
The RF Line NPN Silicon RF Power Transistor

The TP3007S is designed for 24 volts common emitter base station amplifiers, operating up to 1 GHz bandwidth. It has been specifically designed for use in analog and digital Global System Mobile (GSM) systems. The studless package offers a possibility for surface mounting.

- Specified 24 Volts, 960 MHz Characteristics
 Output Power 2 Watts
 Gain 9 dB min
 Efficiency 50% min, 2 Watts
- Characterized with Series Equivalent Large—Signal Parameters from 920—960 MHz
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- · Class AB Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

TP3007S

2 W, 960 MHz RF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating		Value	Unit
Collector–Emitter Voltage	VCER	45	Vdc
Collector–Base Voltage	VCBO	50	Vdc
Emitter–Base Voltage	V _{EBO}	4	Vdc
Collector-Current — Continuous	IC	1	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	8.3 0.048	Watts W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	200	°C

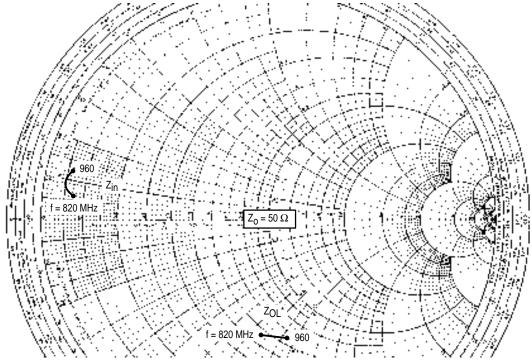
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1) (Studless)	stance, Junction to Case (1) (Studless) R ₀ JC 21		°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 5 mAdc, R _{BE} = 75 Ω)	V(BR)CER	45		_	Vdc
Collector–Base Breakdown Voltage (I _C = 5 mAdc, I _E = 0)	V(BR)CBO	50		_	Vdc
Emitter–Base Breakdown Voltage (IE = 1 mAdc, IC = 0)	V(BR)EBO	3.5	_	_	Vdc

NOTE:


(continued)

1. Thermal resistance is determined under specified RF operating condition.

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	•	•		•	
DC Current Gain (ICE = 0.1 Adc, VCE = 5 Vdc)	hFE	10	_	150	_
DYNAMIC CHARACTERISTICS	•	•	•	•	
Output Capacitance $(V_{CB} = 26 \text{ Vdc}, I_E = 0, f = 1 \text{ MHz})$	C _{ob}	_	2	_	pF
FUNCTIONAL TESTS					
Common–Emitter Amplifier Power Gain (V _{CC} = 24 Vdc, P _{Out} = 2 W, I _{CQ} = 30 mA, f = 960 MHz)	Gp	9	10	_	dB
Collector Efficiency (V _{CC} = 24 Vdc, P _{Out} = 2 W, I _{CQ} = 30 mA, f = 960 MHz)	h	50	56	_	%
Output Mismatch Stress (V _{CC} = 24 Vdc, P _{Out} = 2 W, I _{CQ} = 30 mA, f = 960 MHz, Load VSWR = 10:1, all phase angles at frequency of test)	Ψ	No Degradation in Output Power			

Output Impedances with circuit tuned for maximum gain $^{\circ}$ V_{CC} = 24 V, P_{Out} = 2 W

f (MHz)	Z _{in} (Ω)	Z _{OL} * (Ω)
820	4 + j3.8	29 – j41
860	3.4 + j4.4	30 – j43
900	3.1 + j5.1	31 – j44
960	3.5 + j5.5	35 – j45

 Z_{OL}^* = Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 1. Series Equivalent Input and Output Impedances

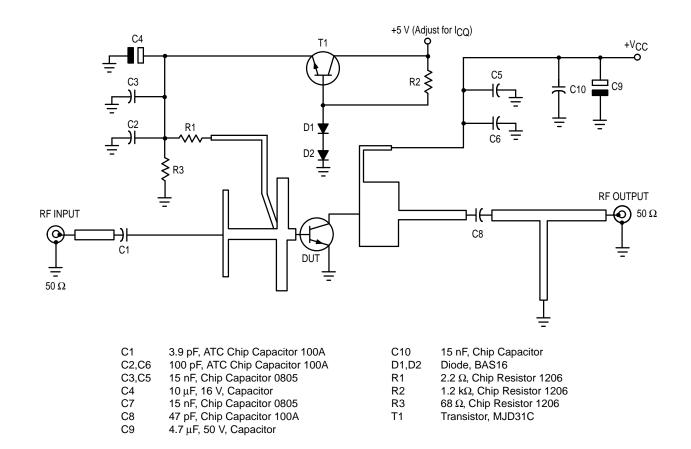


Figure 2. 960 MHz Electrical Schematic

TYPICAL CHARACTERISTICS

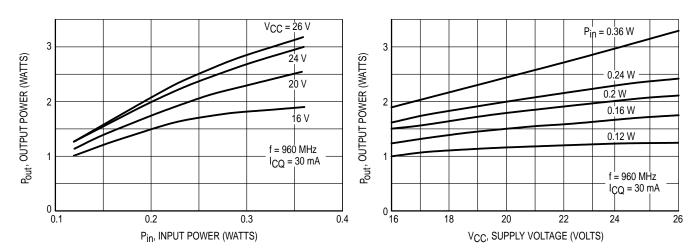


Figure 3. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

TYPICAL CHARACTERISTICS

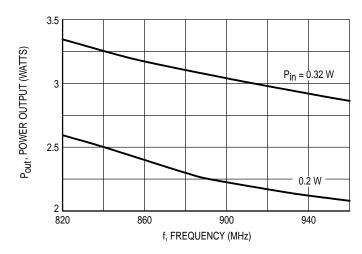


Figure 5. Output Power versus Frequency

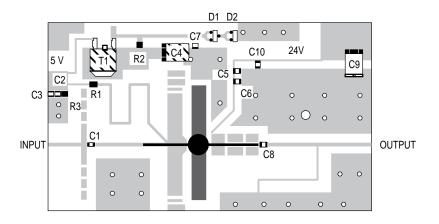
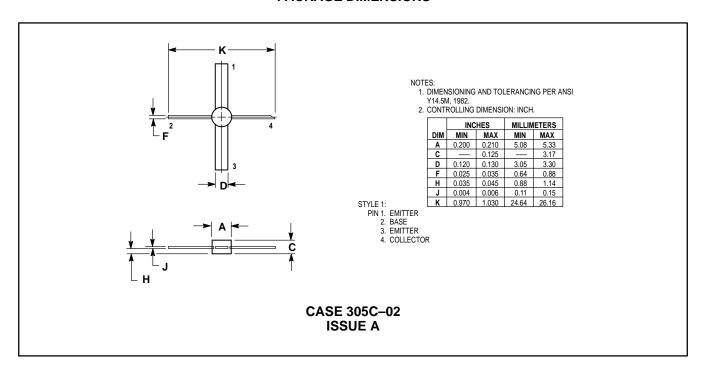



Figure 6. 960 MHz Test Circuit Components View

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "a are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

