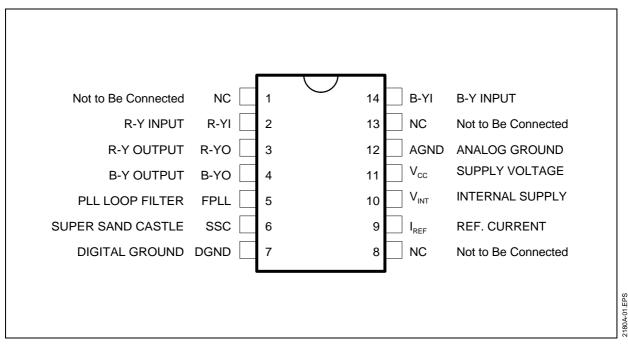



# **STV2180A**

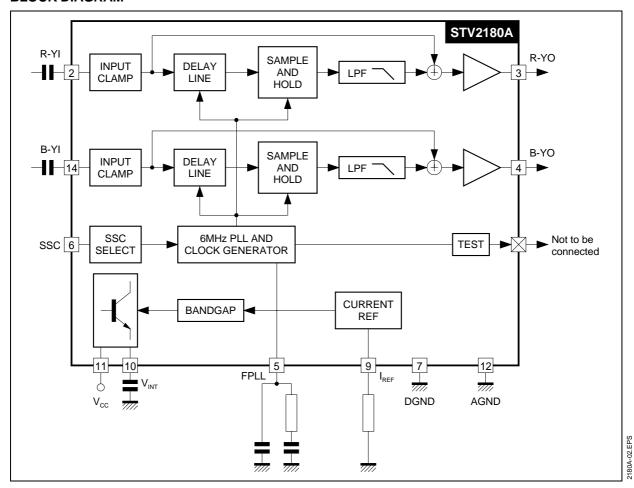
# BASE BAND CHROMA DELAY LINE

#### PRELIMINARY DATA


- DUAL SWITCHED CAPACITOR DELAY LINE
- 3MHz CLOCK DERIVED FROM 6MHz VCO LOCKED BY THE BURST GATE PULSE
- SAMPLE AND HOLD CIRCUITS AND LOW-PASS FILTERS TO SUPPRESS THE 3MHz CLOCK RESIDUAL
- CLAMPED B-Y AND R-Y INPUTS
- OUTPUT BUFFERS
- ADJUSTMENT-FREE APPLICATION
- DIP14 PACKAGE



### **DESCRIPTION**


The STV2180A is an integrated base band chroma delay line with one line delay, which has been designed to match chroma decoders with colour difference signal outputs (R-Y) and (B-Y).

#### **PIN CONNECTIONS**



February 1997 1/6

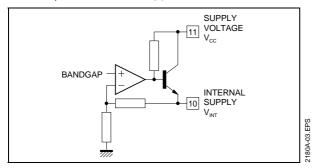
### **BLOCK DIAGRAM**



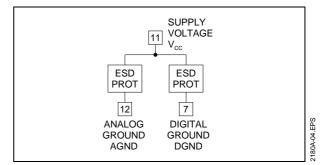
# **ABSOLUTE MAXIMUM RATINGS**

| Symbol               | Parameter                                               | Value       | Unit |
|----------------------|---------------------------------------------------------|-------------|------|
| V <sub>CC</sub>      | Supply Voltage (Pin 11)                                 | 11          | V    |
| T <sub>A</sub>       | Operating Ambiant Temperature                           | 0 to 70     | °C   |
| T <sub>stg</sub>     | Storage Temperature                                     | -25 to +150 | °C   |
| R <sub>th(j-a)</sub> | Junction-Ambiant Thermal Resistance P <sub>d</sub> = 1W | 90          | °C/W |

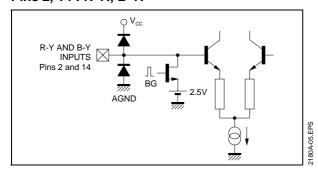
180A-01.TBL


# **ELECTRICAL CHARACTERISTICS**

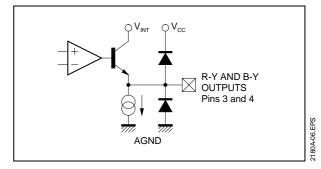
 $T_{amb}$  = 25°C,  $V_{CC}$  = 9V, R9 = 4.02k $\Omega$ , unless otherwise specified


| Symbol                 | Parameter                           | Test Conditions                                                             | Min.  | Тур.   | Max.  | Unit              |
|------------------------|-------------------------------------|-----------------------------------------------------------------------------|-------|--------|-------|-------------------|
| SUPPLY/V <sub>RI</sub> | <sub>EF</sub> (Pins 11 and 10)      |                                                                             |       |        |       |                   |
| V <sub>CC</sub>        | Supply Voltage                      |                                                                             | 8.5   | 9      | 9.5   | V                 |
| Icc                    | Supply Current                      |                                                                             |       | 15     | 25    | mA                |
| P <sub>d</sub>         | Power Consumption                   | V <sub>CC</sub> = 9V                                                        |       | 135    | 240   | mW                |
| V <sub>int</sub>       | Internal Voltage                    |                                                                             |       | 7      |       | V                 |
| SAND CAST              | TLE INPUT (Pin 6)                   |                                                                             | •     |        |       |                   |
| FSSC                   | Burst Gate Frequency                | No input signal                                                             | 14.5  | 15.625 | 16.5  | kHz               |
| $V_{TH}$               | Threshold Voltage (Burst Gate)      |                                                                             | 3.2   | 3.5    | 3.8   | V                 |
| C <sub>in</sub>        | Input Capacitance                   |                                                                             |       |        | 12    | pF                |
| COLOR DIF              | FERENCE INPUT SIGNALS (Pins 2 and   | 14)                                                                         | •     | •      |       |                   |
| R-Y IPN                | R-Y Typical Input Signal PAL & NTSC | Peak-to-peak value                                                          |       | 525    |       | $mV_{PP}$         |
| R-Y IS                 | R-Y Typical Input Signal SECAM      | Peak-to-peak value                                                          |       | 1.05   |       | V <sub>PP</sub>   |
| B-Y IPN                | B-Y Typical Input Signal PAL & NTSC | Peak-to-peak value                                                          |       | 665    |       | $mV_{PP}$         |
| B-Y IS                 | B-Y Typical Input Signal SECAM      | Peak-to-peak value                                                          |       | 1.33   |       | V <sub>PP</sub>   |
| R <sub>in</sub>        | Input Resistance                    |                                                                             | 10    |        |       | kΩ                |
| C <sub>in</sub>        | Input Capacitance                   |                                                                             |       |        | 12    | pF                |
| $V_{Clamp}$            | Clamping Voltage                    |                                                                             |       | 2.7    |       | V                 |
| I <sub>Clamp</sub>     | Clamping Current                    | V <sub>in</sub> = V <sub>Clamp</sub> ±0.2V                                  |       | ±50    |       | μΑ                |
| COLOR DIF              | FERENCE OUTPUT SIGNALS (Pins 3 a    | nd 4)                                                                       | •     | •      |       |                   |
| B-Y O                  | B-Y Output Signal                   | Peak-to-peak value                                                          |       |        | 1.8   | $V_{PP}$          |
| R-Y O                  | R-Y Output Signal                   | Peak-to-peak value                                                          |       |        | 1.8   | V <sub>PP</sub>   |
| DG                     | Differential Gain                   | SECAM V <sub>n</sub> /V <sub>n-1</sub> : V <sub>in</sub> = 1V <sub>PP</sub> | -0.4  | 0      | +0.4  | dB                |
| GPN                    | PAL-NTSC Gain                       | $V_{in} = 0.5V_{PP}$                                                        | 5.8   | 6.3    | 6.8   | dB                |
| GS                     | SECAM Gain                          | $V_{in} = 1V_{PP}$                                                          | -0.5  | 0      | +0.5  | dB                |
| V <sub>Noise</sub>     | RMS Noise Voltage                   | Ri = $300\Omega$<br>BW = $10$ kHz to $1$ MHz                                |       | 2      |       | mV <sub>Rms</sub> |
| $R_{out}$              | Output Resistance                   |                                                                             |       | 200    |       | Ω                 |
| Delay                  | Delayed Signal Delay                | Referred to non delayed output                                              | 63.93 | 64     | 64.07 | μs                |
| Non Delay              | Non Delayed Signal Delay            | Referred to input                                                           |       | 100    |       | ns                |
| TR                     | Output Signal Transient Time        | 500ns transient input signal                                                |       | 650    | 1000  | ns                |
| PLL FILTER             | LOOP (Pin 5)                        |                                                                             |       |        |       |                   |
| I <sub>Charg</sub>     | Charging Current                    |                                                                             |       | 100    |       | μΑ                |
| V <sub>PLL</sub>       | DC Voltage                          |                                                                             |       | 3.5    |       | V                 |
| CURRENT F              | REFERENCE (Pin 9)                   |                                                                             |       |        |       |                   |
| V <sub>DC</sub>        | DC Voltage                          | $R9 = 4.02k\Omega$ to ground                                                |       | 1.15   |       | V                 |
|                        |                                     | •                                                                           | _     |        |       |                   |

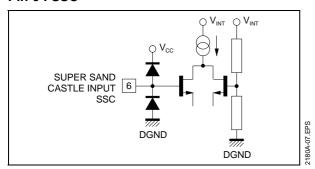
### INPUT/OUTPUT PIN CONFIGURATION


Pins 10, 11 :  $V_{INT}$  and  $V_{CC}$ 

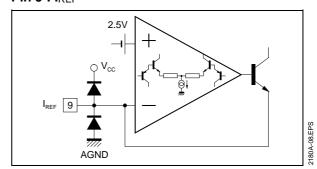



Pins 7, 11, 12 : DGND, V<sub>CC</sub>, AGND

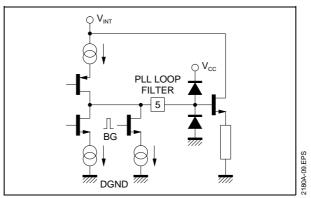



Pins 2, 14: R-YI, B-YI

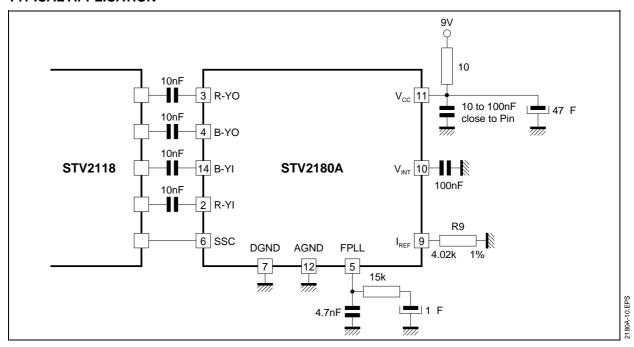



Pins 3, 4: R-YO, B-YO



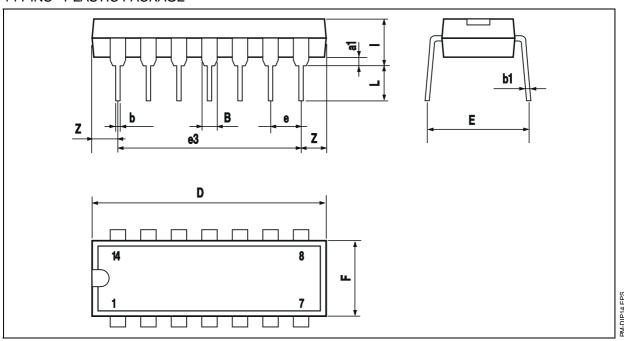

Pin 6: SSC




Pin 9: IREF



Pin 5: FPLL




# **TYPICAL APPLICATION**



### **PACKAGE MECHANICAL DATA**

14 PINS - PLASTIC PACKAGE



| Dimensions | Millimeters |       |      | Inches |       |       |  |
|------------|-------------|-------|------|--------|-------|-------|--|
| Dimensions | Min.        | Тур.  | Max. | Min.   | Тур.  | Max.  |  |
| a1         | 0.51        |       |      | 0.020  |       |       |  |
| В          | 1.39        |       | 1.65 | 0.055  |       | 0.065 |  |
| b          |             | 0.5   |      |        | 0.020 |       |  |
| b1         |             | 0.25  |      |        | 0.010 |       |  |
| D          |             |       | 20   |        |       | 0.787 |  |
| E          |             | 8.5   |      |        | 0.335 |       |  |
| е          |             | 2.54  |      |        | 0.100 |       |  |
| e3         |             | 15.24 |      |        | 0.600 |       |  |
| F          |             |       | 7.1  |        |       | 0.280 |  |
| I          |             |       | 5.1  |        |       | 0.201 |  |
| L          |             | 3.3   |      |        | 0.130 |       |  |
| Z          | 1.27        |       | 2.54 | 0.050  |       | 0.100 |  |

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

## © 1997 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I<sup>2</sup>C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I<sup>2</sup>C Patent. Rights to use these components in a I<sup>2</sup>C system, is granted provided that the system conforms to the I<sup>2</sup>C Standard Specifications as defined by Philips.

### SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

