
## **SIEMENS**

# V23806-A84-C32

## Single Mode 622 MBd ATM Transceiver 1x9





## **FEATURES**

- · Compliant with existing standards
- Compact integrated transceiver unit with
  - MQW laser diode transmitter
  - InGaAs PIN-photo diode receiver
  - Duplex SC receptacle
- Class 1 FDA (Accession No. 95 20 890 supplement 0.01) and IEC laser safety compliant
- Single power supply (5 V)
- Loss of optical signal indicator, TTL compatible
- Class 1 FDA an IEC laser safety compliant
- PECL differential inputs and outputs
- Wave solderable and washable with included process plug

## Maximum Ratings (Absolute maximum stress)

Exceeding any one of these values may destroy the device immediately. However, the electro-optical characteristics described in the following tables are only valid for use under the recommended operating conditions.

| Package Power Dissipation (1)                      | 1.5 W                  |
|----------------------------------------------------|------------------------|
| Supply voltage (V <sub>CC</sub> -V <sub>FF</sub> ) | 6 V                    |
| Data Input Levels(PECL)                            | V <sub>CC</sub> -0.7 V |
| Differential Data Input Voltage                    |                        |
| Operating Case Temperature                         | 0 to 70°C              |
| Storage Ambient temperature                        | 40°C to 85°C           |
| Soldering Conditions Temp/Time                     |                        |
| (MIL-STD 883C, Method 2003)                        | 250/5.5°C/s            |

#### Notes

1. For V<sub>CC</sub>–V<sub>EE</sub> (min, max). 50% duty cycle. The supply current does not include the load drive current of the receiver output. Add max. 45 mA for the three outputs. Load is 50  $\Omega$  to V<sub>CC</sub>–2 V.

#### **DESCRIPTION**

This data sheet describes the Siemens single mode ATM transceiver, which complies with the ATM Forum's *Network Compatible ATM for Local Network Applications* document and ANSI's *Broadband ISDN—Customer Installation Interfaces, Physical Media Dependent Specification*, T1.646-1995

ATM is being developed to facilitate solutions in multimedia applications and real time transmission. The data rate is scalable, and the ATM protocol is the basis of the broadband public networks being standardized in the International Telecommunications Union (ITU), the former International Telegraph and Telephone Consultative Committee (CCITT). ATM can also be used in local private applications.

The Siemens single mode ATM transceiver is a single unit comprised of a transmitter, a receiver, and an SC receptacle. It thereby frees the customer from many alignment and PC board layout concerns. The module is designed for low cost WAN applications. It can be used as the network end device interface in workstations, servers, and storage devices, and in a broad range of network devices such as bridges, routers, intelligent hubs, and wide area ATM switches.

This transceiver operates at 622.080 Mbits per second from a single power supply (+5 Volt). The full differential data inputs and data and clock outputs are PECL compatible.

## Functional Description of 1x9 Pin Row Transceiver

The transceiver is designed to transmit serial data via single mode cable.

Figure 1. Functional diagram



The receiver component converts the optical serial data into ECL-compatible electrical data (RD and RDnot). The Signal Detect (SD, active high) shows whether a optical signal is present. If no optical input signal is present the receiver data outputs are switched to static low level (RD = Low, Rdnot = high).

The transmitter converts electrical ECL compatible serial data (TD and TDnot) into optical serial data. It contains a laser driver circuit which drives the modulation and bias current of the laser diode. The currents are controlled by a power control circuit to guarantee a constant output power of the laser over temperature and aging. The power control uses the output of the monitor pin diode (mechanically built in the laser coupling unit) for the controlling function to prevent the laser power from exceeding the operating limits.

This module ensures single fault condition with an integrated automatic shutdown circuit, which disables the laser when it detects transmitter failures. A reset is only possible by turning the power off, then on again.

The transceiver contains a supervisory circuit to control the power supply. This circuit makes an internal reset signal whenever the sup ply voltage declines below the reset threshold. It keeps the reset signal active for at least 140 milliseconds after the voltage has risen above the reset threshold. During this time the laser is inactive.

**Recommended Operating Conditions** 

| Parameter                       | Symbol                           | Min.  | Тур. | Max.  | Units |
|---------------------------------|----------------------------------|-------|------|-------|-------|
| Case Temperature                | T <sub>C</sub>                   | 0     |      | 70    | ,C    |
| Power Supply Voltage            | V <sub>CC</sub> -V <sub>EE</sub> | 4.75  | 5.0  | 5.25  | V     |
| Supply Current <sup>(1)</sup>   | I <sub>CC</sub>                  |       | 150  | 250   | mA    |
| Transmitter                     |                                  |       |      |       |       |
| Data Input High Voltage         | V <sub>IH</sub> -V <sub>CC</sub> | -1165 |      | -880  | mV    |
| Data Input Low Voltage          | V <sub>IL</sub> -V <sub>CC</sub> | -1810 |      | -1475 |       |
| Input Data Rise/Fall,<br>10-90% | t <sub>R</sub> , t <sub>F</sub>  | 0.4   |      | 1.3   | ns    |
| Receiver                        |                                  |       |      |       |       |
| Output Current                  | Io                               |       |      | 25    | mA    |
| Input Center Wavelength         | $\lambda_{\mathrm{C}}$           | 1260  |      | 1360  | nm    |

## Notes

1. For V<sub>CC</sub>–V<sub>EE</sub> (min, max). 50% duty cycle. The supply current does not include the load drive current of the receiver output. Add max. 45 mA for the three outputs. Load is 50  $\Omega$  to V<sub>CC</sub>–2 V.

#### **Transmitter Electro-Optical Characteristics**

| Transmitter                                                       | Symbol          | Min.  | Тур.  | Max. | Units |
|-------------------------------------------------------------------|-----------------|-------|-------|------|-------|
| Output Power (Average)                                            | Po              | -15.0 | -11.0 | -8.0 | dBm   |
| Center Wavelength                                                 | λC              | 1293  |       | 1334 | nm    |
| Spectral Width (FWHM)                                             | Δλ              |       |       | 2.4  |       |
| Reset Threshold for T <sub>X</sub> V <sub>CC</sub> <sup>(1)</sup> | V <sub>th</sub> | 4.25  | 4.38  | 4.5  | V     |
| Reset Active Timeout <sup>(1)</sup>                               |                 | 140   | 240   | 560  | ms    |
| Extinction Ratio (dynamic)                                        | ER              | 8.2   |       |      | dB    |
| Eye Diagram <sup>(2)</sup>                                        | ED              |       |       | •    |       |
|                                                                   |                 |       |       |      |       |

- 1. Power supply Tx is shut down and switched on above  $V_{TH}$  after the reset active timeout.
- Transmitter meets ANSI T1E1.2, SONET OC-12, and ITU G.957 mask pat terns.

## **Receiver Electro-Optical Characteristics**

| Receiver                                       | Symbol                                 | Min.  | Тур.  | Max.  | Units |
|------------------------------------------------|----------------------------------------|-------|-------|-------|-------|
| Sensitivity<br>(Average Power) <sup>(1)</sup>  | P <sub>IN</sub>                        |       | -33.0 | -29.0 | dBm   |
| Saturation<br>(Average Power)                  | P <sub>SAT</sub>                       | -8.0  |       |       |       |
| Signal Detect<br>Assert Level <sup>(2)</sup>   | P <sub>SDA</sub>                       |       | tbd   | tbd   |       |
| Signal Detect<br>Deassert Level <sup>(3)</sup> | P <sub>SDD</sub>                       | tbd   |       |       |       |
| Signal Detect<br>Hysteresis                    | P <sub>SDA</sub> -<br>P <sub>SDD</sub> |       | 1.5   |       | dB    |
| Signal Detect<br>Assert Time <sup>(6)</sup>    | t <sub>ASS</sub>                       |       | 30    |       | μs    |
| Signal Detect<br>Deassert Time <sup>(7)</sup>  | t <sub>DAS</sub>                       |       | 150   |       |       |
| Output LO Voltage <sup>(4)</sup>               | V <sub>OL</sub> -V <sub>CC</sub>       | -1950 |       | -1630 | mV    |
| Output HI Voltage <sup>(4)</sup>               | V <sub>OH</sub> -<br>V <sub>CC</sub>   | -1025 |       | -735  |       |
| Output SD,<br>Rise/Fall Time <sup>(5)</sup>    | t <sub>R</sub> , t <sub>F</sub>        |       |       | 40ns  | V     |
| Output Data Rise/<br>Fall Time, 20-80%         |                                        |       |       |       |       |

#### Notes

- Minimum average optical power at which the BER is less than 1x10E-10. Measured with a 2<sup>23</sup>-1 NRZ PRBS as recommended by ANSI T1E1.2, SONET OC-12, and ITU G.957.
- 2. An increase in optical power above the specified level will cause the SIGNAL DETECT output to switch from a LO state to a HI state.
- 3. A decrease in optical power below the specified level will cause the SIGNAL DETECT to change from a HI state to a LO state.
- 4. PECL 10K compatible. Load is 50  $\Omega$  into V<sub>CC</sub>-2V .Measured under DC conditions at 25°C. For dynamic measurements a tolerance of 50 mV should be added, V<sub>CC</sub>=5V.
- PECL compatible. A high level on this output shows that an optical signal is applied to the optical input.
- 6. Measured by switching the light from <-40 dBm to -25 dBm.
- Measured by switching the light from -25 dBm to <-40 dBm.</li>
  Switching from higher power levels increases this time.

### LASER SAFETY

This single mode ATM transceiver is a Class 1 laser product. It complies with IEC 825-1 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated under the recommended operating conditions.

#### Caution

# The use of optical instruments with this product will increase eye hazard!

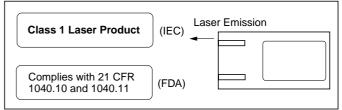
## **General Restrictions**

Classification is only valid if the module is operated within the specified temperature and voltage limits. The system using the

#### **PIN Description**

| Pin Nar                        | ne                  | Level/<br>Logic                  | Pin# | Description                                                                                   |
|--------------------------------|---------------------|----------------------------------|------|-----------------------------------------------------------------------------------------------|
| R <sub>x</sub> V <sub>EE</sub> | Rx Ground           | Power<br>Supply                  | 1    | Negative power supply, normally ground                                                        |
| RD                             | Rx Output           | PECL                             | 2    | Receiver output data                                                                          |
| RDn                            | Data                | Output                           | 3    | Inverted receiver output data                                                                 |
| Rx SD                          | RX Signal<br>Detect | PECL<br>Output<br>active<br>high | 4    | A high level on this output<br>shows an optical signal is<br>applied to the optical<br>input. |
| R_V <sub>CC</sub>              | Rx +5 V             | Power                            | 5    | Positive power supply,                                                                        |
| T_V <sub>CC</sub>              | Tx +5 V             | Supply                           | 6    | +5 V                                                                                          |
| TDn                            | Tx Input<br>Data    | PECL<br>Input                    | 7    | Inverted transmitter input data                                                               |
| TD                             |                     |                                  | 8    | Transmitter input data                                                                        |
| $T_xV_{EE}$                    | Tx Ground           | Power<br>Supply                  | 9    | Negative power supply, normally ground                                                        |
|                                | Ground              |                                  | S1/2 | V <sub>EE</sub> /GND Support Stud<br>(GND) connect to V <sub>EEnb</sub>                       |

module must provide power supply protection that guarantees that the system power source will cease to provide power if the maximum recommended operation limit or more is detected on the +5 V at the power source. The temperature of the module case must be in the temperature range given in the recommended operating limits. These limits guarantee the laser safety.


## **Usage Restrictions**

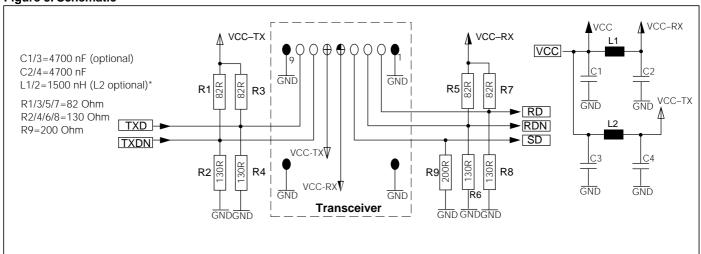
The optical ports of the modules must be terminated with an optical connector or with a dust plug.

#### Note

Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)).

Figure 2. Required labels




### **Additional Information**

## **Laser Data**

| Wavelength                                                               | 1300 nm |
|--------------------------------------------------------------------------|---------|
| Total output power (as defined by IEC: 50 mm aperture at 10 cm distance) | 1 mW    |
| Total output power (as defined by FDA: 7 mm aperture at 20 cm distance)  | 180 μW  |
| Beam divergence                                                          | 4°      |

#### **APPLICATION NOTE FOR 1X9 PIN ROW TRANSCEIVER**

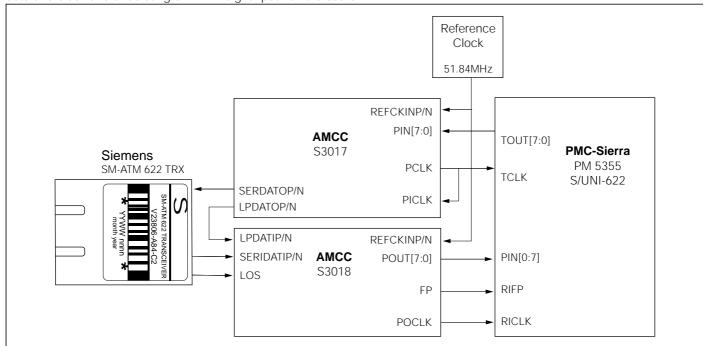
Figure 3. Schematic



 Recommended choke is Siemens Matsushita B78108-S1153-K or B78148-S1153-K (Q<sub>min</sub>=60, max. DC resistance =0.6 Ohm).

The power supply filtering is required for good EMI performance. Use short tracks from the inductor L1/L2 to the module VCC-RX/VCC-TX.

A GND plane under the module is required for good EMI and


sensitivity performance. Studs must be connected to this GND plane.

The transceiver contains an automatic shutdown circuit. Reset is only possible when the power off is switched off, then on again. (VCCTX=0V).

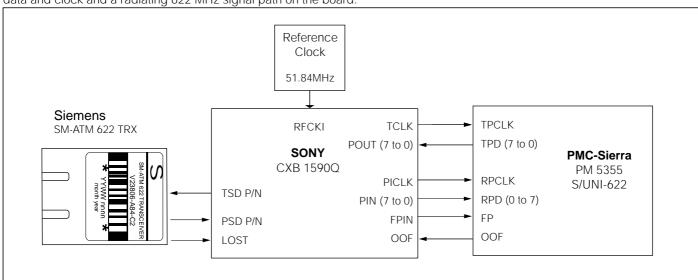
## **SONET/ATM APPLICATIONS FOR 1X9 PIN ROW TRANCEIVERS**

## Description

The 1x9 Pin Row transceiver requires an external clock recovery device. The best solution is the use of transceiver circuits (serializer / deserializer) which include the clock recovery function. This avoids any additional circuitry skew problems between data and clock and a radiating 622 MHz signal path on the board.



## **RxTx Chipsets including PLL Function**


| AMCC              | Receiver S3017, Transmitter S3018 | (Preliminary, detailed description available) |
|-------------------|-----------------------------------|-----------------------------------------------|
| Sony:             | Transceivers CXB 1590 Q           | (Preliminary, detailed description available) |
| Texas Instruments | Transceivers TNETA 16611          | (Preliminary)                                 |

Detailed information is available upon request.

## ATM APPLICATIONS FOR 1X9 PIN ROW TRANCEIVERS

## Description

The 1x9 Pin Row transceiver requires an external clock recovery device. The best solution is the use of transceiver circuits (serializer / deserializer) which include the clock recovery function. This avoids any additional circuitry skew problems between data and clock and a radiating 622 MHz signal path on the board.



## **RxTx Chipsets including PLL Function**

| AMCC              | Receiver S3017, Transmitter S3018 | Preliminary, detailed description available |
|-------------------|-----------------------------------|---------------------------------------------|
| Sony:             | Transceivers CXB 1590 Q           | Preliminary, detailed description available |
| Texas Instruments | Transceivers TNETA 16611          | Preliminary                                 |

Detailed Information is available upon request.