DC COUPLING HIGH VOLTAGE VIDEO AMPLIFIER ■ BANDWIDTH: 40MHz TYPICAL ■ RISE AND FALL TIME: 9ns TYPICAL ■ SUPPLY VOLTAGE: 110V ■ POWER DISSIPATION: 3.0W ■ ESD PROTECTED The TDA9511 is a video amplifier designed with a high voltage Bipolar/CMOS/DMOS technology (BCD). It drives in DC coupling mode one cathode of a monitor and is protected against flashovers. It is available in Heptawatt package. ### **PIN CONNECTIONS** ## PIN CONFIGURATION | Pin N | Symbol | Function | | | |-------|-----------------|---------------------------------------|-------------|--| | 1 | IN- | Input of the amplifier | | | | 2 | V _{CC} | Low Voltage Power Supply (12V Typ.) | | | | 3 | V_{REF} | Internal Voltage Reference (3.3V) | | | | 4 | GNDA | Analog Ground | | | | 5 | GNDP | Power Ground | | | | 6 | OUT | Output driving the cathode | Ē | | | 7 | V_{DD} | High Voltage Power Supply (110V Max.) | 0511-01 TRI | | April 1998 1/5 # **BLOCK DIAGRAM** # **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------------------------|---|-----------------|---------| | V_{DD} | Supply High Voltage (Pin 7) | 120 | V | | V _{CC} | Supply Low Voltage (Pin 2) | 20 | V | | VESD | ESD Susceptibility Human Body Model, 100pF Discharge through 1.5k Ω EIAJ Norm, 200pF Discharge through 0Ω | 2
300 | kV
V | | I _{OD}
I _{OG} | Output Current to V _{DD} (Pin 6)
Output Current to Ground (Pin 6) (see Note 1) | protected
80 | mA | | lj | Input Current (Pin 1) | 50 | mA | | Tj | Junction Temperature | 150 | °C | | T _{oper} | Operating Ambient Temperature | 0, +70 | °C | | T _{stg} | Storage Temperature | -20, +150 | °C | Note 1 : Pulsed current $t \leq 50 \mu s$ # THERMAL DATA | Symbol | Parameter | Value | Unit | |-----------------------|--|-------|------| | R _{th (j-c)} | Junction-Case Thermal Resistance Max. | 3 | °C/W | | R _{th (j-a)} | Junction-Ambient Thermal Resistance Typ. | 70 | °C/W | # **ELECTRICAL CHARACTERISTICS** (V_{CC} = 12V, V_{DD} = 110V, T_{amb} = 25°C, unless otherwise specified) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |---------------------------------|--|--|------|-----------------------|------|-------| | V_{DD} | High Supply Voltage (Pin 7) | | 20 | | 110 | V | | Vcc | Low Supply Voltage (Pin 2) | | 10 | 12 | 15 | V | | I _{DD} | DC Current of High Voltage Supply (without feedback current) | V _{OUT} = 60V | | 9 | | mA | | Icc | Low Voltage Supply Internal DC Current | | | 15 | | mA | | V_{REF} | Internal Reference (Pin 3) | | | 3.2 | | V | | V _{IN} | Input Voltage | V _{OUT} = 60V | | 3.25 | | V | | dV_{IN}/dV_{CC} | Drift of Input Voltage versus V _{CC} | Measured on Pin 1 | | 0.12 | | % | | dV _{IN} /dT | Drift of Input Voltage versus Temperature | | | 0.5 | | mV/°C | | V _{SATH} | High Output Saturation Voltage (Pin 6) | I _O = -60mA | | V _{DD} - 8.5 | | V | | V _{SATL} | Low Output Saturation Voltage (Pin 6) | I _O = 60mA | | 12 | | V | | ELin | Linearity Error | 17V < V _{OUT} < V _{DD} - 15V | | | 5 | % | | OS | Overshoot | | | 5 | | % | | BW | Bandwidth at -3dB | $\begin{array}{l} \mbox{Measured on CRT cathodes.} \\ \mbox{C}_{\mbox{LOAD}} = 10\mbox{pF, Rprotect} = 220\Omega, \\ \mbox{V}_{\mbox{OUT}} = 60\mbox{V}, \Delta\mbox{V}_{\mbox{OUT}} = 20\mbox{V}_{\mbox{PP}}, \\ \mbox{Feedback gain} = 20 \end{array}$ | | 40 | | MHz | | t _R , t _F | Rise and Fall Time | $\label{eq:measured_between 10\% \& 90\%} \begin{tabular}{ll} Measured between 10\% \& 90\% \\ of output pulse, \\ C_{LOAD} = 10pF, Rprotect = 220\Omega, \\ V_{OUT} = 60V, \Delta V_{OUT} = 40V_{PP} \end{tabular}$ | | 9 | | ns | | Go | Open Loop Gain | V _{OUT} = 60V | | 60 | | dB | | | Open Loop Gain Temperature
Coefficient | | | 0.03 | | dB/°C | | I _{IB} | Input Bias Current (Pin 1) | V _{OUT} = 60V | | 20 | 30 | μΑ | | | Input Bias Temperature Coefficient | | | 90 | | nA/ºC | | R _{IN} | Input Resistance | See Note 2 | | 200 | | kΩ | Note 2: Characterized and not tested. Figure 1: Measurement of Input Voltage #### TYPICAL APPLICATION The TDA9511 consists of: - A differential amplifier with active load, - A DMOS output buffer, - Abandgap voltage reference (Pin 3 for filtering only). ### PC board lay-out The best performances are obtained with a carefully designed HF PC-Board, especially for the output and input capacitors. The feedback resistor R_F must have a low parasitic capacitor ($C_F < 0.3pF$). This parasitic capacitor C_F must be compensated by a capacitor R3 (roughly 20 · C_F) connected in parallel with the input resistor R1. The full bandwidth of the device is only obtained with well matched compensation otherwise the application will have either an integrator response with a low bandwidth or a differentiator response with too much ringing. A diode D_P (see Figure 2) has to be connected for flashover protection. ### **Power dissipation** The power dissipation consists of a static part and a dynamic part. The static dissipation varies with the output voltage and the feedback resistor. The dynamic power dissipation increases with the pixel frequency. For a signal frequency of 40MHz and $40V_{PP}$ output signal, the typical power dissipation is about 3.0W, for $V_{DD} = 110V$. In first approximation, the dynamic dissipation is: $$P_D = V_{DD} * C_{LOAD} * \Delta V_{OUT} * f$$ and the total dissipation is: $$P = V_{DD} * C_{LOAD} * \Delta V_{OUT} * f + V_{DD} * I_{DD}$$ $$+ V_{CC} * I_{CC} - (V_{DD} - \overline{V_{OUT}}) \frac{\overline{V_{OUT}}}{R_{FEEDBACK}}$$ with f = pixel frequency P = 110V x 10pF x 40V x 40MHz + 110V x 7mA +12 x 20mA - 60^2 V/20kΩ = 2.95W Figure 2: Typical Evaluation Schematic Recommended values: $R1=1k\Omega,\,R2=1.8k\Omega,\,R_F=20k\Omega,\,R_P=200\Omega,$ C4 > 10nF, C3 = 10 to 12pF for $C_F # 0.5pF$. R3 # 150Ω . ### PACKAGE MECHANICAL DATA: 7 PINS - PLASTIC HEPTAWATT | Dimensions | Millimeters | | | Inches | | | | |------------|-------------|-------|------|--------|-------|-------|--| | Dimensions | Min. | Тур. | Max. | Min. | Тур. | Max. | | | Α | | | 4.8 | | | 0.189 | | | С | | | 1.37 | | | 0.054 | | | D | 2.4 | | 2.8 | 0.094 | | 0.110 | | | D1 | 1.2 | | 1.35 | 0.047 | | 0.053 | | | E | 0.35 | | 0.55 | 0.014 | | 0.022 | | | F | 0.6 | | 08 | 0.024 | | 0.031 | | | F1 | | | 0.9 | | | 0.035 | | | G | 2.41 | 2.54 | 2.67 | 0.095 | 0.100 | 0.105 | | | G1 | 4.91 | 5.08 | 5.21 | 0.193 | 0.200 | 0.205 | | | G2 | 7.49 | 7.62 | 7.8 | 0.295 | 0.300 | 0.307 | | | H2 | | | 10.4 | | | 0.409 | | | H3 | 10.05 | | 10.4 | 0.396 | | 0.409 | | | L | | 16.97 | | | 0.668 | | | | L1 | | 14.92 | | | 0.587 | | | | L2 | | 21.54 | | | 0.848 | | | | L3 | | 22.62 | | | 0.891 | | | | L5 | 2.6 | | 3 | 0.102 | | 0.118 | | | L6 | 15.1 | | 15.8 | 0.594 | | 0.622 | | | L7 | 6 | | 6.6 | 0.236 | | 0.260 | | | М | | 2.8 | | | 0.110 | | | | M1 | | 5.08 | | | 0.200 | | | | Dia. | 3.65 | | 3.85 | 0.144 | | 0.152 | | Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. #### © 1998 SGS-THOMSON Microelectronics - All Rights Reserved Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips. #### SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. SGS-THOMSON MICROELECTRONICS HEPTV