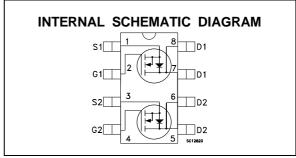


STS6DNF30L

DUAL N - CHANNEL 30V - 0.022Ω - 6A SO-8 STripFETTM POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	Ι _D
STS6DNF30L	30 V	< 0.025 Ω	6 A


- TYPICAL $R_{DS(on)} = 0.022 \Omega$
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- LOW THRESHOLD DRIVE


DESCRIPTION

This Power MOSFET is the second generation of STMicroelectronics unique "Single Feature SizeTM "strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- DC MOTOR DRIVE
- DC-DC CONVERTERS
- BATTERY MANAGMENT IN NOMADIC EQUIPMENT
- POWER MANAGEMENT IN PORTABLE/DESKTOP PCs

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V _{GS}	Gate-source Voltage	± 20	V
I _D	Drain Current (continuous) at Tc = 25 °C Single Operation Drain Current (continuous) at T _c = 100 °C Single Operation	6 3.8	A A
I _{DM} (•)	Drain Current (pulsed)	24	Α
P _{tot}	Total Dissipation at $T_c = 25$ °C Dual Operation Total Dissipation at $T_c = 25$ °C SinIge Operation	2 1.6	W W

^(•) Pulse width limited by safe operating area

April 1999 1/8

THERMAL DATA

R _{thj-amb}	*Thermal Resistance Junction-ambient Single Operation Dual Operation	78 62.5	°C/W °C/W
Tj Tstg	Maximum Operating Junction Temperature Storage Temperature	150 -65 to 150	°C

^(*) Mounted on FR-4 board (Steady State)

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125 ^{\circ}C$			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	1	1.6	2.5	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}$ $I_D = 3 \text{ A}$ $V_{GS} = 4.5 \text{ V}$ $I_D = 3 \text{ A}$		0.022 0.025	0.025 0.032	$\Omega \ \Omega$
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	6			Α

DYNAMIC

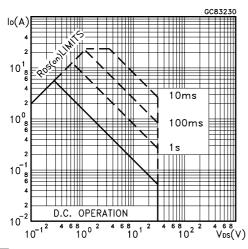
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 3 \text{ A}$		9		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}$ f = 1 MHz $V_{GS} = 0 \text{ V}$		1250 230 50		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

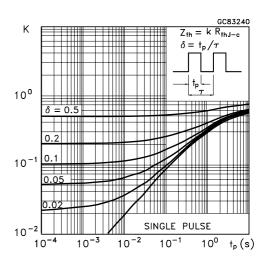
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22 30		ns ns
$egin{array}{c} Q_g \ Q_{gs} \ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 24 \text{ V } I_{D} = 6 \text{ A } V_{GS} = 4.5 \text{ V}$		17 4 6	23	nC nC nC

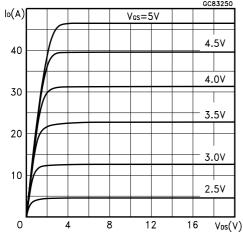
SWITCHING OFF

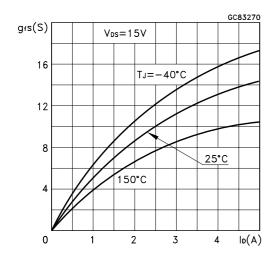

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off Delay Time	$V_{DD} = 15 \text{ V}$ $I_{D} = 3 \text{ A}$		55		ns
t _f	Fall Time	$R_G = 4.7 \Omega$ $V_{GS} = 4.5 V$		10		ns
		(Resistive Load, see fig. 3)				
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{clamp} = 24 \text{ V}$ $I_D = 6 \text{ A}$		10		ns
t _f	Fall Time	$R_{G} = 4.7 \Omega$ $V_{GS} = 4.5 V$		18		ns
tc	Cross-over Time	(Inductive Load, see fig. 5)		30		ns

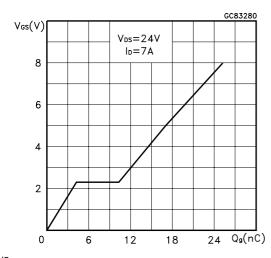
SOURCE DRAIN DIODE

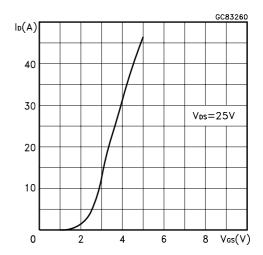

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (∙)	Source-drain Current Source-drain Current (pulsed)				6 24	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 6 A V _{GS} = 0			1.2	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 6 \text{ A}$		30		ns
Q_{rr}	Reverse Recovery Charge	(see test circuit, fig. 5)		30		nC
I _{RRM}	Reverse Recovery Current			2		A

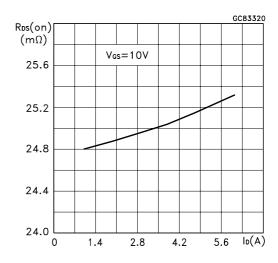
^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 % (•) Pulse width limited by safe operating area

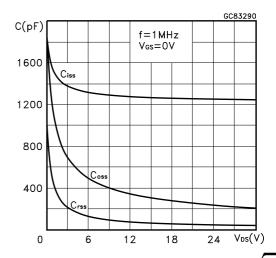

Safe Operating Area

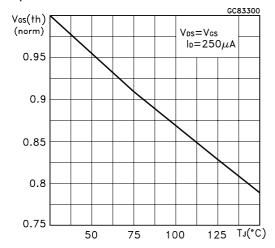

Thermal Impedance

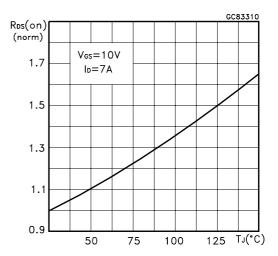

Output Characteristics


Transconductance


Gate Charge vs Gate-source Voltage


Transfer Characteristics


Static Drain-source On Resistance


Capacitance Variations

Normalized Gate Threshold Voltage vs Temperature

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

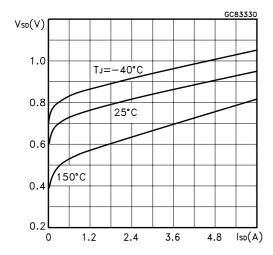
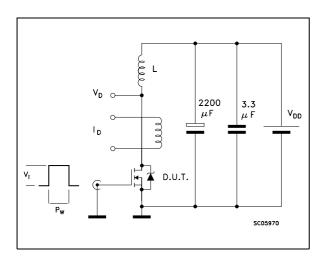
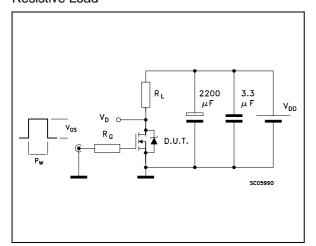




Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

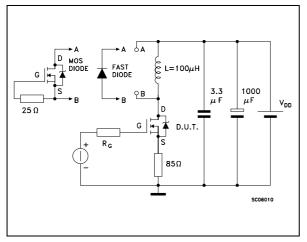


Fig. 2: Unclamped Inductive Waveform

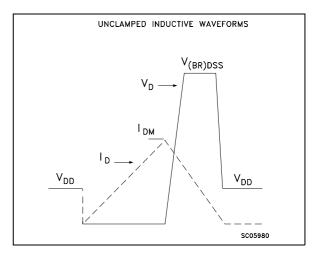
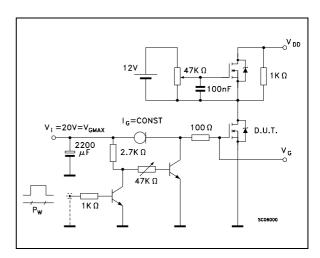
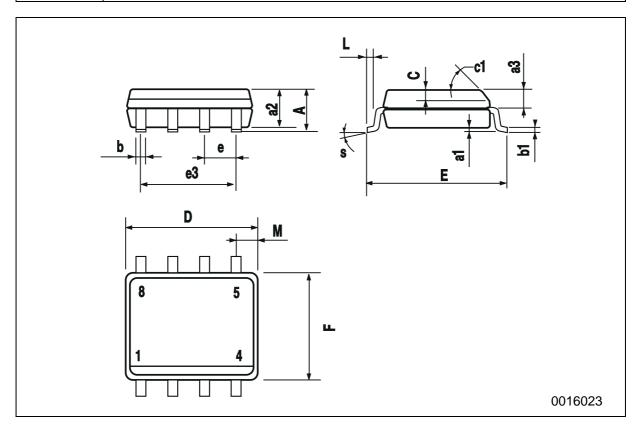




Fig. 4: Gate Charge test Circuit

SO-8 MECHANICAL DATA

DIM.		mm			inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			1.75			0.068	
a1	0.1		0.25	0.003		0.009	
a2			1.65			0.064	
аЗ	0.65		0.85	0.025		0.033	
b	0.35		0.48	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С	0.25		0.5	0.010		0.019	
c1			45	(typ.)			
D	4.8		5.0	0.188		0.196	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		3.81			0.150		
F	3.8		4.0	0.14		0.157	
L	0.4		1.27	0.015		0.050	
М			0.6			0.023	
S			8 (r	nax.)			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com