -20 dBm .
- 5. Measured at -33 dBm average power.
- 6. All jitter values are peak-to-peak. RX output jitter requirements are not considered in the ATM standard draft. In general the same requirements as for FDDI are met.
- 7. An increase in optical power through the specified level will cause the SIGNAL detect output to switch from a LO state to a HI state.
- 8. A decrease in optical power through the specified level will cause the SIGNAL detect output to switch from a HI state to a LO state.
- 9. ECL 100K compatible. Load is 50  $\Omega$  into V<sub>CC</sub> –2V. Measured under DC conditions. For dynamic measurements a tolerance of 50 mV should be added for V<sub>CC</sub>=5 V.

# **PIN Description**

| Pin Name                       |                  | Level/Logic             | Pin#  | Description                                                 |
|--------------------------------|------------------|-------------------------|-------|-------------------------------------------------------------|
| R <sub>x</sub> V <sub>EE</sub> | Rx Ground        | Power Supply            | 1     | Negative power supply, normally ground                      |
| RD                             | Rx Output Data   | PECL Output             | 2     | Receiver output data                                        |
| RDn                            |                  |                         | 3     | Inverted receiver output data                               |
| RxSD                           | RX Signal Detect | PECL-Output active high | 4     | High level on this output shows there is an optical signal. |
| R <sub>x</sub> V <sub>CC</sub> | Rx +5 V          | Power Supply            | 5     | Positive power supply, +5V                                  |
| T <sub>x</sub> V <sub>CC</sub> | Tx +5 V          |                         | 6     |                                                             |
| TxDn                           | Tx Input Data    | PECL Input              | 7     | Inverted transmitter input data                             |
| TxD                            |                  |                         | 8     | Transmitter input data                                      |
| T <sub>x</sub> V <sub>EE</sub> | Tx Ground        | Power Supply            | 9     | Negative power supply, normally ground                      |
| Case                           | Support          | Not Connected           | S1/S2 | Support stud, not connected                                 |

# **APPLICATION NOTE FOR 1X9 PIN ROW TRANSCEIVER**

# Figure 1. Schematic



The power supply filtering is required for good EMI performance. Use short tracks from the inductor L1/L2 to the module VCC-RX/VCC-TX. A GND plane under the module is recommended for good EMI and sensitivity performance.