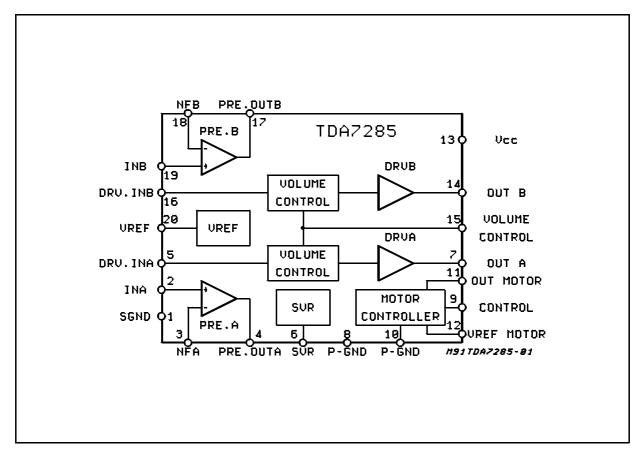
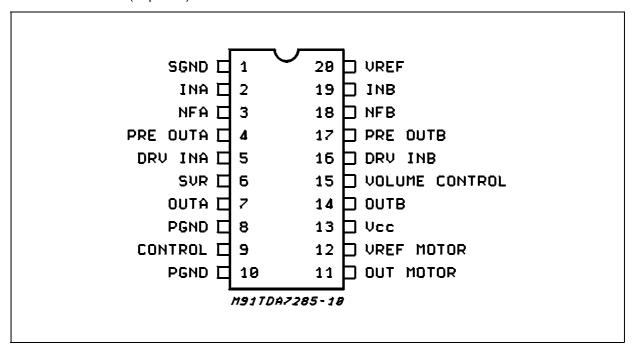


STEREO CASSETTE PLAYER AND MOTOR SPEED CONTROLLER

- WIDE OPERATING SUPPLY VOLTAGE (1.8V to 6V)
- HIGH OUTPUT POWER (30mW/32Ω/3V)
- LOW DISTORTION DC VOLUME CONTROL
- NO BOUCHEROT CELL
- LOW QUIESCENT CURRENT (15mA)
- NO INPUT CAPACITORS FOR PREAMPLIFI-ERS
- LOW MOTOR REFERENCE VOLTAGE (200mV)


DESCRIPTION

The TDA7285 is a monolithic integrated circuit designed for the portable players market and assembled in a plastic DIP20 and SO20. The internal functions are: preamplifier, DC volume con-


trol, headphone driver and motor speed controller.

BLOCK DIAGRAM

September 2003 1/11

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	8	V
I_{Omax}	Maximum Output Current	70	mA
I _{m max}	Maximum Motor Current	700	mA
P _{tot}	Total Power Dissipation T _{amb} = 90°C	0.9	W
T _{op}	Operating Temperature	-20 to +70	°C
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

THERMAL DATA

Ī	Symbol	Description	SO20	DIP20	Unit
	R _{th i-amb}	Thermal Resistance Junction-ambient	150	100	°C/W

DC CHARACTERISTICS ($T_{amb} = 25^{\circ}C$; $V_{S} = 3V$; $R_{L} = 32\Omega$ (Headphone) and $R_{L} = 10K\Omega$ (Preamplifier); $V_{i} = 0$; VOL. Control = V_{ref}).

Terminal No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Term. Volt. (V)	0	1.5	1.5	1.5	1.5	2.7	1.4	0	2.8	0	1.6	3	3	1.4	1.5	1.5	1.5	1.5	1.5	1.5

ELECTRICAL CHARACTERISTICS ($V_S = 3V$; $R_L = 32\Omega$, Vol. Control = 2/3 $V_{ref (pin 20)}$; $T_{amb} = 25$ °C; f = 1KHz; unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range		1.8		6	V
I _d	Total Quiescent Drain Current			15	22	mA
DI AVRACK	AMDI IFIER					

PLAYBACK AMPLIFIER

G_{vo}	Open Loop Gain			70		dB
Gv	Close Loop Gain			33		dB
Vo	Output Voltage	THD = 1%	600	750		mV
THD	Total Harmonic Distortion	V _O = 330mVrms		0.05	0.25	%
I _b	Bias Current			3		μΑ
Ct	Cross Talk	$R_S = 2.2K\Omega$; $V_O = 330$ mVrms		74		dB
en	Total Input Noise	$R_S = 2.2K\Omega$; B = 22Hz to 22KHz		1.2		μV
SVR1	Ripple Rejection	$R_S = 2.2K\Omega$; $Vr = 100mVrms$ $f = 100Hz$; $C_{SVR} = 100\mu F$		50		dB

HEADPHONE DRIVER

V_{DC}	Output DC Voltage			1.4		V
Po	Output Power	THD = 10%	20	30		mW
P _{O1}	Transient Output Power	THD = 10% R_L = 16Ω		50		mW
Gv	Close Loop Gain	$P_0 = 5mW$		31		dB
	Volume Control range		66	75		dB
THD	Total Harmonic Distortion	$P_0 = 5mW$		0.3	1	%
Ct	Cross Talk	$P_O = 5mW; R_S = 10K\Omega$		50		dB
SVR2	Ripple Rejection	$R_S = 600\Omega$; $Vr = 100mV$ $f = 100Hz$; $C_{SVR} = 100\mu F$		47		dB

MOTOR SPEED CONTROL

V _{ref}	Motor Reference Voltage (pin 12)		0.18	0.20	0.22	V
K	Shunt Ratio	$I_m = 100 \text{mA}$	45	50	55	-
V_{sat}	Residual Voltage	$I_m = 100 \text{mA}$		0.13	0.30	V
$\frac{\Delta V_{\text{ref}}}{V_{\text{ref}}} / \Delta V_{\text{S}}$	Line Regulation	$I_{m} = 100 \text{mA};$ $V_{S} = 1.8 \text{ to } 6V$		0.20	0.8	%/V
$\frac{\Delta K}{K} / \Delta V_S$	Voltage Characteristics of Shunt Ratio	$I_{m} = 100 \text{mA};$ $V_{S} = 1.8 \text{ to } 6V$		0.80	3	%/V
$\frac{\Delta V_{ref}}{V} / \Delta I_{m}$	Load Regulation	I _m = 30 to 200mA		0.015	0.08	%/mA
$\frac{\frac{\Delta V_{ref}}{V} / \Delta I_m}{\frac{\Delta' R'}{K} / \Delta I_m}$	Current Characteristics of Shunt Ratio	$I_{m} = 30 \text{ to } 200 \text{mA}$		0.03	0.1	%/mA
$\frac{\Delta V_{ref}}{V_{ref}} / \Delta T_{amb}$	Temperature Characteristics of Reference Voltage	$I_{m} = 100 \text{mA}$ $T_{amb} = -20 \text{ to } +60 ^{\circ}\text{C}$		0.04		%/°C
$\frac{\Delta K}{K} / \Delta T_{amb}$	Temperature Characteristics of Shunt Ratio	I _m = 100mA T _{amb} = -20 to +60°C		0.02		%/°C

Figure 1: Test and Application Circuit

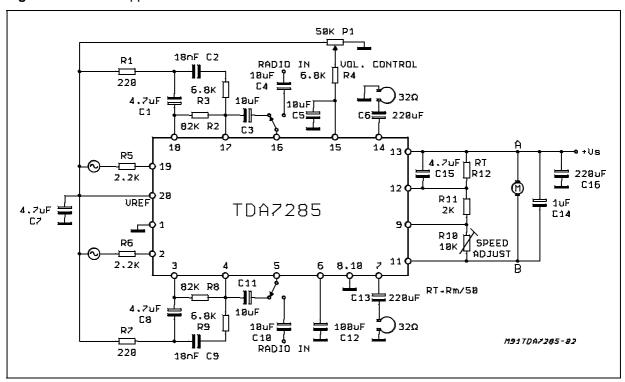


Figure 2: P.C. Board and Component Layout of the Circuit of Figure 2 (1:1 scale)

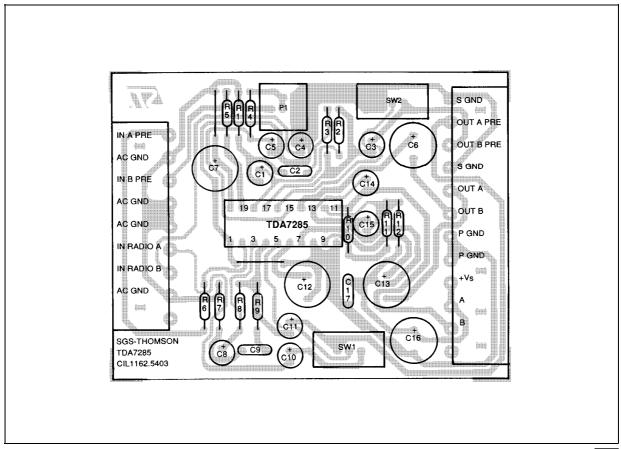


Figure 3: Quiescent Drain Current vs. Supply Voltage

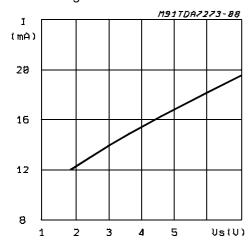
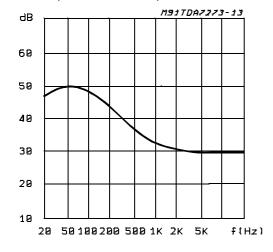
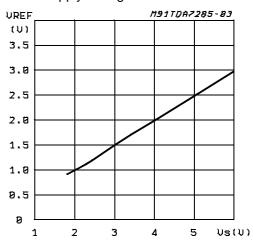


Figure 5: Closed Loop Gain vs. Frequency (PREAMPLIFIER)

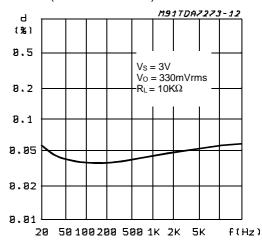

Figure 7: Supply Voltage Rejection vs. Frequency (PREAMPLIFIER)

Figure 4: Reference voltage Vs/2 (pin 20) vs. Supply Voltage

Figure 6: Distortion vs. Frequency (PREAMPLIFIER)

Figure 8: Quiescent Output Voltage vs. Supply Voltage (DRIVER)

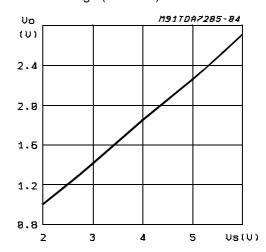


Figure 9: Closed Loop Gain vs. Frequency (DRIVER)

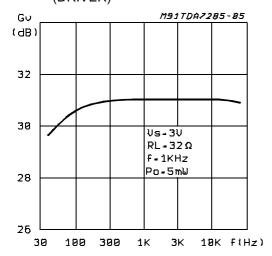


Figure 11: Distortion vs. Output Power (DRIVER)

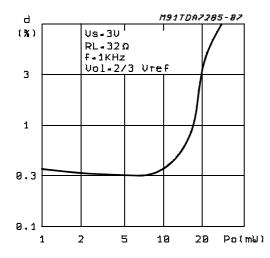
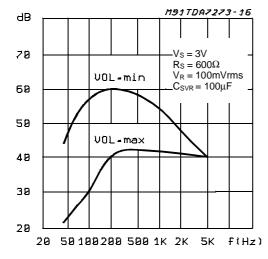



Figure 13: Supply Voltage Rejection vs. Frequency (DRIVER

Figure 10: Output Power vs. Supply Voltage (DRIVER)

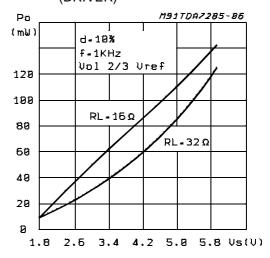


Figure 12: Distortion vs. Frequency (DRIVER)

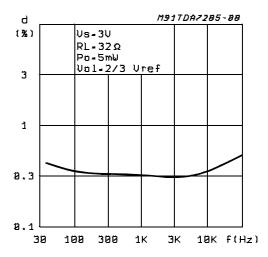


Figure 14: Volume Control (0dB = 10mW; $V_S = 3V$; $R_{VOL} = 50K\Omega$; $R_L = 32\Omega$; f = 1KHz) (DRIVER)

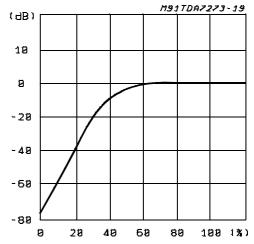


Figure 15: Reference Voltage (Pin 12) vs. Supply Voltage (MOTOR)

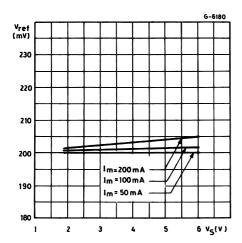


Figure 17: Sunt Ratio vs. Load Current (MOTOR)

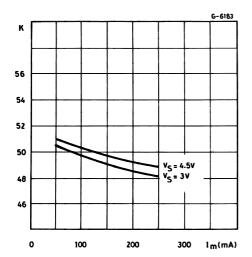
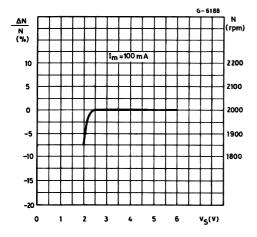



Figure 19: Speed Variations vs. Supply Voltage (MOTOR)

Figure 16: Shunt Ratio vs. Supply Voltage (MOTOR)

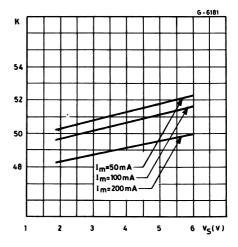


Figure 18: Saturation Voltage vs. Load Current (MOTOR)

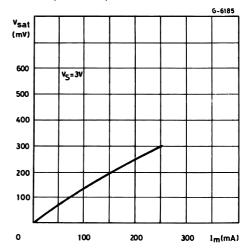
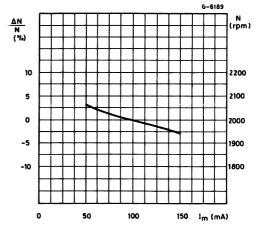
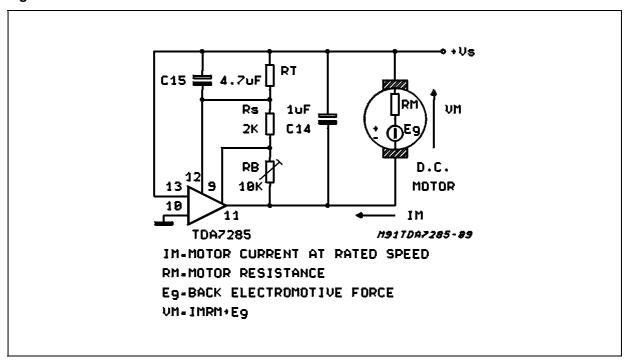




Figure 20: Speed Variations vs. Motor Current (MOTOR)

APPLICATION INFORMATION

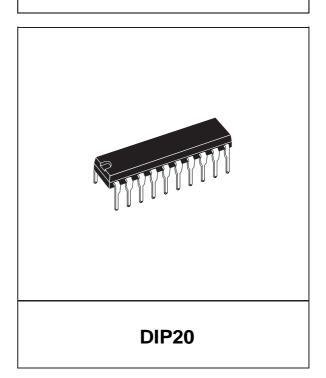
Figure 21.

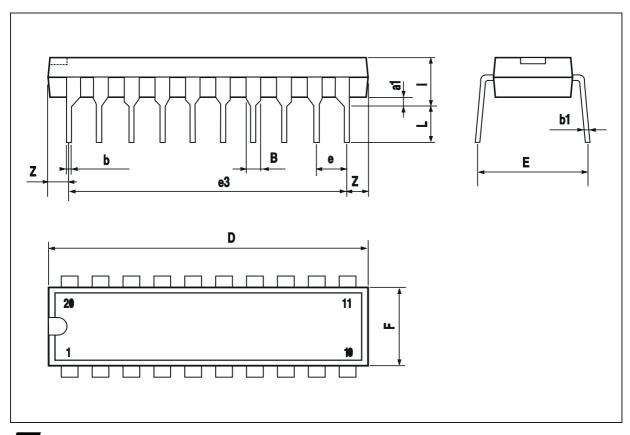
$$E_g = R_T I_d + I_M \left(\frac{R_T}{K} - R_M \right) + V_{ref}$$

$$\left[1 + \frac{R_b}{R_S} + \frac{R_T}{R_S} \left(1 + \frac{1}{K} \right) \right]$$
Rs has to be adjusted so that the applied voltage

R_S has to be adjusted so that the applied voltage V_M is suitable for a given motor, the speed is then linearly adjustable varing R_B.

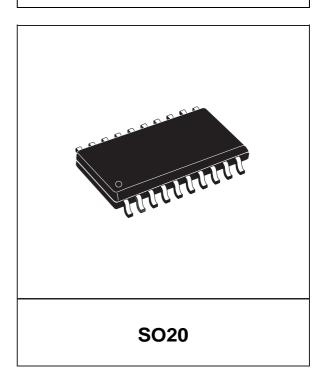
The value R_T is calculated so that

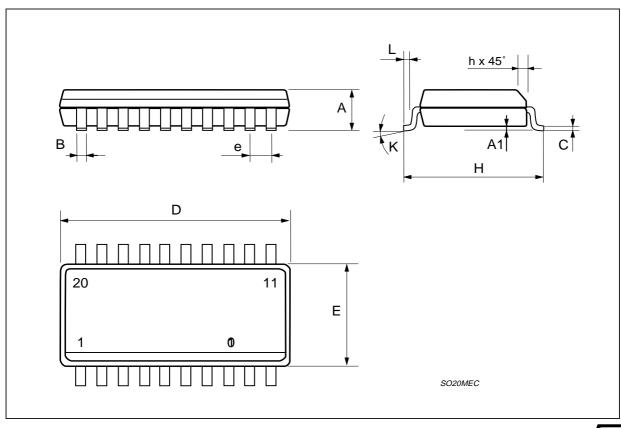

 $R_{T (max.)} > K_{(min.)} * R_{M (min.)}$


if $R_{T \text{ (max.)}} > K * R_M$, instability may occur.

The values of C15 (4.7 μ F typ.) and C14 (1 μ F typ.) depend on the type of motor used. C15 adjusts WOW and flutter of the system. C14 suppresses motor spikes.

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
В	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
Е		8.5			0.335	
е		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053


OUTLINE AND MECHANICAL DATA



DIM.		mm		inch					
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
Α	2.35		2.65	0.093		0.104			
A1	0.1		0.3	0.004		0.012			
В	0.33		0.51	0.013		0.020			
С	0.23		0.32	0.009		0.013			
D	12.6		13	0.496		0.512			
Е	7.4		7.6	0.291		0.299			
е		1.27			0.050				
Н	10		10.65	0.394		0.419			
h	0.25		0.75	0.010		0.030			
L	0.4		1.27	0.016		0.050			
К	0° (min.)8° (max.)								

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

 $\hbox{@}$ 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

