TMMBAT 47 TMMBAT 48 ## SMALL SIGNAL SCHOTTKY DIODES #### **DESCRIPTION** General purpose, metal to silicon diodes featuring very low turn-on voltage and fast switching. These devices have integrated protection against excessive voltage such as electrostatic discharges. ## **ABSOLUTE RATINGS** (limiting values) | Symbol | Parameter | | TMMBAT47 | TMMBAT48 | Unit | |------------------------------------|--|---|----------------------------|----------|----------| | V_{RRM} | Repetitive Peak Reverse Voltage | | 20 | 40 | V | | IF | Forward Continuous Current | T _I = 25 °C 350 | | 50 | mA | | I _{FRM} | Repetitive Peak Fordward Current | $\begin{array}{l} t_p \leq 1s \\ \delta \leq 0.5 \end{array}$ | 1 | | Α | | I _{FSM} | Surge non Repetitive Forward Current | t _p = 10ms | 7.5 | | Α | | | | t _p = 1s | 1.5 | | | | P _{tot} | Power Dissipation | T _I = 25 °C | 330 | | mW | | T _{stg}
T _j | Storage and Junction Temperature Range | | - 65 to 150
- 65 to 125 | | °C
°C | | T_L | Maximum Temperature for Soldering during 15s | | 260 | | °C | #### THERMAL RESISTANCE | Symbol | Test Conditions | Value | Unit | |----------------------|-----------------|-------|------| | R _{th(j-l)} | Junction-leads | 300 | °C/W | November 1994 1/5 ### **ELECTRICAL CHARACTERISTICS** ### STATIC CHARACTERISTICS | Symbol | | Test Conditions | | Min. | Тур. | Max. | Unit | |------------------|-----------------------|-----------------------|-----------|------|------|------|------| | V_{BR} | T _j = 25°C | $I_R = 10\mu A$ | TMMBAT47 | 20 | | | V | | | T _j = 25°C | $I_R = 25\mu A$ | TMMBAT48 | 40 | | | | | V _F * | T _j = 25°C | $I_F = 0.1 \text{mA}$ | All Types | | | 0.25 | V | | | T _j = 25°C | $I_F = 1mA$ | | | | 0.3 | | | | T _j = 25°C | $I_F = 10mA$ | | | | 0.4 | | | | T _j = 25°C | $I_F = 30 \text{mA}$ | TMMBAT47 | | | 0.5 | | | | T _j = 25°C | $I_F = 150 \text{mA}$ | | | | 0.8 | | | | T _j = 25°C | $I_F = 300 \text{mA}$ | | | | 1 | | | | T _j = 25°C | $I_F = 50 \text{mA}$ | TMMBAT48 | | | 0.5 | | | | T _j = 25°C | $I_F = 200 \text{mA}$ | | | | 0.75 | | | | T _j = 25°C | $I_F = 500 \text{mA}$ | | | | 0.9 | | | I _R * | T _j = 25°C | $V_{R} = 1.5V$ | All Types | | | 1 | μΑ | | | $T_j = 60^{\circ}C$ | | | | | 10 | | | | T _j = 25°C | V _R = 10V | TMMBAT47 | | | 4 | | | | T _j = 60°C | | | | | 20 | | | | T _j = 25°C | V _R = 20V | | | | 10 | | | | T _j = 60°C | | | | | 30 | | | | T _j = 25°C | V _R = 10V | TMMBAT48 | | | 2 | | | | T _j = 60°C | | | | | 15 | | | | T _j = 25°C | V _R = 20V | | | | 5 | | | | T _j = 60°C | | | | | 25 | | | | T _j = 25°C | V _R = 40V | | | | 25 | | | | T _j = 60°C | | | | | 50 | | ## DYNAMIC CHARACTERISTICS | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------|---|------|------|------|------| | С | $T_j = 25$ °C $V_R = 0V$ $f = 1MHz$ | | 20 | | рF | | | $T_j = 25$ °C $V_R = 1V$ | | 12 | | | | t _{rr} | $T_{j} = 25^{\circ}C$ $I_{F} = 10mA$ $V_{R} = 1V$ $i_{rr} = 1mA$ $R_{L} = 10$ | ΟΩ | 10 | | ns | ^{*} Pulse test: $t_p \le 300 \mu s$ $\delta < 2\%$. Figure 1. Forward current versus forward voltage at different temperatures (typical values). Figure 2. Forward current versus forward voltage (typical values). Figure 3. Reverse current versus junction temperature. Figure 4. Reverse current versus continuous reverse voltage (typical values). 20 10 v_A (v) Figure 5. Capacitance C versus reverse applied voltage $V_{\mbox{\scriptsize R}}$ (typical values). #### **PACKAGE MECHANICAL DATA** #### **FOOT PRINT DIMENSIONS** (Millimeter) #### **MINIMELF Glass** | | DIMENSIONS | | | | | |------|-------------|------|--------|-------|--| | REF. | Millimeters | | Inches | | | | | Min. | Max. | Min. | Max. | | | Α | 3.3 | 3.6 | 0.130 | 0.142 | | | В | 1.59 | 1.62 | 0.063 | 0.064 | | | С | 0.4 | 0.5 | 0.016 | 0.020 | | Marking: ring at cathode end. Weight: 0.05g 5/5 Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. © 1994 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved. SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.