

DUAL 2-A SOURCE DRIVER

- OUTPUT CURRENT UP TO 2.5 A
- WIDE RANGE OF SUPPLY VOLTAGE : + 8 V TO + 26 V
- CAN WITHSTAND OVERVOLTAGES OF AS HIGH AS 60 V BETWEEN Vcc AND GROUND
- OUTPUT VOLTAGE CAN SWING TO LOWER THAN GROUND
- "SENSE" AND "ALARM" OUTPUTS ARE OPEN COLLECTOR OUTPUTS

DESCRIPTION

The TDF1779A is a dual source driver delivering hihg output currents and the capability to drive highly inductive loads (Electrovalves, contractors, relays...).

This device is essentially blow-out proof, each output is protected against short-circuits. If internal dissipation becomes too high, drivers will shut down to prevent excessive heating. An "ALARM" output is provided to indicate the action of the thermal protection. To reactivate the power outputs, the reset input must be forced to low state.

"SENSE" information of both power outputs are ORed together and then processed internally.

A "STROBE" input is also provided to offer the possibility of disabling the power outputs.

PIN CONNECTION

BLOCK DIAGRAM

MAXIMUM RATINGS

Symbol	arameter	Value	Unit	
V _{CC}	Supply Voltage	35 V (60 V/10 ms)	V	
VI, V _{reset}	Input Voltage (Pins 7, 10 and 11)	- 30 to + 50	V	
Vstrobe	Strobe Input Voltage	-0.5 to V _{CC}	V	
Ι _Ο	Output Current	Internally Limited	А	
Ptot	Power Dissipation	Internally Limited	W	
T _{oper}	Operating Ambient temperature Range	- 40 to + 85	°C	

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Uni
R _{th (j-c)}	Junction-case Thermal Resistance Max.	3	°C/W
R _{th (j-a)}	Junction-ambient Thermal Resistance Max.	40	°C/W

ELECTRICAL OPERATING CHARACTERISTICS

(V_{CC} = + 24V, $-40^{\circ}C < T_j < + 85^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{CC}	Power Supply Voltage	8	-	26	V
Icc	Power Supply Current (pin 6), $I_{O1} = I_{O2} = 2A$	-	-	20	mA
V _{IL} VIH	Logic Input Voltage (pin 7,10,11)	- 2	-	0.8 -	V
VI	Logic Input Threshold (pin 5)	-	0.8	-	V
IIH	High Level Input Current (pins 7,10,11) V _I = + 2V	-	20	50	μΑ
١ _L	Low Level Input Current (pins 7,10,11) V _I = + 0.8V	- 5	0	+ 5	μΑ
-	Off State Output Voltage (pins 8,9) (8) = (9) = 2 mA	-	-	0.4	V
$\begin{array}{c} V_{CC}-V_{01}\\ V_{CC}-V_{02} \end{array}$	Output Saturation Voltage (V(7) high, V(11) High, $I_0 = 2A$)	-	1.5	1.8	V
I _{OL}	Low Level Output Current pins 1,3) V(7) Low, V(11) Low, $V_0 = 0V$	-	400	1000	μA
$\begin{array}{c} V_{CC}-V_{01}\\ V_{CC}-V_{02} \end{array}$	Switch-off Output Voltage (inductive load) Note 1		-	45	V
lo1, lo2	Available Ouptut Current (pins 1,3), V(7) high, V(11p) high, V _{CC} – V _O = 26V, T _j = 25°C		-	-	mA
IO Alarme	Available "Alarme" Output Current, V(9) = + 4V		8	-	mA
I _{O Sense}	Available "Sense Ouptut Current, V(8) = + 4V		8	-	mA
I _{IH Sense}	Output Sensing high Level Input Current (pins 1,3) $V_1 = +2V$	-	1	2	mA

Note 1 : An external discharge circuit is required for inductive loads

57

AVAILABLE OUTPUT CURRENT

AVAILABLE ALARM OR SENSE OUTPUT CURRENTS

OUTPUT SATURATION VOLTAGE

POWER SUPPLY CURRENT

TYPICAL APPLICATION WITH TDF1779A TWO LOADS 12 V - 2 A

MAIN FEATURES

This application is protected against for short circuit and overload.

The load disconnection is detected when inputs E_1 and E_2 are low and the sense output is high. When thermal protection is actived the pin 9 is low. Inputs are TTL compatible.

Sense output, Alarm output are open collector.

TDF1779A HIGHT CURRENT APPLICATION WITH LOAD 12 V - 4 A

MAIN FEATURES

This application has the same features as the dual 2 A - 12 V application.

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.88		0.95	0.035		0.037
G	1.45	1.7	1.95	0.057	0.067	0.077
G1	16.75	17	17.25	0.659	0.669	0.679
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.87	0.886
L2	17.4		18.1	0.685		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.73	5.08	5.43	0.186	0.200	0.214
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-croelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com