KEY PARAMETERS

 $\mathbf{V}_{\mathtt{DRM}}$

T(RMS)

dV/dt

dl/dt

ta

DS4279-2.1

1400V

1700A

20000A

300V/นร

500A/μs

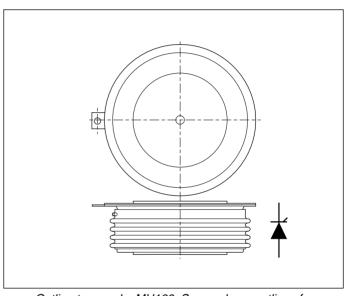
30μ**s**

TF915..B

FAST SWITCHING THYRISTOR

APPLICATIONS

- High Power Inverters And Choppers.
- UPS.
- Railway Traction.
- Induction Heating.
- AC Motor Drives.
- Cycloconverters.


FEATURES

- Double Side Cooling.
- High Surge Capability.
- High Voltage.

VOLTAGE RATINGS

Type Number	Repetitive Peak Voltages V _{DRM} V _{RRM}	Conditions
TF915 14B	1400	$V_{RSM} = V_{RRM} + 100V$
TF915 12B	1200	TOW KIN
TF915 10B	1000	$I_{DRM} = I_{RRM} = 60 \text{mA}$
TF915 08B	800	Did Kill
TF915 06B	600	at V _{RRM} or V _{DRM} & T _{vi}
		,

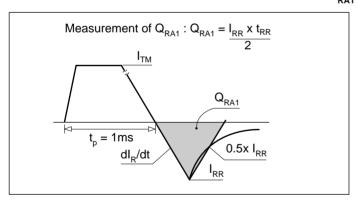
Lower voltage grades available.

Outline type code: MU169. See package outlines for further information.

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
I _{T(AV)}	Mean on-state current	Half sinewave, 50Hz, T _{case} = 80°C	1080	А
I _{T(RMS)}	RMS value	Half sinewave, 50Hz, T _{case} = 80°C	1700	А

TF915..B


SURGE RATINGS

Symbol	Parameter	Parameter Conditions		Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; $V_R = 0\% V_{RRM}$, $T_j = 125$ °C	20.0	kA
l²t	I ² t for fusing	10ms half sine; $V_R = 0\% V_{RRM}$, $T_j = 125$ °C	2000 x 10 ³	A ² s

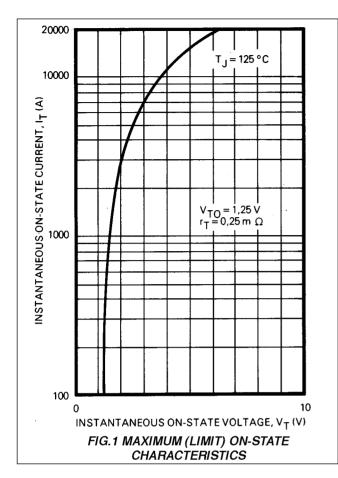
THERMAL AND MECHANICAL DATA

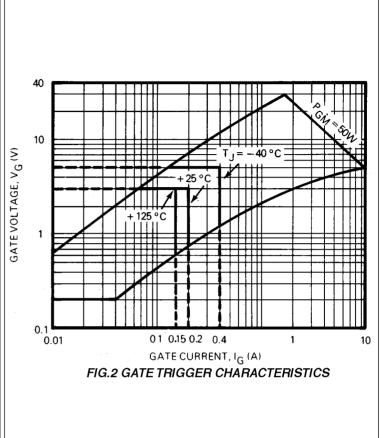
Symbol	Parameter	Conditions		Min.	Max.	Units
R _{th(j-c)}	Thermal resistance - junction to case	Double side cooled	dc	-	0.020	°C/W
		Single side cooled	Anode dc	-	-	°C/W
			Cathode dc	-	-	°C/W
R _{th(c-h)}	Thermal resistance - case to heatsink	Clamping force 23.5kN with mounting compound	Double side	-	0.006	°C/W
			Single side	-	0.012	°C/W
T _{vj}	Virtual junction temperature	On-state (conducting)		-	125	°C
		Reverse (blocking)		-	125	°C
T _{stg}	Storage temperature range			-40	150	°C
-	Clamping force			22.3	24.6	kN

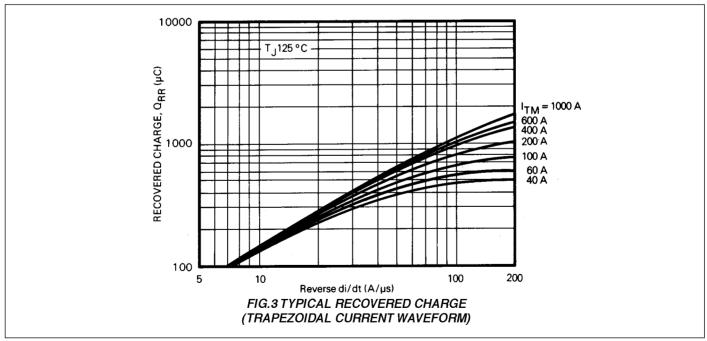
MEASUREMENT OF RECOVERED CHARGE - \mathbf{Q}_{RA1}

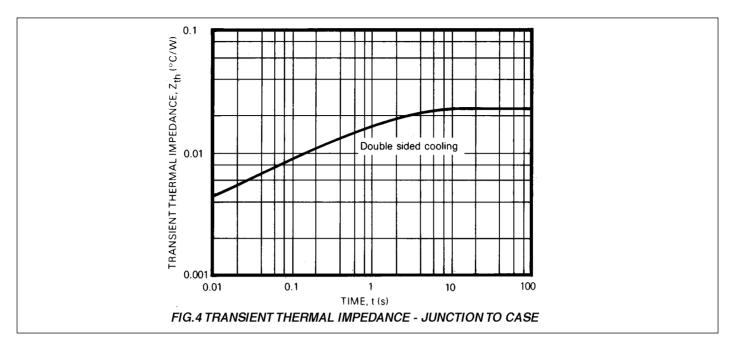
DYNAMIC CHARACTERISTICS

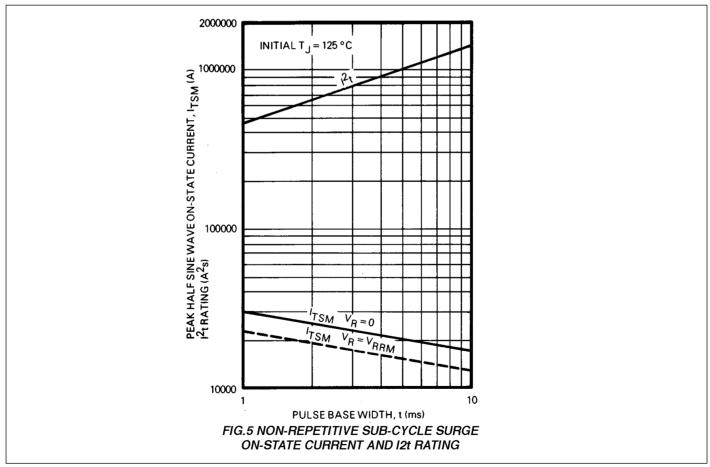
Symbol	Parameter	Conditions		Min.	Max.	Units
V _{TM}	Maximum on-state voltage	At 2000A peak, T _{case} = 25°C		-	1.75	V
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V_{RRM}/V_{DRM} , $T_{case} = 125^{\circ}C$		-	60	mA
dV/dt	Maximum linear rate of rise of off-state voltage	Linear to 60% V_{DRM} $T_j = 125$ °C,	Gate open circuit	-	300	V/µs
dl/dt	Data of vice of an atota augment	Gate source 20V, 20Ω	Repetitive 50Hz	ı	500	A/μs
di/dt	Rate of rise of on-state current	t _r ≤ 0.5μs, T _j = 125°C	Non-repetitive	ı	800	A/μs
V _{T(TO)}	Threshold voltage	At T _{vj} = 125°C		-	1.25	V
r _T	On-state slope resistance	At T _{vj} = 125°C		-	0.25	mΩ
t _{gd}	Delay time	$T_j = 25^{\circ}\text{C}, I_T = 50\text{A},$ $V_D = 300\text{V}, I_S = 1\text{A},$		1.5*	-	μs
t _{(ON)TOT}	Total turn-on time	$v_D = 500V$, $v_G = 1A$, $dI/dt = 50A/\mu s$, $dI_G/dt = 1A/\mu s$		3.0*	-	μs
I _H	Holding current	$T_{j} = 25^{\circ}C, I_{TM} = 1A, V_{D} = 12V$		100*	-	mA
I _L	Latching current	$T_j = 25^{\circ}C, I_G = 0.5A, V_D = 12V$		300*	-	mA
t _q	Turn-off time	$ \begin{array}{l} T_{\rm j} = 125^{\circ}\text{C}, \ I_{\rm T} = 250\text{A}, \ V_{\rm R} = 50\text{V}, \\ \text{dV/dt} = 20\text{V/}\mu\text{s} \ \text{(Linear to 60\% V}_{\rm DRM}), \\ \text{dI}_{\rm R}/\text{dt} = 50\text{A/}\mu\text{s}, \ \text{Gate open circuit} \end{array} \right. t_{\rm q} \ \text{code: B} $		-	30	μs

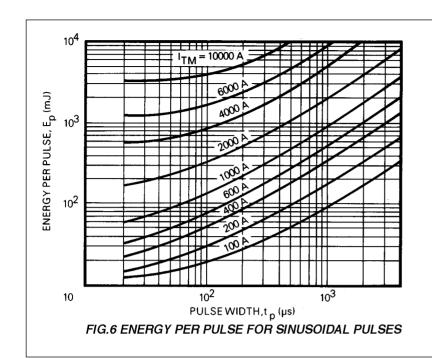

^{*}Typical value.

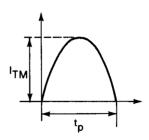

GATE TRIGGER CHARACTERISTICS AND RATINGS

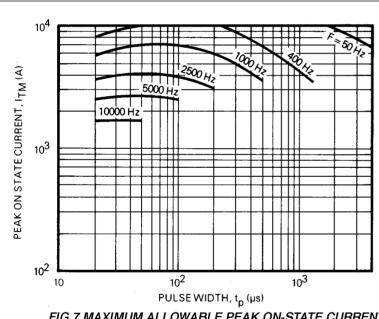

Symbol	Parameter	Conditions		Max.	Units
V _{GT}	Gate trigger voltage	$V_{DRM} = 12V, T_{case} = 25^{\circ}C, R_{L} = 6\Omega$	-	3.0	V
I _{GT}	Gate trigger current	$V_{DRM} = 12V, T_{case} = 25^{\circ}C, R_{L} = 6\Omega$	-	200	mA
V_{GD}	Gate non-trigger voltage	At $V_{DRM} T_{case} = 125^{\circ}C$, $R_{L} = 1k\Omega$	-	0.2	V
V _{RGM}	Peak reverse gate voltage		-	5.0	V
I _{FGM}	Peak forward gate current	Anode positive with respect to cathode	-	10	А
P _{GM}	Peak gate power		-	50	W
$P_{G(AV)}$	Mean gate power		-	3	W

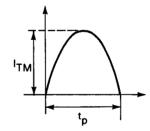

TF915..B

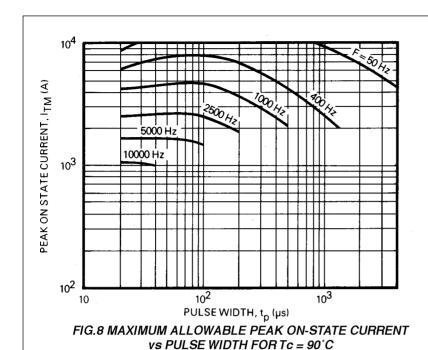

CURVES

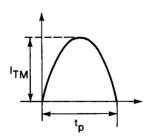


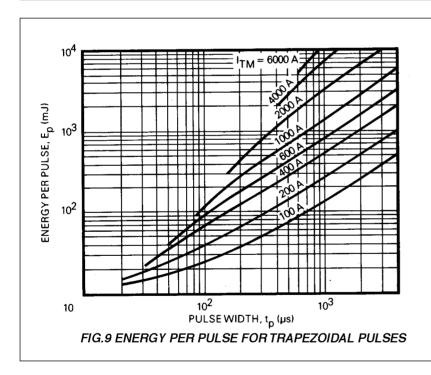


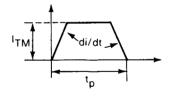



- 1. $V_D \le 600V$. 2. $V_R \le 10V$. 3. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$




FIG.7 MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs PULSE WIDTH FOR Tc = 65°C


- 1. $V_D \le 600V$. 2. $V_R \le 10V$. 3. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$


- 1. $V_D \le 600V$. 2. $V_R \le 10V$. 3. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$

- 1. $dI/dt = 25A/\mu s$

- 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$

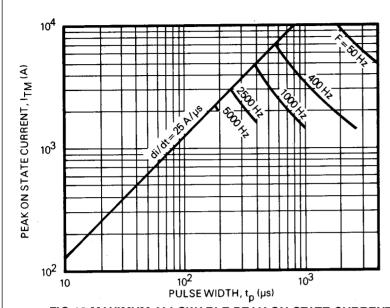
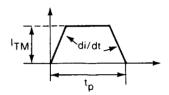



FIG. 10 MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs PULSE WIDTH FOR Tc = 65°C

- 1. $dI/dt = 25A/\mu s$

- 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$

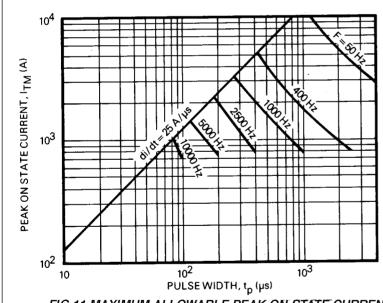
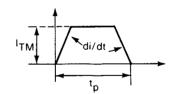
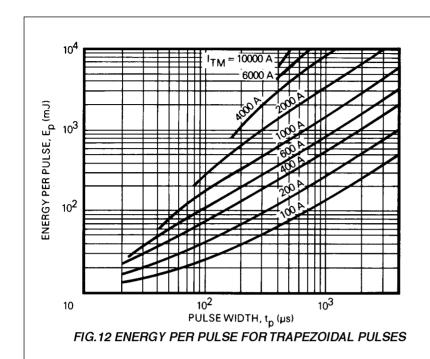
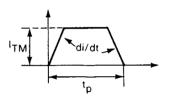
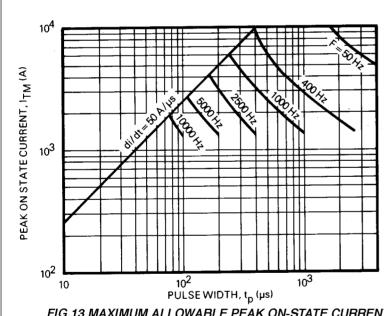




FIG.11 MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs PULSE WIDTH FOR Tc = 90°C

- 1. $dI/dt = 25A/\mu s$


- 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$



- 1. $dI/dt = 50A/\mu s$

- 1. $dVdt = 30A/\mu S$ 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$

- 1. $dI/dt = 50A/\mu s$

- 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$

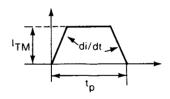
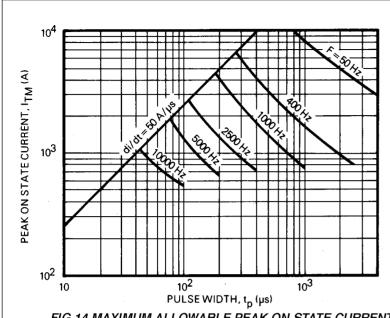
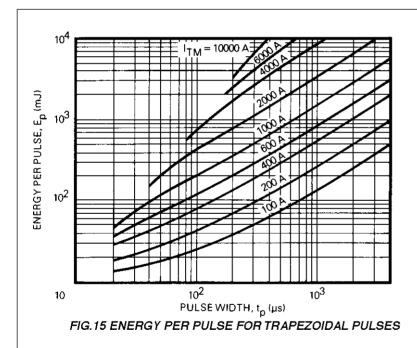



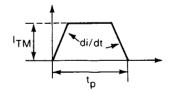
FIG.13 MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs PULSE WIDTH FOR Tc = 65°C

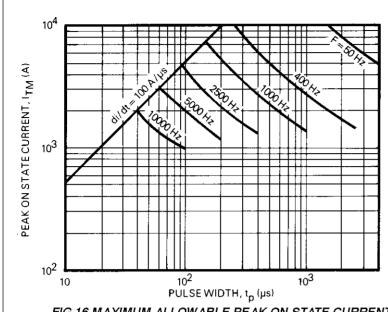

FIG.14 MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs PULSE WIDTH FOR Tc = 90°C

NOTES:

- 1. $dI/dt = 50A/\mu s$

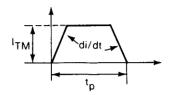
- 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$

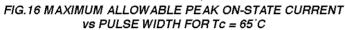


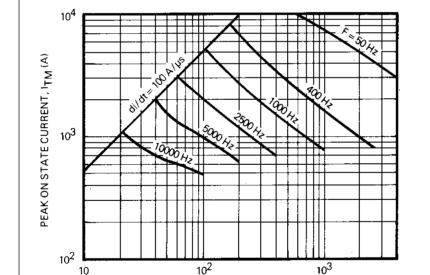


NOTES:

1. $dI/dt = 100A/\mu s$

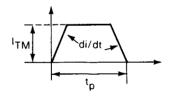

- 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$

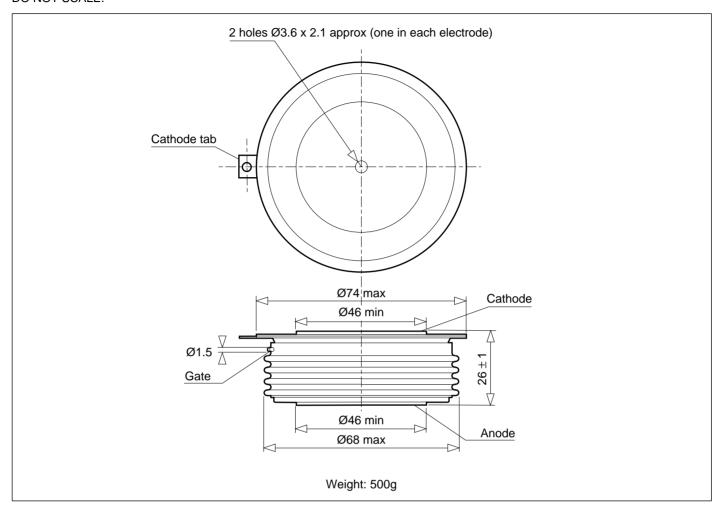




- 1. $dI/dt = 100A/\mu s$

- 2. $V_D \le 600V$. 3. $V_R \le 10V$. 4. R.C Snubber, $C = 0.22\mu F$, $R = 4.7\Omega$




PULSE WIDTH, t_p (µs) FIG.17 MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT vs PULSE WIDTH FOR Tc = 90°C

- 1. dl/dt = $100 A/\mu s$ 2. $V_D \le 600 V$. 3. $V_R \le 10 V$. 4. R.C Snubber, $C = 0.22 \mu F$, $R = 4.7 \Omega$

PACKAGE DETAILS - MU169

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS

Cheney Manor, Swindon, Wiltshire, SN2 2QW, United Kingdom. Tel: + 44 (0)1793 518000

Fax: + 44 (0)1793 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, California 95067-0017, United States of America. Tel: + 1 (408) 438 2900 Fax: + 1 (408) 438 5576

POWER PRODUCT CUSTOMER SERVICE CENTRES

- FRANCE. 2 rue Henri-Bergson, 92665 Asnieres Cedex. Tel: + 33 1 40 80 54 00. Fax: + 33 1 40 80 55 87.
- GERMANY. Ungererstrasse 129, 80505 München.
- Tel: +49 (0)89 36 09 060. Fax: +49 (0)89 36 09 06 55. NORTH AMERICA. Two Dedham Place, Suite 125, 3 Allied Drive, Dedham. MA 02026.
- Tel: + 1 617 251 0126. Fax: + 1 617 251 0106. UNITED KINGDOM. Doddington Road, Lincoln. LN6 3LF. Tel: + 44 (0)1522 500500. Fax: + 44 (0)1522 500550.

These are supported by Agents and Distributors in major countries world-wide.

© GEC Plessey Semiconductors 1996 Publication No. DS4279-2 Issue No. 2.1 January 1996 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.