DS4252-3.2

TK12 PHASE CONTROL THYRISTOR

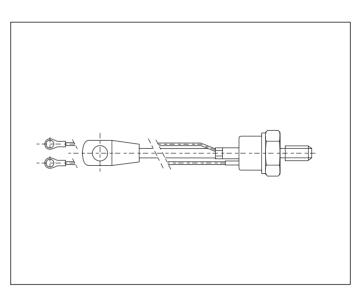
APPLICATIONS

- High Power Drives.
- High Voltage Power Supplies.
- DC Motor Control.
- Welding.
- Battery Chargers.

KEY PARAMETERS V_{DRM} 2000V $I_{T(AV)}$ 75A I_{TSM} 1400A $dVdt^*$ 200V/ μs dI/dt 500A/ μs

*Higher dV/dt selections available

FEATURES


■ High Surge Capability.

VOLTAGE RATINGS

Type Number	Repetitive Peak Voltages V _{DRM} V RRM V	Conditions
TK12 20 M or K TK12 18 M or K TK12 16 M or K TK12 14 M or K	2000 1800 1600 1400	$\begin{split} T_{vj} &= 0^{\circ} \text{ to } 125^{\circ}\text{C}, \\ I_{DRM} &= I_{RRM} = 100\text{mA}, \\ V_{DRM}, V_{RRM} t_{p} &= 10\text{ms}, \\ V_{DSM} \& V_{RSM} &= \\ V_{DRM} \& V_{RRM} + 100V \\ Respectively \end{split}$

Lower voltage grades available.

For 1/2" 20 UNF thread add K to type number, e.g. TK12 18K. For M12 thread add M to type number, e.g. TK12 14M.

Outline type code: TO94 Turn to page 8 for further information.

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{T(AV)}	Mean on-state current	Half wave resistive load, T _{case} = 80°C	75	Α
I _{T(RMS)}	RMS value	$T_{case} = 80^{\circ}C$	120	Α
I _T	Continuous (direct) on-state current	T _{case} = 80°C	100	А

TK12

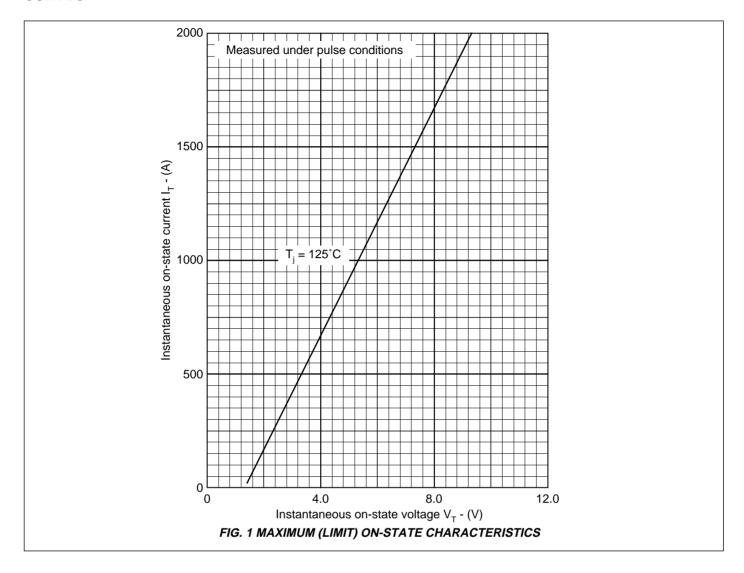
SURGE RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	1.12	kA
l ² t	I ² t for fusing	V _R = 50% V _{RRM} - 1/4 sine	6.2 x 10 ³	A²s
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	1.4	kA
l ² t	I ² t for fusing	$V_R = 0$	9.8 x 10 ³	A ² s

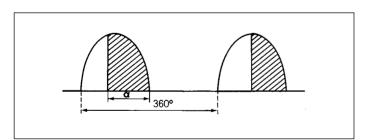
THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions	Min.	Max.	Units
R _{th(j-c)}	Thermal resistance - junction to case	dc	-	0.24	°C/W
R _{th(c-h)}	Thermal resistance - case to heatsink	Mounting torque 15.0Nm with mounting compound	-	0.08	°C/W
_	Virtual junction temperature	On-state (conducting)	-	125	°C
T_{vj}	Virtual juriction temperature	Reverse (blocking)	-	125	°C
T _{stg}	Storage temperature range		-40	150	°C
-	Mounting torque		12.0	15.0	Nm

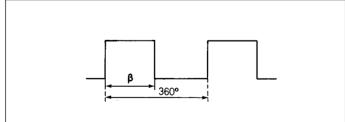
DYNAMIC CHARACTERISTICS


Symbol	Parameter	er Conditions		Min.	Max.	Units
V _{TM}	Maximum on-state voltage	At 150A peak, T _{case} = 25°C		-	2.0	V
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V _{RRM} /V _{DRM} , T _{case} = 125°C		-	10	mA
dV/dt	Maximum linear rate of rise of off-state voltage	To 60% V_{DRM} T_j = 125°C, Gate open circuit		-	200	V/μs
d1/dt	Data of vice of an etate accuracy	Gate source 20V, 20Ω $t_r \le 0.5\mu s$, $T_j = 125^{\circ}C$	Repetitive 50Hz	-	500	A/μs
dl/dt	Rate of rise of on-state current		Non-repetitive	-	800	A/μs
V _{T(TO)}	Threshold voltage	At T _{vj} = 125°C		-	1.4	V
r _T	On-state slope resistance	At T _{vj} = 125°C		-	4.0	mΩ
t _{gd}	Delay time	$V_D = 300V, I_G = 1A, I_T = 50A, dI/dt = 50A/\mu s, dI_G/dt = 1A/\mu s, T_j = 25^{\circ}C$		-	1.5	μs
IL	Latching current	$T_{j} = 25^{\circ}C, V_{D} = 12V$		-	-	mA
I _H	Holding current	$T_{j} = 25^{\circ}C, V_{D} = 12V, I_{TM} = 1A$		-	50	mA

GATE TRIGGER CHARACTERISTICS AND RATINGS


Symbol	Parameter	Conditions	Тур.	Max.	Units
V _{GT}	Gate trigger voltage	$V_{DRM} = 12V$, $T_{case} = 25$ °C, $R_L = 6\Omega$	-	3.0	V
I _{GT}	Gate trigger current	$V_{DRM} = 12V, T_{case} = 25^{\circ}C, R_{L} = 6\Omega$	-	125	mA
V _{GD}	Gate non-trigger voltage	At V_{DRM} $T_{case} = 125^{\circ}$ C, $R_{L} = 12\Omega$	-	0.2	V
V _{FGM}	Peak forward gate voltage	Anode positive with respect to cathode	-	3.0	٧
V _{FGN}	Peak forward gate voltage	Anode negative with respect to cathode	-	0.25	٧
V _{RGM}	Peak reverse gate voltage		-	5	٧
I _{FGM}	Peak forward gate current	Anode positive with respect to cathode	-	4	Α
P _{GM}	Peak gate power	-	-	16	W
P _{G(AV)}	Mean gate power		-	3	W

TK12


CURVES

SINUSOIDAL CURRENT WAVEFORM

RECTANGULAR CURRENT WAVEFORM

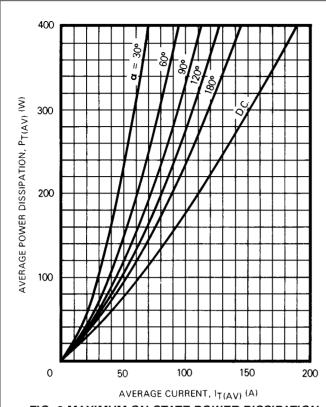


FIG. 2 MAXIMUM ON-STATE POWER DISSIPATION FOR SINUSOIDAL CURRENT WAVEFORM

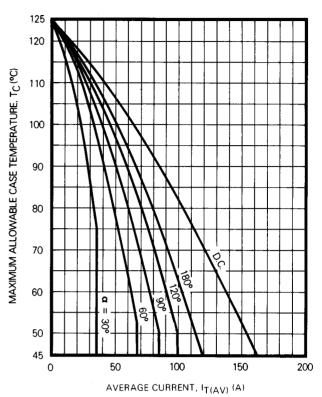


FIG. 3 MAXIMUM ALLOWABLE CASE TEMPERATURE FOR SINUSOIDAL CURRENT WAVEFORM

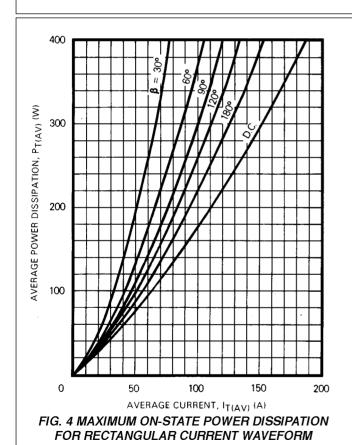
125

120

110

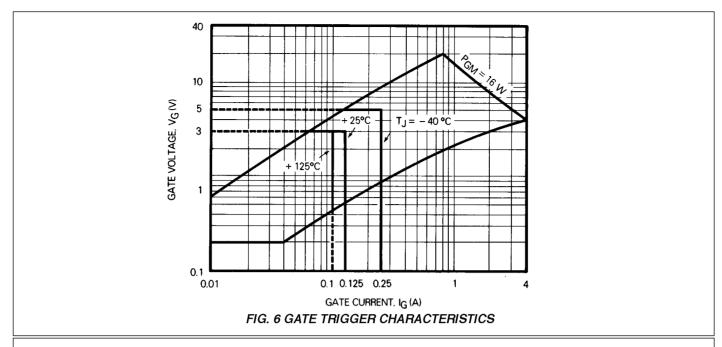
100

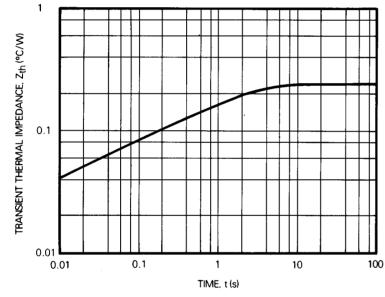
90


80

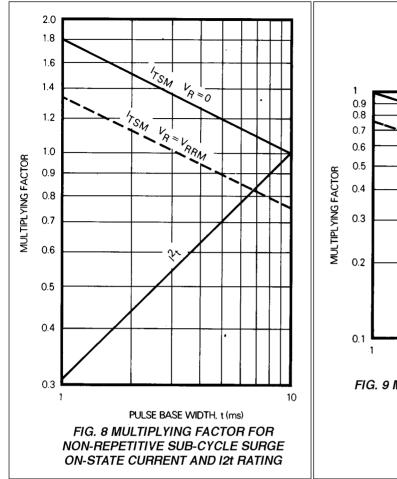
70

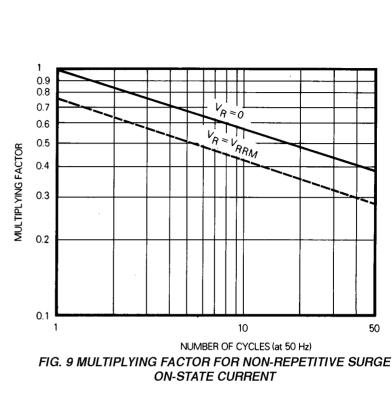
60


50

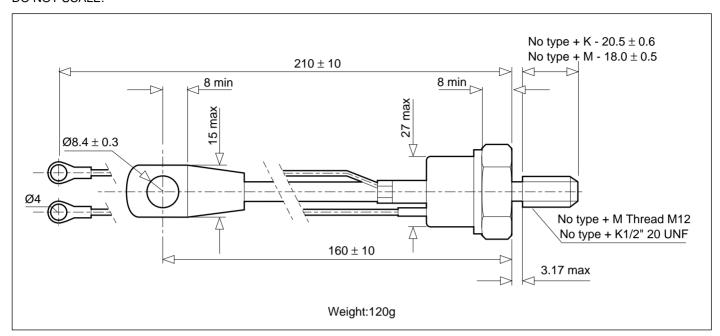

MAXIMUM ALLOWABLE CASE TEMPERATURE, T_{C} (°C)

45 0 50 100 150 AVERAGE CURRENT, IT(AV) (A) FIG. 5 MAXIMUM ALLOWABLE CASE TEMPERATURE FOR RECTANGULAR CURRENT WAVEFORM


200



Conduction angle (α,β)	Effective thermal Resistance (°C/W) Junction to case		
arigie (a,p)	Sinusoïdal	Rectangular	
. 180°	0.259	0.288	
120°	0.268	0.324	
90⁰	0.288	0.360	
60°	0.312	0.408	
30 º	0.384	0.480	


FIG. 7 TRANSIENT THERMAL IMPEDANCE - JUNCTION TO CASE

PACKAGE DETAILS - TO94

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire, SN2 2QW, United Kingdom. Tel: + 44 (0)1793 518000

Fax: + 44 (0)1793 518411

Fax: + 1 (408) 438 5576

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, California 95067-0017, United States of America. Tel: + 1 (408) 438 2900

POWER PRODUCT CUSTOMER SERVICE CENTRES

- FRANCE. 2 rue Henri-Bergson, 92665 Asnieres Cedex.
 Tel: + 33 1 40 80 54 00. Fax: + 33 1 40 80 55 87.
- GERMANY. Ungererstrasse 129, 80505 München.
 Tel: + 49 (0)89 36 09 060. Fax: + 49 (0)89 36 09 06 55.
- NORTH AMERICA. Two Dedham Place, Suite 125, 3 Allied Drive, Dedham. MA 02026.
 Tel: + 1 617 251 0126. Fax: + 1 617 251 0106.
- UNITED KINGDOM. Doddington Road, Lincoln. LN6 3LF.
 Tel: + 44 (0)1522 500500. Fax: + 44 (0)1522 500550.

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1995 Publication No. DS4252-3 Issue No. 3.2 October 1995 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.