The RF Line NPN Silicon RF Power Transistor

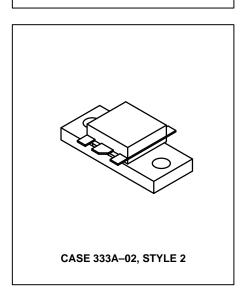
The TP5051 is designed for 470 MHz cellular radio base stations in both analog and digital applications. It incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness.

- Specified 470 MHz Characteristics
 - Output Power 50 Watts @ 24 Volts, 60 Watts @ 26 Volts

Gain — 9 dB min

Efficiency — 60% min

Class AB or C Operation


 Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCER	40	Vdc
Collector–Base Voltage	V _{CBO}	48	Vdc
Emitter–Base Voltage	VEBO	4	Vdc
Collector–Current — Continuous	IC	10	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	145 0.8	Watts W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	200	°C

TP5051

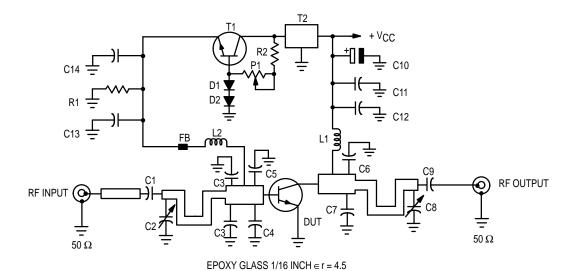
50/60 W, 470 MHz RF POWER TRANSISTOR NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case at 70°C Case (1)	$R_{\theta JC}$	1.2	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 60 mA, R _{BE} = 75 Ω)	V(BR)CER	40	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 15 mAdc)	V(BR)EBO	4	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 50 mAdc)	V(BR)CBO	48	_	_	Vdc
Collector–Emitter Leakage ($V_{CE} = 26 \text{ V}, R_{BE} = 75 \Omega$)	ICER	_	_	15	mA
ON CHARACTERISTICS	•			•	•
DC Current Gain (IC = 1 Adc, VCE = 10 Vdc)	hFE	15	_	80	_


NOTE: (continued)

1. Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS — **continued** $(T_C = 25^{\circ}C)$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 26 V, I _E = 0, f = 1 MHz)	C _{ob}	_	60	_	pF
FUNCTIONAL TESTS					
Common–Emitter Amplifier Power Gain (V _{CC} = 24 V, P _{out} = 50 W, I _{CQ} = 150 mA, f = 470 MHz)	G _{p1}	9	10	_	dB
Collector Efficiency (V _{CC} = 24 V, P _{out} = 50 W, f = 470 MHz)	η1	60	65	_	%
Load Mismatch (V _{CC} = 24 V, P _{out} = 50 W, I _{CQ} = 150 mA Load VSWR = 5:1, all phase angles at frequency of test)	ψ1	No Degradation in Output Power			
Overdrive (V _{CC} = 24 V, P _{in} = 12 W, f = 470 MHz)	OD	No Degradation in Output Power			
Power Saturation (V _{CC} = 24 V, f = 470 MHz)	P _{sat}	65	_	_	W
Common–Emitter Amplifier Power Gain (V _{CC} = 26 V, P _{Out} = 60 W, I _{CQ} = 150 mA, f = 470 MHz)	G _{p2}	9	10	_	dB
Collector Efficiency (V _{CC} = 26 V, P _{out} = 60 W, f = 470 MHz)	η2	60	65		%
Load Mismatch (V _{CC} = 26 V, P _{out} = 60 W, I _{CQ} = 150 mA Load VSWR = 5:1, all phase angles at frequency of test)	ψ2	No Degradation in Output Power			

Components List

C1,C9, C2,C8 C3 C3' C4,C5 C6 C7	330 pF, 5%, Chip Capacitor 0805 AIRTRONIC Trimmer Capacitor 5400 10 pF, ATC Chip Capacitor 12 pF, ATC Chip Capacitor 22 pF, ATC Chip Capacitor 15 pF, ATC Chip Capacitor 18 pF, ATC Chip Capacitor 47 µF, 63 V, Electrolytic Capacitor	D1,D2 FB L1,L2 P1 R1 R2 T1	Diode, 1N4148 Ferrite Board 6 Turns, #18 AWG ϕ 4 mm Choke 1 k Ω , Trimmer 56 Ω , 5%, Chip Resistor 1205 470 Ω , 5%, Chip Resistor 0805 SMD Transistor, MJD31C or Similiar Voltage Regulator 7805
C11,C14 C12,C13	47 μr, 63 V, Electrolytic Capacitor 15 nF, Chip Capacitor 0805 330 pF, 5%, Chip Capacitor 0805	12	voltage Regulator 7805

Figure 1. 470 MHz Electrical Schematic

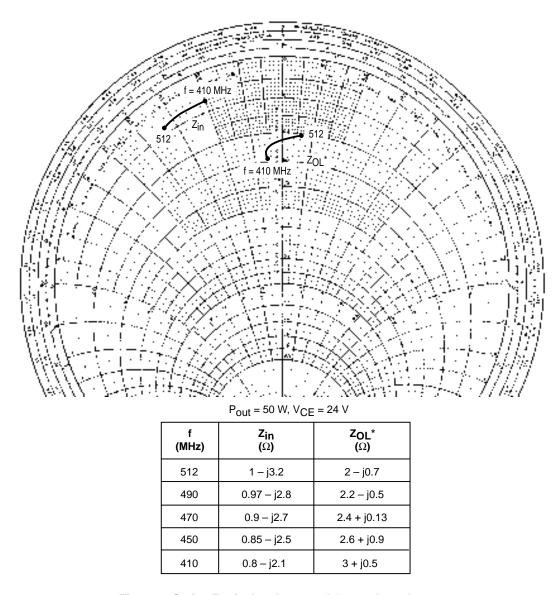


Figure 2. Series Equivalent Input and Output Impedances

TYPICAL CHARACTERISTICS

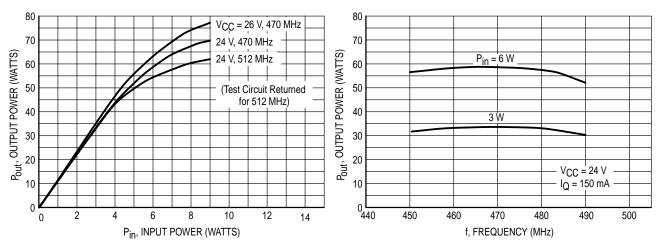


Figure 3. Output Power versus Input Power

Figure 4. Output Power versus Frequency

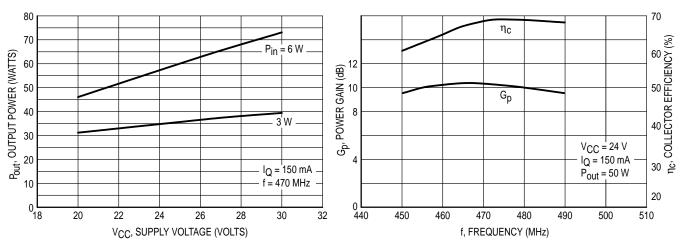
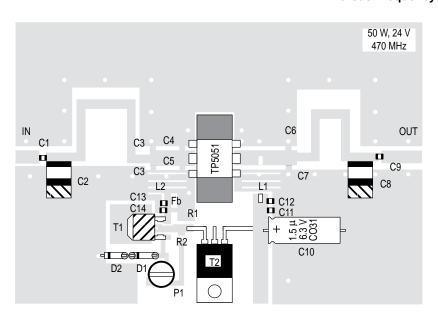
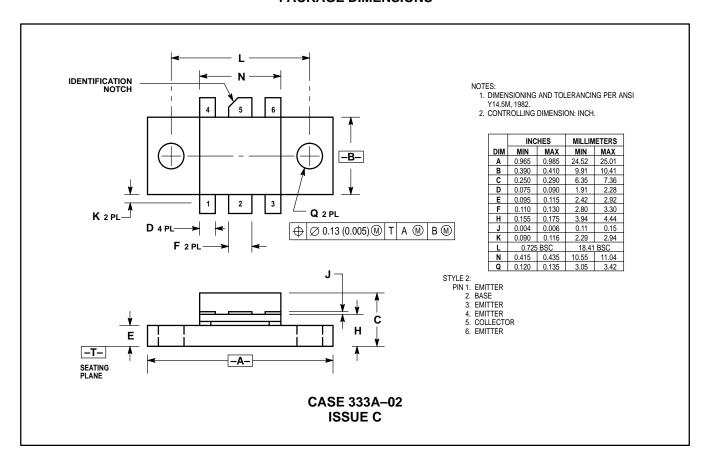



Figure 5. Output Power versus Supply Voltage


Figure 6. Power Gain, Collector Efficiency versus Frequency

EPOXY GLASS 1/16 INCH ϵ_{Γ} = 4.5

Figure 7. 470 MHz Test Circuit Components View

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

