ADVANCED CAR SIGNAL PROCESSOR - FULLY INTEGRATED SIGNAL PROCESSOR OPTIMIZED FOR CAR RADIO APPLICA-TIONS - FULLY PROGRAMMABLE BY I²C BUS - INCLUDES AUDIOPROCESSOR, STEREO -DECODER WITH NOISE BLANKER AND MULTIPATH DETECTOR - SOFTMUTE FUNCTION - PROGRAMMABLE ROLL-OFF COMPENSA-TION - NO EXTERNAL COMPONENTS #### **DESCRIPTION** The TDA7407 is the newcomer of the CSP family introduced by TDA7460/61. It uses the same innovative concepts and design technologies allowing fully software programmability through I²C bus and overall cost optimisation for the system designer. The device includes a three band audioprocessor with configurable inputs and absence of external components for filter settings, a last generation stereodecoder with multipath detector and a sophisticated stereoblend and noise cancellation circuitry. Strength points of the CSP approach are flexibility and overall cost/room saving in the application, combined with high performances. #### **BLOCK DIAGRAM** June 2001 1/30 #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|-------------------------------------|------------|------| | Vs | Operating Supply Voltage | 10.5 | V | | T _{amb} | Operating Ambient Temperature Range | -40 to 85 | °C | | Tstg | Operating Storage Temperature Range | -55 to 150 | °C | #### **SUPPLY** | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |--------|-------------------------|-----------------------------------|------|------|------|------| | Vs | Supply Voltage | | 7.5 | 9 | 10 | V | | Is | Supply Current | V _S = 9V | 30 | 35 | 40 | mA | | SVRR | Ripple Rejection @ 1KHz | Audioprocessor (all filters flat) | 50 | 60 | | dB | | | | Stereodecoder + Audioprocessor | 45 | 55 | | dB | #### **ESD** All pins are protected against ESD according to the MIL883 standard. #### **PIN CONNECTION** #### THERMAL DATA | Symbol | Parameter | Value | Unit | |------------|--------------------------------------|-------|------| | Rth-j pins | Thermal Resistance Junction-pins Max | 85 | °C/W | 2/30 ### **PIN DESCRIPTION** | N. | Name | Function | Туре | |----|--------|---------------------------------------|------| | 1 | CDR | CD Right Channel Input | İ | | 2 | CDROUT | CD Output Right Channel | 0 | | 3 | CDGND | CD Input Common Ground | I | | 4 | CDLOUT | CD Output Left Channel | 0 | | 5 | CDL | CD Input Left Channel | I | | 6 | nc | | - | | 7 | PH - | Differential Phone Input - | I | | 8 | PH+ | Differential Phone Input + | ı | | 9 | AFS | AFS Drive | ı | | 10 | AM | AM Input | ı | | 11 | nc | | - | | 12 | MPX | FM Stereodecoder Input | ı | | 13 | nc | | - | | 14 | LEVEL | Level Input Stereodecoder | ı | | 15 | MPIN | Multipath Input | I | | 16 | MPOUT | Multipath Output | 0 | | 17 | nc | | - | | 18 | MUXL | Multiplexer Output Left Channel | 0 | | 19 | MUXR | Multiplexer Output Right Channel | 0 | | 20 | nc | | - | | 21 | QUAL | Stereodecoder Quality Output | 0 | | 22 | SMUTE | Soft Mute Drive | - 1 | | 23 | SCL | I ² C Clock Line | - 1 | | 24 | SDA | I ² C Data Line | I/O | | 25 | nc | | - | | 26 | GND | Supply Ground | S | | 27 | VS | Supply Voltage | S | | 28 | nc | | - | | 29 | OUTRR | Right Rear Speaker Output | 0 | | 30 | OUTLR | Left Rear Speaker Output | 0 | | 31 | OUTRF | Right Front Spaeaker Output | 0 | | 32 | OUTLF | Left Front Speaker Output | 0 | | 33 | nc | | - | | 34 | ACOUTR | Pre-speaker AC Output Right Channel | 0 | | 35 | ACOUTL | Pre-speaker AC Output Left Channel | 0 | | 36 | nc | | - | | 37 | ACINLR | Pre-speaker Input Left Rear Channel | I | | 38 | ACINRR | Pre-speaker Input Right Rear Channel | I | | 39 | ACINRF | Pre-speaker Input Right Front Channel | I | | 40 | ACINLF | Pre-speaker Input Left Front Channel | I | | 41 | VREF | Reference Voltage Output | 0 | | 42 | CREF | Reference Capacitor Pin | S | | 43 | TAPEL | Tape Input Left | I | | 44 | TAPER | Tape Input Right | I | Pin type legenda: I = Input O = Output I/O = Input/Output S = Supply nc = not connected #### **AUDIO PROCESSOR PART** #### **Input Multiplexer** - Quasi-differential CD and cassette stereo input - AM mono input - Phone differential input - Multiplexer signal after In-Gain available at separate pins #### Volume control - 1dB attenuator - Max. gain 15dB - Max. attenuation 79dB #### **Bass Control** - 2nd order frequency response - Center frequency programmable in 4(5) steps - DC gain programmable - ±15 x 1dB steps #### **Mid Control** - 2nd order frequency response - Center frequency programmable in 4 steps - Q-factor programmable in 2 steps - ±15 x 1dB steps #### **Treble Control** - 2nd order frequency response - Center frequency programmable in 4 steps - ±15 x 1dB steps #### **Speaker Control** - 4 independent speaker controls in 1dB steps - max gain 15dB - max. attenuation 79dB #### **Mute Functions** Direct mute Digitally controlled softmute with 4 programmable mute time. ## **ELECTRICAL CHARACTERISTICS** (Vs = 9V; $T_{amb} = 25^{\circ}C$; $R_{L} = 10 K\Omega$; all gains = 0dB; f = 1 KHz; unless otherwise specified). | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |-----------|-----------------------------------|------------------------------------|-------|------|------|------------------| | INPUT SEL | ECTOR | | | | | | | Rin | Input Resistance | all inputs except Phone | 70 | 100 | 130 | ΚΩ | | VcL | Clipping Level | | 2.2 | 2.6 | | V _{RMS} | | Sin | Input Separation | | 80 | 100 | | dB | | GIN MIN | Min. Input Gain | | -1 | 0 | 1 | dB | | GIN MAX | Max. Input Gain | | 13 | 15 | 17 | dB | | GSTEP | Step Resolution | | 0.5 | 1 | 1.5 | dB | | VDC | DC Steps | Adjacent Gain Step | -5 | 0.5 | 5 | mV | | | | GMIN to GMAX | -10 | 5 | 10 | mV | | DIFFEREN | TIAL CD STEREO INPUT | | | | | | | Rin | Input Resistance | Differential | 70 | 100 | 130 | ΚΩ | | | | Common Mode | 70 | 100 | 130 | ΚΩ | | CMRR | Common Mode Rejection Ratio | Vcm = 1vrms @ 1KHz | 45 | 70 | | dB | | | | Vcm = 1vrms @ 10KHz | 45 | 60 | | dB | | en | Output Noise @ Speaker
Outputs | 20Hz to 20KHz flat; all stages 0dB | | 6 | 15 | μV | | DIFFEREN | TIAL PHONE INPUT | • | • | - | • | | | Rin | Input Resistance | Differential | 40 | 56 | | KΩ | | CMRR | Common Mode Rejection Ratio | Vcm = 1vrms @ 1KHz | 40 | 70 | | dB | | | | Vcm = 1vrms @ 10KHz | 40 | 60 | | dB | | VOLUME C | CONTROL | | | | | | | Gмах | Max Gain | | 13 | 15 | 17 | dB | | Амах | Max Attenuation | | 70 | 79 | | dB | | ASTEP | Step Resolution | | 0.5 | 1 | 1.5 | dB | | EA | Attenuation Set Error | G = -20 to 20dB | -1.25 | 0 | 1.25 | dB | | | | G = -60 to 20dB | -4 | 0 | 3 | dB | ## **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |---------------------|---|----------------------------|------|-----------------------------|------|------| | Ет | Tracking Error | | | | 2 | dB | | VDC | DC Steps | Adjacent Attenuation Steps | | 0.1 | 3 | mV | | | | From 0dB to GMIN | | 0.5 | 5 | mV | | SOFT MUT | ΓE/AFS | | | | | | | Амите | Mute Attenuation | | 80 | 100 | | dB | | To | Delay Time | T1 | | 0.48 | | ms | | | - | T2 | | 0.96 | | ms | | | | T3 | | 40.4 | | ms | | | | T4 | | 324 | | ms | | V _{TH} low | Low Threshold for SM-/AFS- Pin ¹ | | | | 1 | V | | VTH high | High Threshold for SM-/AFS-Pin | | 2.5 | | | V | | R _{PD} | Internal Pull-up Resistor | | | 45 | | ΚΩ | | BASS CON | NTROL | | · | | | • | | CRANGE | Control Range | | ±13 | ±15 | ±17 | dB | | ASTEP | Step Resolution | | 0.5 | 1 | 1.5 | dB | | fc | Center Frequency | fc1 | 54 | 60 | 66 | Hz | | | | fc2 | 63 | 70 | 77 | Hz | | | | fc3 | 72 | 80 | 88 | Hz | | | | fc4 | 90 | 100
(150) ⁽²⁾ | 110 | Hz | | QBASS | Quality Factor | Q1 | 0.9 | 1 | 1.1 | | | | | Q ₂ | 1.1 | 1.25 | 1.4 | | | | | Q ₃ | 1.3 | 1.5 | 1.7 | | | | | Q4 | 1.8 | 2 | 2.2 | | | DCGAIN | Bass-Dc-Gain | DC = off | -1 | 0 | 1 | dB | | | | DC = on | 3.5 | 4.4 | 5.5 | dB | | MID CONT | ROL | | | | | | | Crange | Control Range | | ±13 | ±15 | ±17 | dB | | ASTEP | Step Resolution | | 0.5 | 1 | 1.5 | dB | | fc | Center Frequency | fc1 | 450 | 500 | 550 | Hz | | | | fc2 | 0.9 | 1 | 1.1 | kHz | | | | fc3 | 1.35 | 1.5 | 1.65 | kHz | | | | fc4 | 1.8 | 2 | 2.2 | kHz | | Qміd | Quality Factor | Q ₁ | 0.9 | 1 | 1.1 | | | | | Q ₂ | 1.8 | 2 | 2.2 | | | TREBLE C | ONTROL | | | | | | | Crange | Control Range | | ±13 | ±15 | ±17 | dB | | ASTEP | Step Resolution | | 0.5 | 1 | 1.5 | dB | | fc | Center Frequency | fc1 | 8 | 10 | 12 | KHz | | | | fc2 | 10 | 12.5 | 15 | KHz | | | | fc3 | 12 | 15 | 18 | KHz | | | | f _{C4} | 14 | 17.5 | 21 | KHz | ¹⁾ The SM pin is active low (Mute = 0) 2) See note in Programming Part ## **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |-----------------|-----------------------------------|--|------|-------|------------|------| | SPEAKER | ATTENUATORS | | | | | | | Rin | Input Impedance | | 35 | 50 | 65 | ΚΩ | | Gмах | Max Gain | | 13 | 15 | 17 | dB | | Амах | Max Attenuation | | -70 | -79 | | dB | | ASTEP | Step Resolution | | 0.5 | 1 | 1.5 | dB | | Амите | Output Mute Attenuation | | 80 | 90 | | dB | | EE | Attenuation Set Error | | | | <u>±</u> 2 | dB | | V _{DC} | DC Steps | Adjacent Attenuation Steps | | 0.1 | 5 | mV | | AUDIO OU | TPUTS | | | | | | | VCLIP | Clipping Level | d = 0.3% | 2.2 | 2.6 | | VRMS | | R∟ | Output Load Resistance | | 2 | | | ΚΩ | | CL | Output Load Capacitance | | | | 10 | nF | | Rout | Output Impedance | | | 30 | 120 | Ω | | VDC | DC Voltage Level | | 4.3 | 4.5 | 4.7 | V | | GENERAL | | | | | | | | e _{NO} | Output Noise | BW = 20 Hz to 20 KHz
output muted | | 3 | 15 | μV | | | | BW = 20 Hz to 20 KHz
all gain = 0dB | | 6.5 | 15 | μV | | S/N | Signal to Noise Ratio | all gain = 0dB flat; Vo = 2VRMS | 102 | 110 | | dB | | | | bass treble at 12dB;
a-weighted; Vo = 2.6VRMS | 96 | 100 | | dB | | d | Distortion | Vin = 1VRMs; all stages 0dB | | 0.002 | 0.1 | % | |
| | Vin = 1VRMs; Bass & Treble = 12dB | | 0.05 | 0.1 | % | | Sc | Channel separation Left/Right | | 80 | 100 | | dB | | Ет | Total Tracking Error | $A_V = 0 \text{ to } -20 \text{dB}$ | -1 | 0 | 1 | dB | | | | $A_V = -20 \text{ to } -60 \text{dB}$ | -2 | 0 | 2 | dB | | BUS INPU | TS | | | | | | | VIL | Input Low Voltage | | | | 0.8 | V | | ViH | Input High Voltage | | 2.5 | | | V | | lin | Input Current | V _{IN} = 0.4V | -5 | | 5 | μΑ | | Vo | Output Voltage SDA
Acknowledge | Io = 1.6mA | | | 0.4 | V | #### **Stereodecoder Part** **ELECTRICAL CHARACTERISTICS** (Vs = 9V; deemphasis time constant = $50\mu s$, VMPX = 500mV(75KHz deviation), fm= 1KHz, Gv = 6dB, $T_{amb} = 27^{\circ}C$; unless otherwise specified). | Vin | | Test Condition | Min. | Тур. | Max. | Unit | |----------------------|-------------------------------------|--|------|------|------|--------| | | MPX Input Level | Gv = 3.5dB | | 0.5 | 1.25 | VRMS | | Rin | Input Resistance | | 70 | 100 | 130 | ΚΩ | | GMIN | Min. Input Gain | | 1.5 | 3.5 | 4.5 | dB | | Gмах | Max. Input Gain | | 8.5 | 11 | 12.5 | dB | | GSTEP | Step Resolution | | 1.75 | 2.5 | 3.25 | dB | | | Supply Voltage Ripple
Rejection | Vripple = 100mV; f = 1KHz | 35 | 60 | | dB | | α | Max. channel Separation | | 30 | 50 | | dB | | THD | Total Harmonic Distortion | | | 0.02 | 0.3 | % | | | Signal plus Noise to Noise
Ratio | A-weighted, S = 2V _{rms} | 80 | 91 | | dB | | MONO/STEF | REO-SWITCH | | | | | | | VPTHST1 | Pilot Threshold Voltage | for Stereo, PTH = 1 | 10 | 15 | 25 | mV | | VPTHST0 | Pilot Threshold Voltage | for Stereo, PTH = 0 | 15 | 25 | 35 | mV | | VPTHMO1 | Pilot Threshold Voltage | for Mono, PTH = 1 | 7 | 12 | 17 | mV | | Vртнмо0 | Pilot Threshold Voltage | for Mono, PTH = 1 | 10 | 19 | 25 | mV | | PLL | | | | | | | | Δf/f | Capture Range | | 0.5 | | | % | | DEEMPHAS | SIS and HIGHCUT | | • | | | | | THC50 | Deemphasis Time Constant | Bit 7, Subadr, 10 = 0,
VLEVEL >> VHCH | 25 | 50 | 75 | μs | | THC75 | Deemphasis Time Constant | Bit 7, Subadr, 10 = 1,
VLEVEL >> VHCH | 50 | 75 | 100 | μs | | Т НС50 | Highcut Time Constant | Bit 7, Subadr, 10 = 0,
VLEVEL >> VHCL | 100 | 150 | 200 | μs | | THC75 | Highcut Time Constant | Bit 7, Subadr, 10 = 1,
VLEVEL >> VHCL | 150 | 225 | 300 | μs | | STEREOBLE | END-and HIGHCUT-CONTR | OL | | | | | | REF5V | Internal Reference Voltage | | 4.7 | 5 | 5.3 | V | | TC _{REF5V} | Temperature Coefficient | | | 3300 | | ppm | | LGmin | Min. LEVEL Gain | | -1 | 0 | 1 | dB | | L _{Gmax} | Max. LEVEL Gain | | 8 | 10 | 12 | dB | | LGstep | LEVEL Gain Step Resolution | | 0.3 | 0.67 | 1 | dB | | VSBLmin | Min. Voltage for Mono | | 25 | 29 | 33 | %REF5V | | VSBLmax | Min. Voltage for Mono | | 54 | 58 | 62 | %REF5V | | VSBL _{step} | Step Resolution | | 2.2 | 4.2 | 6.2 | %REF5V | | VHCH _{min} | Min. Voltage for NO Highcut | | 38 | 42 | 46 | %REF5V | | VHCHmax | Min. Voltage for NO Highcut | | 62 | 66 | 70 | %REF5V | | VHCH _{step} | Step Resolution | | 5 | 8.4 | 12 | %REF5V | | VHCLmin | Min. Voltage for FULL Highcut | | 12 | 17 | 22 | %VHCH | | VHCL _{max} | Max. Voltage for FULL Highcut | | 28 | 33 | 38 | %VHCH | | VHCLstep | Step Resolution | | 2.2 | 4.2 | 6.2 | %VHCH | #### **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | | | | |---------------|--|--------------------|------|------|------|------|--|--|--| | Carrier and | Carrier and harmonic suppression at the output | | | | | | | | | | α19 | Pilot Signal f = 19KHz | | 40 | 50 | | dB | | | | | α38 | Subcarrier f = 38KHz | | | | 75 | dB | | | | | α57 | Subcarrier f = 57KHz | | | | 62 | dB | | | | | α76 | Subcarrier f = 76KHz | | | | 90 | dB | | | | | Intermodula | ation (Note 1) | | | | | | | | | | α2 | f _{mod} = 10KHz, f _{spur} = 1KHz | | | | 65 | dB | | | | | α3 | fmod = 13KHz, fspur = 1KHz | | | | 75 | dB | | | | | Traffic Ratio | o (Note 2) | | | | | | | | | | α57 | Signal f = 57KHz | | | | 70 | dB | | | | | SCA - Subs | sidiary Communications Autho | orization (Note 3) | | | | | | | | | α67 | Signal f = 67KHz | | | | 75 | dB | | | | | ACI - Adjac | ACI - Adjacent Channel Interference (Note 4) | | | | | | | | | | α114 | Signal f = 114KHz | | | | 95 | dB | | | | | α190 | Signal f = 190KHz | | | | 84 | dB | | | | #### Notes to the characteristics: $\alpha 2 = \frac{V_{O(signal)(at1KHz)}}{V_{O(spurious)(at1KHz)}}; \; f_s = (2 \; x \; 10KHz) - 19KHz$ $$\alpha 3 = \frac{V_{O(signal)(at1KHz)}}{V_{O(spurious)(at}1KHz)}; \ \ f_s = (3 \ x \ 13KHz) - 38KHz$$ measured with: 91% pilot signal; fm = 10kHz or 13kHz. 2. Traffic Radio (V.F.) Suppression: measured with: 91% stereo signal; 9% pilot signal; fm=1kHz; 5% subcarrier (f = 57kHz, fm = 23Hz AM, m = 60%) $$\alpha 57 \text{ (V.W>F.)} = \frac{V_{O(\text{signal})(\text{at1KHz})}}{V_{O(\text{spurious})\text{at1KHz}} + \text{/- 23KHz})}$$ 3. SCA (Subsidiary Communications Authorization) measured with: 81% mono signal; 9% pilot signal; fm = 1kHz; 10%SCA - subcarrier (fs = 67kHz, unmodulated). $$\alpha 67 = \frac{V_{O(signalat1KHz)}}{V_{O(spurious)(a19KHz)}}; \ F_S = (2 \ x \ 38KHz) \ -67KHz$$ $4. \ ACI \ (\ Adjacent \ Channel \ Interference \): \qquad \alpha 114 = \frac{V_{O(signal)(at1KHz)}}{V_{O(spurious)(at4KHz)}}; \ F_S = 110KHz - (3 \ x \ 38KHz)$ $$\alpha 190 = \frac{V_{O(signal)(at1KHz)}}{V_{O(spurious)(at4KHz)}}; \ F_S = 186KHz - (5 \ x \ 38KHz)$$ measured with: 90% mono signal; 9% pilot signal; fm =1kHz; 1% spurious signal (fs = 110kHz or 186kHz, unmodulated). #### **NOISE BLANKER PART** - internal 2nd order 140kHz high pass filter - programmable trigger threshold - trigger threshold dependent on high frequency noise with programmable gain - additional circuits for deviation and fieldstrength dependent trigger adjustment - very low offset current during hold time due to opamps wMOS inputs - four selectable pulse suppression times - programmable noise rectifier charge/discharge current ### **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Condition | | Min. | Тур. | Max. | Unit | |-----------|--|---|------------------------|------|----------|------|-------| | VTR | Trigger Threshold 0) 1) | meas. with VPEAK = 0.9V | NBT = 111 | (c) | 30 | (c) | mVop | | | | | NBT = 110 | (c) | 35 | (c) | mVop | | | | | NBT = 101 | (c) | 40 | (c) | mVop | | | | | NBT = 100 | (c) | 45 | (c) | mVop | | | | | NBT = 011 | (c) | 50 | (c) | mVop | | | | | NBT = 010 | (c) | 55 | (c) | тVор | | | | | NBT = 001 | (c) | 60 | (c) | mVop | | | | | NBT = 000 | (c) | 65 | (c) | mVop | | VTRNOISE | Noise Controlled Trigger | meas. with VPEAK = 1.5V | NCT = 00 | (c) | 260 | (c) | mVop | | | Threshold ²⁾ | | NCT = 01 | (c) | 220 | (c) | mVop | | | | | NCT = 10 | (c) | 180 | (c) | mVop | | | | | NCT = 11 | (c) | 140 | (c) | mVop | | VRECT | Rectifier Voltage | $V_{MPX} = 0mV$ | $NRD^{6)} = 00$ | 0.5 | 0.9 | 1.3 | V | | | | $V_{MPX} = 50 \text{mV}; f = 150 \text{KHz}$ | | 1.5 | 1.7 | 2.1 | V | | | | $V_{MPX} = 200 \text{mV}$; $f = 150 \text{KH}$ | z | 2.2 | 2.5 | 2.9 | V | | VRECT DEV | deviation dependent rectifier Voltage 3) | dent means. with $V_{MPX} = 800 \text{mV}$ (75KHz dev.) | OVD = 11 | 0.5 | 0.9(off) | 1.3 | Vop | | | | | OVD = 10 | 0.9 | 1.2 | 1.5 | Vop | | | | | OVD = 01 | 1.7 | 2.0 | 2.3 | Vop | | | | | OVD = 00 | 2.5 | 2.8 | 3.1 | Vop | | VRECTES | Fieldstrength Controlled | means. with | FSC = 11 | 0.5 | 0.9(off) | 1.3 | V | | | Rectifier Voltage 4) | $V_{MPX} = 0mV$ | FSC = 10 | 0.9 | 1.4 | 1.5 | V | | | | VLEVEL << VSBL
(fully mono) | FSC = 01 | 1.7 | 1.9 | 2.3 | V | | | | (rully friorio) | FSC = 00 | 2.1 | 2.4 | 3.1 | V | | Ts | Suppression Pulse | Signal HOLDN | BLT = 00 | TBD | 38 | TBD | μs | | | Duration 5) | in Testmode | BLT = 10 | TBD | 32 | TBD | μS | | | | | BLT = 01 | TBD | 25.5 | TBD | μS | | | | | BLT = 00 | TBD | 22 | TBD | μs | | VRECTADJ | Noise Rectifier | Signal PEAK in | $NRD = 00^{6}$ | (c) | 0.3 | (c) | V/ms | | | discharge adjustment 6) | Testmode | $NRD = 01^{6}$ | (c) | 8.0 | (c) | V/ms | | | | | $NRD = 10^{6}$ | (c) | 1.3 | (c) | V/ms | | | | | NRD = 11 ⁶⁾ | (c) | 2.0 | (c) | V/ms | | SRPEAK | Noise Rectifier Charge | Signal PEAK in | $PCH = 0^{7}$ | (c) | 10 | (c) | mV/μs | | | | Testmode | PCH = 1 ⁷⁾ | (c) | 20 | (c) | mV/μs | ⁽c) = by design/characterization functionally guaranteed through dedicated test mode structure #### **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Condition | | Min. | Тур. | Max. | Unit | |--------|----------------------------|----------------|-------------------------|------|------|------|------| | VADJMP | Noise Rectifier adjustment | Signal PEAK in | $MPNB = 00^{8}$ | (c) | 0.3 | (c) | V/ms | | | through Multipath 8) | Testmode | MPNB = 01 8) | (c) | 0.5 | (c) | V/ms | | | | | MPNB = 10 ⁸⁾ | (c) | 0.7 | (c) | V/ms | | | | | MPNB = 11 8) | (c) | 0.9 | (c) | V/ms | - 0) All Thresholds are measured using a pulse with $T_R = 2\mu s$, $T_{HIGH} = 2\mu s$ and $T_F = 10\mu s$. The repetition rate must not increase the PEAK voltage. - 1) NBT represents the Noiseblanker Byte bits D_2 , D_0 for the noise blanker trigger threshold - 2) NAT represents the Noiseblanker Byte bit pair D₄, D₃ for the noise controlled triggeradjustment - 3) OVD represents the Noiseblanker Byte bit pair D7, D6 for the over deviation detector - 4) FSC represents the Fieldstrength Byte bit pair D₁, D₀ for the fieldstrength control - 5) BLT represents the Speaker RR Byte bit pair $\,D_7$, D_6 for the blanktime adjustment - 6) NRD represents the Configuration-Byte bit pair D1, D0 for the noise rectifier discharge-adjustment - 7) PCH represents the Stereodecoder-Byte bit D5 for the noise rectifier charge-current adjustment - 8) MPNB represents the HighCut-Byte bit D7 and the Fieldstrength-Byte D7 for the
noise rectifier multipath adjustment Figure 1. Trigger Threshold vs. VPEAK Figure 2. Deviation Controlled Trigger Adjust- 10/30 Figure 3. Fieldstrength Controlled Trigger Adjustment ### **Multipath Detector** - Internal 19kHz band pass filter - Programmable band pass and rectifier gain - two pin solution fully independent usable for external programming - selectable internal influence on Stereoblend ## **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Unit | |---------|--|--|------|------|------|------| | fсмр | Center Frequency of Multipath-
Bandpass | stereodecoder locked on Pilottono | | 19 | | KHz | | Gврмр | Bandpass Gain | bits D_2 , D_1 configuration byte = 00 | | 6 | | dB | | | | bits D_2 , D_1 configuration byte = 10 | | 12 | | dB | | | | bits D_2 , D_1 configuration byte = 01 | | 16 | | dB | | | | bits D_2 , D_1 configuration byte = 11 | | 18 | | dB | | GRECTMP | Rectifier Gain | bits D_7 , D_6 configuration byte = 00 | | 7.6 | | dB | | | | bits D_7 , D_6 configuration byte = 01 | | 4.6 | | dB | | | | bits D_7 , D_6 configuration byte = 10 | | 0 | | dB | | | | bits D ₇ , D ₆ configuration byte = 11 | | off | | dB | | Існмр | Rectifier Charge Current | bit D ₅ configuration byte = 0 | | 0.5 | | μΑ | | | | bit D ₅ configuration byte = 1 | | 1.0 | | μΑ | | IDISMP | Rectifier Discharge Current | | 0.5 | 1 | 1.5 | mA | ## **Quality Detector** | Symbol | Parameter | Test Condition | | Min. | Тур. | Max. | Unit | |--------|----------------------------|--------------------|----------------------|------|-----------------------------|------|----------------------| | А | Multipath Influence Factor | Addr. 12 / Bit 5+6 | 00
01
10
11 | | 0.7
0.85
1.00
1.15 | | dB
dB
dB
dB | | В | Noise Influence Factor | Addr. 16 / Bit 1+2 | 00
01
10
11 | | 15
12
9
6 | | dB
dB
dB
dB | ## DESCRIPTION OF THE AUDIOPROCESSOR PART #### **Input Multiplexer** - CD quasi differential - Cassette stereo - Phone differential - AM mono - Stereodecoder input. #### Input stages Most of the input stages have remained the same as in preceding ST audioprocessors with exception of the CD inputs (see figure 4). In the meantime there are some CD players in the market having a significant high source impedance which affects strongly the common-mode rejection of the normal differential input stage. The additional buffer of the CD input avoids this drawback and offers the full common-mode rejection even with those CD players. The output of the Cd stage is permanently available of the Cd out-pins #### AutoZero In order to reduce the number of pins there is no AC coupling between the In-Gain and the following stage, so that any offset generated by or before the In-Gain stage would be transferred or even amplified to the output. To avoid that effect a special offset cancellation stage called AutoZero is implemented. This stage is located before the volume-block to eliminate all offsets generated by the Stereodecoder, the Input Stage and the In-Gain (Please notice that externally generated offsets, e.g. generated through the leakage current of the coupling capacitors, are not cancelled). The auto-zeroing is started every time the DATA-BYTE 0 is selected and takes a time of max. 0.3ms. To avoid audible clicks the audioprocessor is muted before the volume stage during this time #### **AutoZero Remain** In some cases, for example if the μP is executing a refresh cycle of the I^2C bus programming, it is not useful to start a new AutoZero action because no new source is selected and an undesired mute would appear at the outputs. For such applications the TDA7407 could be switched in the "Auto Zero Remain mode" (Bit 6 of the subaddress byte). If this bit is set to high, the DATABYTE 0 could be loaded without invoking the AutoZero and the old adjustment value remains. #### **Multiplexer Output** The output signal of the Input Multiplexer is available at separate pins (please see the Blockdiagram). This signal represents the input signal amplifier by the In Gain stage and is also going into the Mixer stage. #### **Softmute** The digitally controlled softmute stage allows muting/demuting the signal with a I²C bus programmable slope. The mute process can either be activated by the softmute pin or by the I²C bus. The slope is realized in a special S shaped curve to mute slow in the critical regions (see fig- Figure 4. Input stages Figure 5. Softmute Timing Note: Please notice that a started Mute action is always terminated and could not be interrupted by a change of the mute signal. #### ure 5). For timing purposes the Bit 3 of the I²C bus output register is set to 1 from the start of muting until the end of demuting. #### **BASS** There are four parameters programmable in the bass stage: (see figs 6, 7, 8, 9): #### **Attenuation** Figure 6 shows the attenuation as a function of frequency at a center frequency at a center frequency of 80Hz. #### **Center Frequency** Figure 7 shows the four possible center frequencies 60,70,80 and 100Hz. #### **Quality Factors** Figure 8 shows the four possible quality factors 1, 1.25, 1.5 and 2. #### **DC Mode** In this mode the DC gain is increased by 5.1dB. In addition the programmed center frequency and quality factor is decreased by 25% which can be used to reach alternative center frequencies or quality factors. #### MID There are 3 parameters programmable in the mid stage (see figs. 10, 11 & 12) #### **Attenuation** Figure 10 shows the attenuation as a function of frequency at a center frequency of 1kHz. #### **Center Frequency** Figure 11 shows the four possible center frequencies 500Hz, 1kHz, 1.5kHz and 2kHz. #### **Quality Factor** Figure 12 shows the two possible quality factors 1 and 2 at a center frequency of 1kHz. #### **TREBLE** There are two parameters programmable in the treble stage (see figs 13, 14): #### **Attenuation** Figure 13 shows the attenuation as a function of frequency at a center frequency of 17.5KHz. #### **Center Frequency** Figure 14 shows the four possible Center Frequency (10, 12.5, 15 and 17.5kHz). #### **AC Coupling** In some applications additional signal manipulations are desired, for example surround-sound or more-band-equalizing. For this purpose a AC-Coupling is placed before the Speaker-attenuators, which can be activated or internally shorted by Bit7 in the Bass/Treble-Configuration byte. In short condition the input-signal of the speaker-attenuator is available at AC Outputs and the AC Input could be used as additional stereo inputs. The input impedance of the AC Inputs is always $50 \text{K}\Omega$. #### **Speaker Attenuator** The speaker attenuators have exactely the same Figure 6. Bass Control @ fc = 80Hz, Q = 1 4 Figure 7. Bass Center @ Gain = 14dB, Q = 1 Figure 9. Bass normal and DC Mode @ Gain = 14dB, fc = 80Hz Note: In general the center frequency, Q and DC-mode can be set independently. The exception from this rule is the mode (5/xx1111xx) where the center frequency is set to 150Hz instead of 100Hz. Figure 11. Mid Center Frequency @ Gain=14dB, Q1 Figure 8. Bass Quality factors @ Gain = 14dB, fc = 80Hz Figure 10. Mid Control @ fc=1kHz, Q=1 Figure 12. Mid Q-factor @ fc=1kHz, Gain=14dB 14/30 Figure 13. Treble Control @ fc = 17.5KHz structure and range like the Volume stage. ## FUNCTIONAL DESCRIPTION OF STEREODE-CODER The stereodecoder part of the TDA7407 (see Fig. 15) contains all functions necessary to demodulate the MPX signal like pilot tone dependent MONO/STEREO switching as well as "stereoblend" and "highcut" functions. #### Stereodecoder Mute The TDA7407 has a fast and easy to control RDS mute function which is a combination of the audio-processor's softmute and the high-ohmic mute of the stereodecoder. If the stereodecoder is selected and a softmute command is sent (or activated Figure 15. Block Diagram of the Stereodecoder Figure 14. Treble Center Frequencies @ Gain = 14dB through the SM pin) the stereodecoder will be set automatically to the high-ohmic mute condition after the audio signal has been softmuted. Hence a checking of alternate frequencies could be performed. To release the system from the mute condition simply the unmute command must be sent: the stereodecoder is unmuted immediately and the audioprocessor is softly unmuted. Fig. 16 shows the output signal Vo as well as the internal stereodecoder mute signal. This influence of Softmute on the stereodecoder mute can be switched off by setting bit 3 of the Softmute byte to "0". A stereodecoder mute command (bit 0, stereodecoder byte set to "1") will set the stereodecoder in any case independently to the high-ohmic mute state. Figure 16. Signals During Stereodecoder's Softmute If any other source than the stereodecoder is selected the decoder remains muted and the MPX pin is connected to Vref to avoid any discharge of the coupling capacitor through leakage currents. #### Ingain + Infilter The Ingain stage allows to adjust the MPX signal to a magnitude of about 1Vrms internally which is the recommended value. The 4th order input filter has a corner frequency of 80KHz and is used to attenuate spikes and nose and acts as an anti allasing filter for the following switch capacitor filters. #### **Demodulator** In the demodulator block the left and the right channel are separated from the MPX signal. In this stage also the 19 kHz pilot tone is cancelled. For reaching a high channel separation the TDA7407 offers an I²C bus programmable roll-off adjustment which is able to compensate the low-pass behaviour of the tuner section. If the tuner attenuation at 38kHz is in a range from 4.2% to 31.0% the TDA7407 needs no external network in front of the MPX pin. Within this range an adjustment to obtain at least 40dB channel separation is possible. The bits for this adjustment are
located together with the fieldstrength adjustment in one byte. This gives the possibility to perform an optimization step during the production of the carradio where the channel separation and the fieldstrength control are trimmed. The setup of the Stereoblend characteristics which is programmable in a wide range is described in 2.8. Figure 17. Internal Stereoblend Characteristics #### Deemphasis and Highcut. The lowpass filter for the deemphasis allows to choose between a time constant of 50μs and 75μs (bit D7, Stereodecoder byte). The highcut control range will be in both cases $\tau_{HC}=2 \cdot \tau_{Deemp}$. Inside the highcut control range (between VHCH and VHCL) the LEVEL signal is converted into a 5 bit word which controls the lowpass time constant between τ_{Deemp} ... $3 \cdot \tau_{Deemp}$. There by the resolution will remain always 5 bits independently of the absolute voltage range between the VHCH and VHCL values. The highcut function can be switched off by I²C bus (bit D₇, Fieldstrength byte set to "0"). The setup of the highcut characteristics is described in 2.9. #### **PLL and Pilot Tone Detector** The PLL has the task to lock on the 19kHz pilotone during a stereo transmission to allow a correct demodulation. The included detector enables the demodulation if the pilot tone reaches the selected pilot tone threshold VPTHST. Two different thresholds are available. The detector output (signal STEREO, see block diagram) can be checked by reading the status byte of the TDA7407 via I²C bus. #### **Fieldstrength Control** The fieldstrength input is used to control the high cut and the stereoblend function. In addition the signal can be also used to control the noise-blanker thresholds and as input for the multipath detector. These additional functions are described in sections 3.3 and 4. 5/ Figure 18. Relation Between Internal and External LEVEL Voltage and Setup of Stereoblend Figure 19. Highcut Characteristics #### **LEVEL Input and Gain** To suppress undesired high frequency modulation on the highcut and stereoblend function the LEVEL signal is lowpass filtered firstly. The filter is a combination of a 1st order RC lowpass at 53kHz (working as anti-aliasing filter) and a 1st-order switched capacitor lowpass at 2.2kHz. The second stage is a programmable gain stage to adapt the LEVEL signal internally to different IF device (see Testmode section 5 LEVELINTERN). The gain is widely programmable in 16 steps from 0dB to 10dB (step = 0.67dB). These 4 bits are located together with the Roll-Off bits in the "Stereodecoder Adjustment" byte to simplify a possible adaptation during the production of the carradio. #### **Stereoblend Control** The stereoblend control block converts the internal LEVEL voltage (LEVEL INTERN) into an de- modulator compatible analog signal which is used to control the channel separation between 0dB and the maximum separation. Internally this control range has a fixed upper limit which is the internal reference voltage REF5V. The lower limit can be programmed between 29.2% and 58%, of REF5V in 4.167% steps (see figs. 14, 15). To adjust the external LEVEL voltage to the internal range two values must be defined: the LEVEL gain L_G and VSBL (see fig. 15). To adjust the voltage where the full channel separation is reached (VST) the LEVEL gain L_G has to be defined. The following equation can be used to estimate the gain: $$L_{G} = \frac{REF5V}{Field\,strengthvoltage[STEREO]}$$ The gain can be programmed through 4 bits in the "Stereodecoder-Adjustment" byte. The MONO voltage VMO (0dB channel separation) can be choosen selecting VSBL All necessary internal reference voltages like REF5V are derived from a bandgap circuit. Therefore they have a temperature coefficient near zero. This is useful if the fieldstrength signal is also temperature compensated. But most IF devices apply a LEVEL voltage with a TC of 3300ppm. The TDA7407 offers this TC for the reference voltages, too. The TC is selectable with bit D7 of the "stereodecoder adjustment" byte. #### **Highcut Control** The highcut control setup is similar to the stereoblend control setup: the starting point VHCH can be set with 2 bits to be 42, 50, 58 or 66% of REF5V whereas the range can be set to be 17, 22, 28 or 33% of VHCH (see fig. 19). ## FUNCTIONAL DESCRIPTION OF THE NOISE-BLANKER In the automotive environment the MPX signal is disturbed by spikes produced by the ignition and for example the wiper motor. The aim of the noiseblanker part is to cancel the audible influence of the spikes. Therefore the output of the stereodecoder is held at the actual voltage for a time between 22 and 38µs (programmable). The block diagram of the noiseblanker is given in fig.20. In a first stage the spikes must be detected but to avoid a wrong triggering on high frequency (white) noise a complex trigger control is implemented. Behind the triggerstage a pulse former generates the "blanking" pulse. To avoid any crosstalk to the signalpath the noiseblanker is supplied by his own biasing circuit. #### **Trigger Path** The incoming MPX signal is highpass filtered, amplified and rectified. This second order highpass-filter has a corner frequency of 140kHz. The rectified signal, RECT, is lowpass filtered to generate a signal called PEAK. Also noise with a frequency 140kHz increases the PEAK voltage. The resulting voltage can be adjusted by use of the noise rectifier discharge current. The PEAK voltage is fed to a threshold generator, which adds to the PEAK voltage a DC dependent threshold VTH. Both signals, RECT and PEAK+VTH are fed to a comparator which triggers a re-triggerable monoflop. The monoflop's output activates the sample-and-hold circuits in the signalpath for selected duration. Figure 20. Block Diagram of the Noiseblanker ## Automatic Noise Controlled Threshold Adjustment (ATC) There are mainly two independent possibilities for programming the trigger threshold: - a the low threshold in 8 steps (bits Do to D2 of the noiseblanker byte) - b the noise adjusted threshold in 4 steps (bits D₃ and D₄ of the noiseblanker byte, see fig. 17). The low threshold is active in combination with a good MPX signal without any noise; the PEAK voltage is less than 1V. The sensitivity in this operation is high. If the MPX signal is noisy the PEAK voltage increases due to the higher noise, which is also rectified. With increasing of the PEAK voltage the trigger threshold increases, too. This particular gain is programmable in 4 steps. ## AUTOMATIC THRESHOLD CONTROL MECHANISM ## Automatic Threshold Control by the Stereoblend Voltage Besides the noise controlled threshold adjustment there is an additional possibility for influencing the trigger threshold. It is depending on the stereoblend control. The point where the MPX signal starts to become noisy is fixed by the RF part. Therefore also the starting point of the normal noise-controlled trigger adjustment is fixed (fig. 14). In some cases the behaviour of the noiseblanker can be improved by increasing the threshold even in a re- 57 Figure 21. Block Diagram of the Multipath Detector gion of higher fieldstrength. Sometimes a wrong triggering occures for the MPX signal often shows distortion in this range which can be avoided even if using a low threshold. Because of the overlap of this range and the range of the stereo/mono transition it can be controlled by stereoblend. This threshold increase is programmable in 3 steps or switched off with bits Do and D1 of the fieldstrength control byte. #### **Over Deviation Detector** If the system is tuned to stations with a high deviation the noiseblanker can trigger on the higher frequencies of the modulation. To avoid this wrong behaviour, which causes noise in the output signal, the noiseblanker offers a deviation dependent threshold adjustment. By rectifying the MPX signal a further signal representing the actual deviation is obtained. It is used to increase the PEAK voltage. Offset and gain of this circuit are programmable in 3 steps with the bits D₆ and D₇ of the stereodecoder byte (the first step turns off the detector, see fig. 18). ## FUNCTIONAL DESCRIPTION OF THE MULTI-PATH DETECTOR Using the internal multipath detector the audible effects of a multipath condition can be minimized. A multipath condition is detected by rectifying the 19kHz spectrum in the fieldstrength signal. An external capacitor is used to define the attack and decay times (see block diagram fig. 21). the MPOUT pin is used as detector output connected to a capacitor of about 47nF and additionally the MPIN pin is selected to be the fieldstrength input. Using the configuration an external adaptation to the user's requirement is given in fig.21. To keep the old value of the Multipath Detector during an AF-jump, the external capacitor can be disconnected by the MP-Hold switch. This switch can be controlled directly by the AFS-Pin. Selecting the "internal influence" in the configuration byte, the channel separation is automatically reduced during a multipath condition according to the voltage appearing at the MP_OUT pin. A possible application is shown in fig. 21. #### **Programming** To obtain a good multipath performance an adaptation is necessary. Therefore tha gain of the 19kHz bandpass is programmable in four steps as well as the rectifier gain. The attack and decay times can be set by the external capacitor value. #### **QUALITY DETECTOR** The TDA7407 offers a quality detector output which gives a voltage representing the FM reception conditions. To calculate this voltage the MPX noise and the multipath detector output are summed according to the following formula: Quality = $1.6 \text{ (V}_{\text{noise}} - 0.8 \text{V}) + a \text{ (REF5V- V}_{\text{MPOUT}})$ The noise signal is the PEAK signal without additional influences. The factor "a" can be programmed from 0.7 to 1.15. the output is a low impedance output able to drive external circuitry as well as simply fed to an A/D converter for
RDS applications. #### **AF Search Control** The TDA7407 is supplied with several functionality to support AF-checks using the stereodecoder. As mentioned already before the highohmic-mute feature avoids any clicks during the jump condition. It is possible a the same time to evaluate the noise- and multipath-content of the alternate frequency by using the Quality detector output. Therefore the multipath-detector is switched automatically to a small time-constant. One additional pin (AFS) is implemented in order to separate the audioprocessor-mute and stereodecoder AF-functions. In Figure 22 the blockdiagram and control-functions of the complete AFS-functionality is shown (please note that the pins AFS and SM are active low as well as all control-bits indicated by an overbar). #### **TEST MODE** During the test mode, which can be activated by setting bit D₀ of the testing byte and bit D₅ of the subaddress byte to "1", several internal signals are available at the CASSR pin. During this mode the input resistor of 100kOhm is disconnected from the pin. The internal signals available are shown in the software specification. Figure 22. Mute Control Logic 57 #### I²C BUS INTERFACE DESCRIPTION #### **Interface Protocol** The interface protocol comprises: - -a start condition (S) - -a chip address byte (the LSB bit determines read / write transmission) - -a subaddress byte - -a sequence of data (N-bytes + acknowledge) - -a stop condition (P) | CHIP ADDRESS | | SUBA | ADDRESS | DATA 1 to E | OATA n | |-----------------|---------|--------|------------------|-------------|--------| | MSB | LSB | MSB | LSB | MSB | LSB | | S 1 0 0 0 1 1 0 | R/W ACK | X AZ T | I A3 A2 A1 A0 AC | K DATA | ACK P | S = Start ACK = Acknowledge AZ = AutoZero-Remain D97AU627 T = Testing I = Autoincrement P = Stop MAX CLOCK SPEED 500kbits/s **Auto increment** If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled. #### TRANSMITTED DATA (send mode) | MSB | | | | | | | LSB | |-----|---|---|---|----|----|---|-----| | Χ | Χ | Χ | Χ | ST | SM | Χ | Χ | SM = 1 Soft mute activated ST = 1 Stereo mode X = Not Used ter each ACK. Transmission can be repeated without new chip address. The transmitted data is automatically updated af- **SUBADDRESS** (receive mode) | MSB | | | | | | | LSB | FUNCTION | |-----|----|------------|----|----|----|----|-----|-------------------------| | 13 | 12 | I 1 | 10 | A3 | A2 | A1 | A0 | | | | | | | | | | | AutoZero Remain | | | 0 | | | | | | | off | | | 1 | | | | | | | on | | | | | | | | | | Testmode | | | | 0 | | | | | | off | | | | 1 | | | | | | on | | | | | | | | | | Auto Increment Mode | | | | | 0 | | | | | off | | | | | 1 | | | | | on | | 0 | | | | 0 | 0 | 0 | 0 | Input Multiplexer | | 0 | | | | 0 | 0 | 0 | 1 | Volume | | 0 | | | | 0 | 0 | 1 | 0 | Treble | | 0 | | | | 0 | 0 | 1 | 1 | Bass | | 0 | | | | 0 | 1 | 0 | 0 | Speaker attenuator LF | | 0 | | | | 0 | 1 | 0 | 1 | Speaker attenuator RF | | 0 | | | | 0 | 1 | 1 | 0 | Speaker attenuator LR | | 0 | | | | 0 | 1 | 1 | 1 | Speaker attenuator RR | | 0 | | | | 1 | 0 | 0 | 0 | SoftMute / Bass Prog. | | 0 | | | | 1 | 0 | 0 | 1 | Stereodecoder | | 0 | | | | 1 | 0 | 1 | 0 | Noiseblanker | | 0 | | | | 1 | 0 | 1 | 1 | High Cut Control | | 0 | | | | 1 | 1 | 0 | 0 | Fieldstrength & Quality | | 0 | | | | 1 | 1 | 0 | 1 | Configuration | | 0 | | | | 1 | 1 | 1 | 0 | EEPROM | | 0 | | | | 1 | 1 | 1 | 1 | Testing | | 1 1 | | | | 0 | 0 | 0 | 0 | New Quality/Control | | 1 | | | | 0 | 0 | 0 | 1 | Middle Filter | ## **DATA BYTE SPECIFICATION** After power on reset all register are set to 11111110 Input Selector (subaddress 0H) | MSB | | | | | | | LSB | FUNCTION | |-----|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------|----------------------------|---------------------------------|---| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | 0
0
0
0
1
1
1 | 0
0
1
1
0
0 | 0
1
0
1
0
1
0 | Source Selector CD Cassette Phone AM Stereo Decoder AC Inputs Front Mute AC inputs Rear | | 0 1 | 0
0
:
1
1 | 0
0
:
1
1 | 0
0
:
1
1 | 0
1
:
0
1 | | | | In-Gain 15dB 14dB : 1 dB 0 dB Coupl. Front Speaker external internal | ## Volume and Speaker Attenuation (subaddress 1H, 4H, 5H, 6H, 7H) | MSB | | | | | | | LSB | FUNCTION | |-----|----|----|----|----|----|----|-----|-------------------------| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | : | : | : | : | : | : | : | : | not used configurations | | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | +15dB | | : | : | : | : | : | : | : | : | : | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | +1dB | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0dB | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0dB | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1dB | | : | : | : | : | : | : | : | : | : | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -15dB | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | -16dB | | : | : | : | : | : | : | : | : | : | | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | -78dB | | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | -79dB | | Х | 1 | 1 | Χ | X | Х | Х | Χ | Mute | ## Treble Filter (subaddress 2H) | MSB | | | | | | | LSB | FUNCTION | |-----|------------------|------------------|---|--------------------------------------|---|---|---|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | 0
0
:
0
0
1
1
:
1 | 0
0
:
1
1
1
1
: | 0
0
:
1
1
1
1
:
0 | 0
0
:
1
1
1
1
:
0 | 0
1
:
0
1
1
0
:
1 | Treble Steps -15dB -14dB : -1dB 0dB 0dB +1dB : +14dB +15dB | | | 0
0
1
1 | 0
1
0
1 | | | | | | Treble Center Frequency 10.0KHz 12.5KHz 15.0KHz 17.5KHz | | 0 | | | | | | | | Coupl. Rear Speaker
external (AC)
internal | ## Bass Filter (subaddress 3H) | MSB | | | | | | | LSB | FUNCTION | |-----|------------------|------------------|---|---|---|--------------------------------------|---|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | 0
0
:
0
0
1
1
:
1 | 0
0
:
1
1
1
1
:
0 | 0
0
:
1
1
1
1
:
0 | 0
0
:
1
1
1
1
: | 0
1
:
0
1
1
0
:
1 | Bass Steps -15dB -14dB : -1dB 0dB 0dB +1dB : +14dB +15dB | | 0 | 0
0
1
1 | 0
1
0
1 | | | | | | Bass Q-Factor 1.0 1.25 1.50 2.0 Bass DC Mode off | ## **Soft Mute and Bass Programming** (subaddress 8H) | MSB | | | | | | | LSB | FUNCTION | |------------------|------------------|------------------|------------------|-----|------------------|------------------|-----|---| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | 0 1 | 0
0
1
1 | 0
1
0
1 | 0 1 | Mute Enable Soft Mute Disable Soft Mute Mutetime = 0.48ms Mutetime = 0.96ms Mutetime = 40.4ms Mutetime = 324ms Stereodecoder Soft Mute Influence = on Stereodecoder Soft Mute Influence = off | | | | 0
0
1
1 | 0
1
0
1 | | | | | Bass Center Frequency Center Frequency = 60 Hz Center Frequency = 70 Hz Center Frequency = 80 Hz Center Frequency = 100Hz Center Frequency = 150Hz | | 0
0
1
1 | 0
1
0
1 | | | | | | | Noise Blanker Time $38\mu s$ $25.5\mu s$ $32\mu s$ $22\mu s$ | ¹ Only for Bass Q-Factor = 2.0 ## Stereodecoder (subaddress 9H) | MSB | | | | | | | LSB | FUNCTION | |-----|--------|--------|--------|--------|------------------|------------------|--------|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | | | 0
1 | STD Unmuted
STD Muted | | | | | | | 0
0
1
1 | 0
1
0
1 | | In Gain 11dB
In Gain 8.5dB
In Gain 6dB
In Gain 3.5dB | | | | | | 0
1 | | | | Stereodecoder = on
Stereodecoder = off | | | | | 0
1 | | | | | Forced Mono Mono/Stereo switch automatically | | | | 0
1 | | | | | | Noiseblanker PEAK charge current low Noiseblanker PEAK charge current high | | | 0
1 | | | | | | | Pilot Threshold HIGH
Pilot Threshold LOW | | 0 | | | | | | | | Deemphasis 50μs
Deemphasis 75μs | ## Noiseblanker (subaddress AH) | MSB | | | | | | | LSB | FUNCTION | |------------------|------------------|--------|------------------|-------------|----------------------------|----------------------------|-----------------------|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | 0
0
0
0
1
1 | 0
0
1
1
0
0 | 0
1
0
1
0 | Low Threshold 65mV
Low Threshold 60mV
Low Threshold 55mV
Low Threshold 50mV
Low Threshold 45mV
Low Threshold 40mV
Low Threshold 35mV | | | | | 0
0
1
1 | 0
1
0 | l I | I | ı | Low Threshold 30mV Noise Controlled Threshold 320mV Noise Controlled Threshold 260mV Noise Controlled Threshold 200mV Noise Controlled Threshold 140mV | | | | 0
1 | | | | | | Noise blanker OFF
Noise blanker ON | | 0
0
1
1 | 0
1
0
1 | | | | | | | Over deviation Adjust 2.8V
Over deviation Adjust 2.0V
Over deviation Adjust
1.2V
Over deviation Detector OFF | ## High Cut (subaddress BH) | MSB | | | | | | | LSB | FUNCTION | |-----|------------------|------------------|------------------|------------------|------------------|------------------|--------|---| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | | | 0
1 | High Cut OFF
High Cut ON | | | | | | | 0
0
1
1 | 0
1
0
1 | | Max. High Cut 2dB
Max. High Cut 5dB
Max. High Cut 7dB
Max. High Cut 10dB | | | | | 0
0
1
1 | 0
1
0
1 | | | | VHCH at 42% REF 5V
VHCH at 50% REF 5V
VHCH at 58% REF 5V
VHCH at 66% REF 5V | | | 0
0
1
1 | 0
1
0
1 | | | | | | VHCL at 16.7% VHCH
VHCL at 22.2% VHCH
VHCL at 27.8% VHCH
VHCL at 33.3% VHCH | | 0 | | | | | | | | Strong Multipath influence on PEAK 18K
OFF
ON (18K Discharge if V _{MPOUT} <2.5V) | ## Fieldstrength Control (subaddress CH) | MSB | | | | | | | LSB | FUNCTION | |--------|------------------|------------------|------------------|------------------|---------------------------------|----------------------------|----------------------------|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | 0
0
0
0
1
1
1 | 0
0
1
1
0
0 | 0
1
0
1
0
1 | VSBL at 29% REF 5V
VSBL at 33% REF 5V
VSBL at 38% REF 5V
VSBL at 42% REF 5V
VSBL at 46% REF 5V
VSBL at 50% REF 5V
VSBL at 54% REF 5V
VSBL at 58% REF 5V | | | | | 0
0
1
1 | 0
1
0
1 | | , | | Noiseblanker Field strength Adj 2.3V
Noiseblanker Field strength Adj 1.8V
Noiseblanker Field strength Adj 1.3V
Noiseblanker Field strength Adj OFF | | | 0
0
1
1 | 0
1
0
1 | | | | | | Quality Detector Coefficient a = 0.7 Quality Detector Coefficient a = 0.85 Quality Detector Coefficient a = 1.0 Quality Detector Coefficient a = 1.15 | | 0
1 | | | | | | | | Multipath off influence on PEAK discharge -1V/ms (at MPout = 2.5V | ## Configuration (subaddress DH) | MSB | | | | | | | LSB | FUNCTION | |------------------|------------------|--------|----|-------------|------------------|------------------|------------------|---| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | | 0
0
1
1 | 0
1
0
1 | Noise Rectifier Discharge Resistor R = infinite R = $56k\Omega$ R = $33k\Omega$ R = $18k\Omega$ | | | | | | 0
1
0 | 0
0
1
1 | | | Multipath Detector Bandpass Gain
6dB
12dB
16dB
18dB | | | | | 0 | | | | | Multipath Detector internal influence
ON
OFF | | | | 0
1 | | | | | | Multipath Detector Charge Current 0.5μA
Multipath Detector Charge Current 1μA | | 0
0
1
1 | 0
1
0
1 | | | | | | | Multipath Detector Reflection Gain Gain = 7.6dB Gain = 4.6dB Gain = 0dB disabled | ## Stereodecoder Adjustment (subaddress EH) | MSB | | | | | | | LSB | FUNCTION | |---------------------------------|------------------|------------------|------------------|------------------|---|---|---|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | 0
0
0
:
0
:
0 | | | | | 0
0
0
:
1
:
1
0
0
0
: | 0
0
1
:
0
:
1
0
0
1
: | 0
1
0
:
0
:
1
0
1
0
: | Roll Off Compensation not allowed 7.2% 9.4% : 13.7% : 20.2% not allowed 19.6% 21.5% : | | 1 | | | | | 1 | 1 | 1 | 31.0%
Level Gain | | | 0
0
0
: | 0
0
0
: | 0
0
1
: | 0
1
0
: | | | | 0dB
0.66dB
1.33dB
:
10dB | ## Testing (subaddress FH) | MSB | | | | | | | LSB | FUNCTION | |-----|--------|---|--|--|--|----|-----|---| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | | 0 | 0 | Stereodecoder test signals OFF Test signals enabled if bit D5 of the subaddress (test mode bit) is set to "1", too External Clock | | | | | | | | 1 | | Internal Clock | | | | 0
0
0
0
0
0
0
1
1
1
1
1
1 | 0
0
0
1
1
1
1
0
0
0 | 0
0
1
1
0
0
1
1
0
0
1
1
0
0 | 0
1
0
1
0
1
0
1
0
1
0
1 | | | Testsignals at CASS_R VHCCH Level intern Pilot magnitude VCOCON; VCO Control Voltage Pilot threshold HOLDN NB threshold F228 VHCCL VSBL not used not used not used PEAK not used REF5V not used | | | 0
1 | | | | | | | VCO
OFF
ON | | 0 | | | | | | | | Audioprocessor test mode
enabled if bit D5 of the subaddress
(test mode bit) is set to "1"
OFF | Note: This byte is used for testing or evaluation purposes only and must not be set to other values than the default "11111110" in the application! ## New Quality / Control (subaddress 10H) | MSB | | | | | | | LSB | FUNCTION | |-----|----|--------|----|----|------------------|------------------|--------|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | | | | | 0
1 | Reference Generation Internal Reference-Divider External Reference Force | | | | | | | 0
0
1
1 | 0
1
0
1 | | Quality Noise-Gain 15dB 12dB 9dB 6dB | | | | | | 0 | | | | SC-Clock-Mode
Fast Mode
Normal Mode | | | | | 0 | | | | | Auto-Zero
Off
On | | | | 0
1 | | | | | | Smoothing Filter
On
Off | | | 0 | | | | | | | Enable AF-Pin
Enable Pin
Disable Pin | | 0 | | | | | | | | AF-Pin ST-Decoder-Mute-Influence
On
Off | ## Mid Filter (subaddress 11H) | MSB | | | | | | | LSB | FUNCTION | |--------|------------------|------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--| | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | | | | | | 0
0
:
0
0
1 | 0
0
:
1
1
1 | 0
1
:
1
1
1 | 0
1
:
1
1
1 | 0
1
:
0
1
1 | Attenuation -15dB -14dB : -1dB 0dB 0dB +1dB | | | | | :
1
1 | :
0
0 | :
0
0 | :
0
0 | :
1
0 | :
+14dB
+15dB | | | 0
0
1
1 | 0
1
0
1 | | | | | | Middle Center-frequency 500Hz 1.0kHz 1.5kHz 2.0kHz | | 0
1 | | | | | | | | Mid Q Factor 1.0 2.0 | | DIM. | | mm | | inch | | | | |--------|------|--------|-------------|--------------------|-------|-------|--| | Dilvi. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | | Α | | | 1.60 | | | 0.063 | | | A1 | 0.05 | | 0.15 | 0.002 | | 0.006 | | | A2 | 1.35 | 1.40 | 1.45 | 0.053 | 0.055 | 0.057 | | | В | 0.30 | 0.37 | 0.45 | 0.012 | 0.014 | 0.018 | | | С | 0.09 | | 0.20 | 0.004 | | 0.008 | | | D | | 12.00 | | | 0.472 | | | | D1 | | 10.00 | | | 0.394 | | | | D3 | | 8.00 | | | 0.315 | | | | е | | 0.80 | | | 0.031 | | | | Е | | 12.00 | | | 0.472 | | | | E1 | | 10.00 | | | 0.394 | | | | E3 | | 8.00 | | | 0.315 | | | | L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 | | | L1 | | 1.00 | | | 0.039 | | | | K | | 0°(mir | า.), 3.5°(1 | typ.), 7 °(| max.) | | | # OUTLINE AND MECHANICAL DATA 47/ Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com