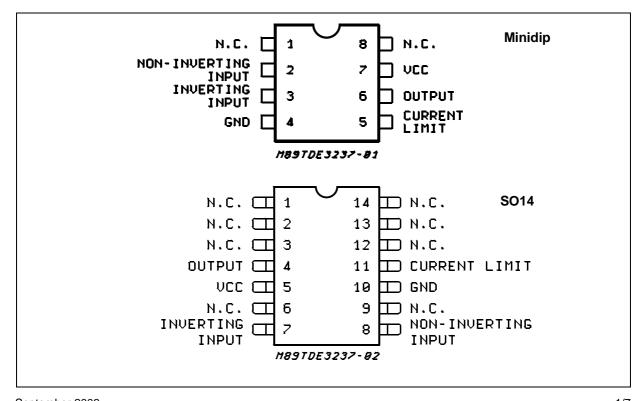

INTELLIGENT POWER SWITCH

- HIGH OUTPUT CURRENT
- ADJUSTABLE SHORT-CIRCUIT PROTECTION
- INTERNAL THERMAL PROTECTION WITH HYSTERESIS TO AVOID THE INTERMEDIATE OUTPUT LEVELS
- LARGE SUPPLY VOLTAGE RANGE: 8 TO 30V

DESCRIPTION

The TDE3237 is a monolithic amplifier designed for high-current and high-voltage applications, specially to drive lamps, relays and stepping motors.

The device is essentially blow-out proof. Current limiting is available to limit the peak output current to a safe value, the adjustment only requires one external resistor. In addition, thermal shut down is provided to keep the IC from overheating. If external dissipation becomes too great, the driver will



shut down to prevent excessive heating.

The output is also protected from short-circuits with the positive power supply.

The device operates over a wide range of supply voltages from standard ± 15 V operational amplifier supplies down to the single 12V or 24V used for industrial electronic systems.

PIN CONNECTIONS

September 2003

ABSOLUTE MAXIMUM RATINGS

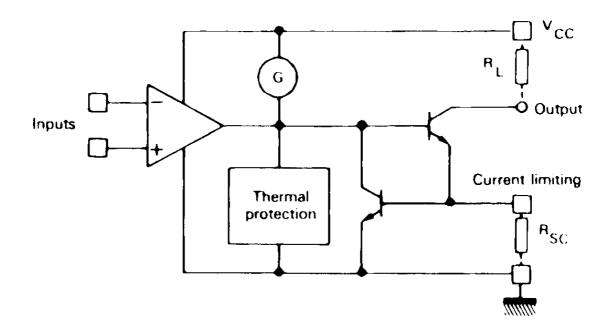

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	36	V
V _{ID}	Differantial Input Voltage	36	V
VI	Input Voltage	36	V
lo	Output Current	500	mA
P _{tot}	Power Dissipation	Internally Limited	W
T _{stg}	Storage Temperature Range	- 65 to + 150	°C
T _{oper}	Operating Free-air Temperature Range	- 25 to + 85	°C

THERMAL CHARACTERISTICS

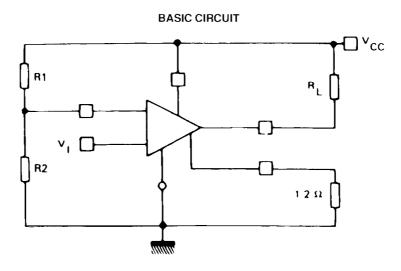
Symbol	Parameter		Value	Unit
R _{th(j-c)}	Maximum Junction-case Thermal Resistance (note 1)	Minidip	50	°C/W
R _{th(j-a)}	Maximum Junction-ambient Thermal Resistance (note 1)	Minidip	120	°C/W
	Junction-ceramic Substrate (case glued to substrate)	SO14	90	°C/W
	Junction-ceramic Substrate (case glued to substrate, substrate temperature maintened constant)	SO14	65	°C/W

Note: 1. Devices bonded on 40 cm glass-epoxy printed circuit 0.15cm thick with 4cm² of copper

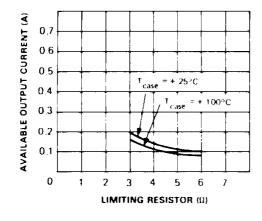
SCHEMATIC DIAGRAM

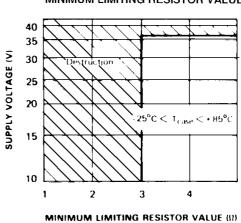

ELECTRICAL CHARACTERISTICS $T_{amb} = -25$ to +85 °C, $V_{CC} = 8$ to ≤ 30 V, unless otherwise specified (note 1).

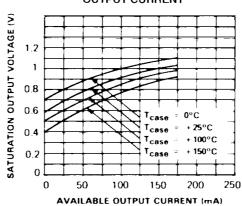
Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IO}	Input Offset Voltage - (note 3)	ı	2	50	mV
I _{IB}	Input Bias Current		0.1	1.5	μΑ
Icc	Supply Current (V _{CC} = + 24 V, I _O = 0)	١	3	5	mA
V _{CM}	Common-mode Input Voltage Range		_	V _{CC} -2	V
Isc	Short-circuit Current Limit ($T_{case} = +25 ^{\circ}\text{C}, R_{SC} = 3.3 \Omega$)	١	230	ı	-mA
V _{CC} -V _O	Output Saturation Voltage (output high) ($R_{SC} = 0$, $V_1+-V_1- \ge 50$ mV, $I_0 = 150$ mA	_	1	1.5	V
I _{OL}	Low Level Output Current (V _O = V _{CC} = + 24 V T _{amb} = + 25 °C)	-	-	100	μΑ


Notes:

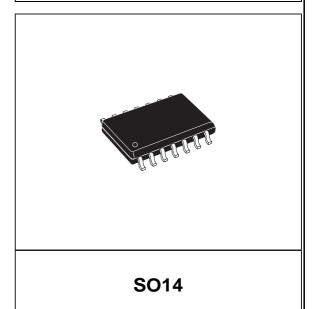
- 2) For operating at high temperature, the TDE3237, must be derated based on a + 150 C maximum junction temperature and a junction-ambient thermal as showed in the thermal characteristics data base.
- 3) The offset voltage given is the maximum value of input voltage required to drive the output voltage within 2 V of the ground or the supply voltage.


SIMPLIFIED SCHEMATIC

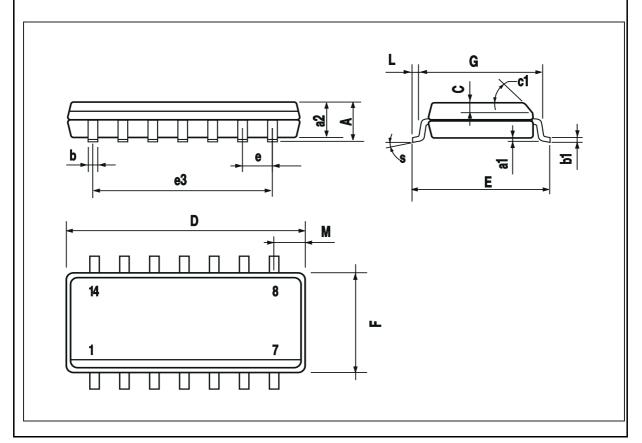

TYPICAL APPLICATION


AVAILABLE OUTPUT CURRENT VERSUS LIMITING RESISTOR

SUPPLY VOLTAGE VS MINIMUM LIMITING RESISTOR VALUE

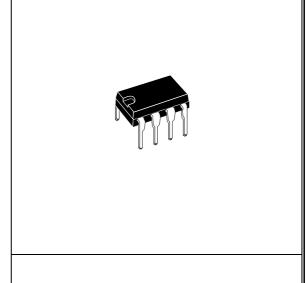


SATURATION OUTPUT VOLTAGE VERSUS CASE TEMPERATURE AND AVAILABLE OUTPUT CURRENT

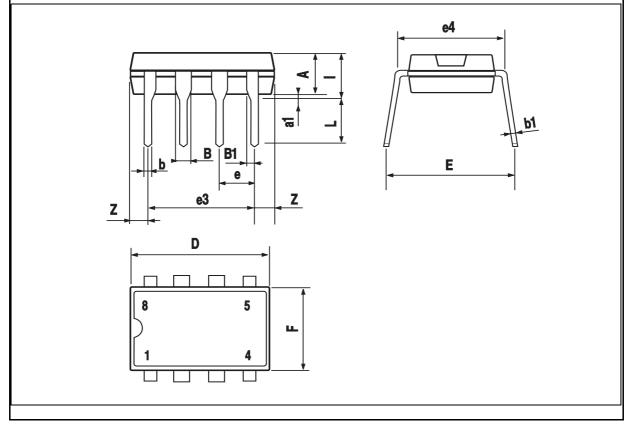


DIM.		mm			inch	
Dilvi.	MIN	TYP.	MAX	MIN	TYP	MAX
Α			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1	45° (typ.)					
D (1)	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		7.62			0.300	
F (1)	3.8		4	0.150		0.157
G	4.6		5.3	0.181		0.209
L	0.4		1.27	0.016		0.050
М			0.68			0.027
S	8° (max)					

OUTLINE AND MECHANICAL DATA



⁽¹⁾ D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).



DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
I			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA

Minidip

5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

