STPIC6C595 # POWER LOGIC 8-BIT SHIFT REGISTER - LOW R_{DS(on)}: 4Ω TYP - 30mJ AVAILANCHE ENERGY - EIGHT 100mA DMOS OUTPUTS - 250mA CURRENT LIMIT CAPABILITY - 33V OUTPUT CLAMP VOLTAGE - DEVICE ARE CASCADABLE - LOW POWER CONSUMPTION #### **DESCRIPTION** This STPIC6C595 is a monolithic, medium-voltage, low current power 8-bit shift register designed for use in systems that require relatively moderate load power such as LEDs. The device contains a built-in voltage clamp on the outputs for inductive transient protection. Power driver applications include relays, solenoids, and other low-current or medium-voltage loads. The device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through both the shift and storage register clock (SRCK) and the register clock (RCK), respectively. The device transfers data out the serial output (SER OUT) port on the rising edge of SRCK. The storage register transfers data to the output buffer when shift register clear (CLR) is high. When CLR is low, the input shift register is cleared. When output enable (G) is held high, all data in the output buffer is held low and all drain output are off. When G is held low, data from the storage register is transparent to the output buffer. When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs have sink-current capability. The SER OUT allows for cascading of the data from the shift register to additional devices. Output are low-side, open-drain DMOS transistors with output ratings of 33V and 100mA continuous sink-current capability. Each output provides a 250 mA maximum current limit at $T_C = 25^{\circ}C$. The current limit decreases as the junction temperature increases for additional device protection. The device also provides up to 1.5KV of ESD protection when tested using the human-body model and 200V machine model. The STPIC6C595 is characterized for operation over the operating case temperature range of -40°C to 125°C. #### **ORDERING CODES** | Туре | Package | Comments | |---------------|-----------------------|-----------------------------------| | STPIC6C595M | SO-16 (Tube) | 50parts per tube / 20tube per box | | STPIC6C595MTR | SO-16 (Tape & Reel) | 2500 parts per reel | | STPIC6C595TTR | TSSOP16 (Tape & Reel) | 2500 parts per reel | August 2002 1/14 Figure 1 : Logic Symbol And Pin Configuration Figure 2: Input And Output Equivalent Circuits #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | | |------------------|---|-------------|------|--| | V _{CC} | Logic Supply Voltage (See Note 1) | 7 | V | | | VI | Logic Input Voltage Range | -0.3 to 7 | V | | | V _{DS} | Power DMOS Drain to Source Voltage (See Note 2) | 33 | V | | | I _{DS} | Continuous Source to Drain Diode Anode Current | 250 | mA | | | I _{DS} | Pulsed Source to Drain Diode Anode Current (See Note 3) | 500 | mA | | | I _D | Pulsed Drain Current, Each Output, All Output ON (T _C =25°C) | 250 | mA | | | I _D | Continuous Current, Each Output, All Output ON (T _C =25°C) | 100 | mA | | | I _D | Peak Drain Current Single Output (T _C =25°C) (See Note 3) | 250 | mA | | | E _{AS} | Single Pulse Avalanche Energy (See Figure11 and 12) | 30 | mJ | | | I _{AS} | Avalanche Current (See Note 4 and figure 17) | 200 | mA | | | P _d | Continuous total dissipation (T _C ≤ 25°C) | 1087 | mW | | | P _d | Continuous total dissipation (T _C = 125°C) | 217 | mW | | | T _J | Operating Virtual Junction Temperature Range | -40 to +150 | °C | | | T _C | Operating Case Temperature Range | -40 to +125 | °C | | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | | TL | Lead Temperature 1.6mm (1/16inch) from case for 10 seconds | 260 | °C | | Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. ### THERMAL DATA | Symbol | Parameter | Value | Unit | |----------------------|-------------------------------------|-------|------| | R _{thj-amb} | Thermal Resistance Junction-ambient | 115 | °C/W | ### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Min. | Max. | Unit | |-----------------|---|---------------------|---------------------|------| | V _{CC} | Logic Supply Voltage | 4.5 | 5.5 | V | | V _{IH} | High Level Input Voltage | 0.85V _{CC} | V _{CC} | V | | V _{IL} | Low Level Input Voltage | 0 | 0.15V _{CC} | V | | I _{DP} | Pulse Drain Output Current (T _C =25°C, V _{CC} =5V,all outputs ON) (see note 3, 5 and figure 15) | | 250 | mA | | t _{su} | Set-up Time, SER IN High Before SRCK ↑ (see Figure 6 and 8) | 20 | | ns | | t _h | Hold Time, SER IN High Before G ↑ (see Figure 6, 7, 8) | 20 | | ns | | t _W | Pulse Duration (see Figure 8) | 40 | | ns | | T _C | Operating Case Temperature | -40 | 125 | °C | ### **DC CHARACTERISTICS** (V_{CC}=5V, T_C= 25°C, unless otherwise specified.) | Symbol | Parameter | Test Co | nditions | Min. | Тур. | Max. | Unit | |----------------------|---|--|--|------|-------|------|------| | V _{(BR)DSX} | Drain-to-Source breakdown
Voltage | I _D = 1mA | | 33 | 37 | | V | | V _{SD} | Source-to-Drain Diode
Forward Voltage | I _F = 100 mA | | | 0.85 | 1.2 | V | | V _{OH} | High Level Output Voltage | $I_{OH} = -20 \mu A$ | $V_{CC} = 4.5V$ | 4.4 | 4.49 | | V | | | SER OUT | $I_{OH} = -4 \text{ mA}$ | $V_{CC} = 4.5V$ | 4 | 4.2 | | V | | V_{OL} | Low Level Output Voltage | $I_{OH} = 20 \mu A$ | $V_{CC} = 4.5V$ | | 0.005 | 0.1 | ٧ | | | SER OUT | I _{OH} = 4 mA | $V_{CC} = 4.5V$ | | 0.3 | 0.5 | V | | I _{IH} | High Level Input Current | $V_{CC} = 5.5V$ | $V_I = V_{CC}$ | | | 1 | μΑ | | I _{IL} | Low Level Input Current | $V_{CC} = 5.5V$ | V _I = 0 | | | -1 | μΑ | | I _{CC} | Logic Supply Current | $V_{CC} = 5.5V$ All ou | utputs OFF or ON | | 20 | 200 | μΑ | | I _{CC(FRQ)} | Logic Supply Current at Frequency | f _{SRCK} = 5MHz
All outputs OFF
(See Figg. 6, 18 ar | | | 0.2 | 2 | mA | | I _N | Nominal Current | $V_{DS(on)} = 0.5V$
$T_C=85$ °C (See | I _N = I _D
Note 5, 6, 7) | | 90 | | mA | | I _{DSX} | Off-State Drain Current | V _{DS} = 30V | V _{CC} = 5.5V | | 0.3 | 5 | μΑ | | | | V _{DS} = 30V
T _C =125°C | V _{CC} =5.5V or 0V | | 0.6 | 8 | μΑ | | R _{DS(on)} | Static Drain Source ON | I _D = 50mA | V _{CC} = 4.5V | | 4.5 | 6 | Ω | | | State Resistance (See Note 5, 6 and figg. 14, 16) | $I_D = 50\text{mA}$
$T_C = 125^{\circ}\text{C}$ | V _{CC} = 4.5V | | 6.5 | 9 | Ω | | | | I _D = 100mA | V _{CC} = 4.5V | | 4.5 | 6 | Ω | # **SWITCHING CHARACTERISTICS** (V_{CC} =5V, T_{C} = 25 $^{\circ}$ C, unless otherwise specified.) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |------------------|---|--|------|------|------|------| | t _{PHL} | Propagation Dealy Time,
High to Low Level Output
from G | $C_L = 30 pF$ $I_D = 75 mA$
(See Figg. 4, 5, 6,7, 20) | | 80 | | ns | | t _{PLH} | Propagation Dealy Time,
Low to High Level Output
from G | | | 130 | | ns | | t _r | Rise Time, Drain Output | | | 60 | | ns | | t _f | Fall Time, Drain Output | | | 50 | | ns | | t _{pd} | propagation Delay Time | | | 20 | | ns | | t _a | Reverse Recovery Current
Rise Time | I _F = 100mA di/dt = 10A/μs
(See Note 5, 6 and Fig. 9 and 10) | | 39 | | ns | | t _{rr} | Reverse Recovery Time | | | 115 | | ns | Note 1: All Voltage value are with respect to GND Note 2: Each power DMOS source is internally connected to GND Note 3: Pulse duration \leq 100 μ s and duty cycle \leq 2% Note 4: Drain Supply Voltage = 15V, starting junction temperature (T_{JS}) = 25°C. L = 1.5H and I_{AS} = 200mA (See Fig. 11 and 12) Note 5: Technique should limit T_J - T_C to 10°C maximum $Note \ 6: These \ parameters \ are \ measured \ with \ voltage \ sensing \ contacts \ separate \ from \ the \ current-carrying \ contacts.$ Note 7: Nominal Current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5V at $T_C = 85$ °C. Figure 3: Logic Diagram Figure 4: Typical Operation Mode Test Circuits Figure 5: Typical Operation Mode Waveforms NOTE: A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulse repetition rate (PRR) = 5KHz, $Z_O = 50\Omega$ B) C_L includes probe and jig capacitance. Figure 6: Typical Operation Mode Test Circuits Figure 7: Switching Time Waveform Figure 8: Input Setup And Hold Waveform NOTE: A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 300$ ns, pulse repetition rate (PRR) = 5KHz, $Z_O = 50\Omega$ B) C_L includes probe and jig capacitance. Figure 9: Reverse Recovery Current Test Circuits Figure 10 : Source Drain Diode Waveform point. C) I_{RM} = maximum recovery current. NOTE: A) The V_{GG} amplitude and R_{G} are adjusted for di/dt = 10A/ μ s. A V_{GG} double-pulse trainn is used to set I_{F} = 0.1A. where t_{1} = 10 μ s, t_{2} = 7 μ s and t_{3} = 3 μ s B) The Drain terminal under test is connected to the TPK test point. All other terminals are connected together and connected to the TPA test Figure 11: Single Pulse Avalanche Energy Test Circuits Figure 12: Single Pulse Avalanche Energy Waveform NOTE: A) The word generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $Z_O = 50\Omega$ B) Input pulse duration, tW is increased until peak current $I_{AS} = 200$ mA. Energy test level is defined as $E_{AS} = (I_{AS} \times V_{(BR)DSX} \times t_{AV})/2 = 30$ mJ. ### TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified T_i = 25°C) Figure 13: Max Continuous Drain Current vs Number of Outputs Conducting Simultaneously **Figure 14 :** Static Drain-Source ON-State Resistance vs Drain Current Figure 15: Maximum Peak Drain Current vs Number of Outputs Conducting Simultaneously **Figure 16 :** Static Drain-Source ON-State Resistance vs Logic Supply Voltage **Figure 17 :** Peak Avalanche Current vs Time Duration of Avalanche Figure 18: Supply Current vs Frequency Figure 19: Supply Current vs Supply Voltage Figure 20 : Switching Time vs Case Temperature **Figure 21 :** Normalized Junction to Ambient Thermal Resistance ## **SO-16 MECHANICAL DATA** | DIM | | mm. | | inch | | | |--------|------|------|------|--------|-------|-------| | DIM. | MIN. | TYP | MAX. | MIN. | TYP. | MAX. | | А | | | 1.75 | | | 0.068 | | a1 | 0.1 | | 0.2 | 0.003 | | 0.007 | | a2 | | | 1.65 | | | 0.064 | | b | 0.35 | | 0.46 | 0.013 | | 0.018 | | b1 | 0.19 | | 0.25 | 0.007 | | 0.010 | | С | | 0.5 | | | 0.019 | | | c1 | | | 45° | (typ.) | | | | D | 9.8 | | 10 | 0.385 | | 0.393 | | E | 5.8 | | 6.2 | 0.228 | | 0.244 | | е | | 1.27 | | | 0.050 | | | e3 | | 8.89 | | | 0.350 | | | F | 3.8 | | 4.0 | 0.149 | | 0.157 | | G | 4.6 | | 5.3 | 0.181 | | 0.208 | | L | 0.5 | | 1.27 | 0.019 | | 0.050 | | М | | | 0.62 | | | 0.024 | | M
S | | | | max.) | | 0.0 | ## **TSSOP16 MECHANICAL DATA** | DIM. | | mm. | | inch | | | |------|------|----------|------|-------|------------|--------| | DIN. | MIN. | TYP | MAX. | MIN. | TYP. | MAX. | | А | | | 1.2 | | | 0.047 | | A1 | 0.05 | | 0.15 | 0.002 | 0.004 | 0.006 | | A2 | 0.8 | 1 | 1.05 | 0.031 | 0.039 | 0.041 | | b | 0.19 | | 0.30 | 0.007 | | 0.012 | | С | 0.09 | | 0.20 | 0.004 | | 0.0089 | | D | 4.9 | 5 | 5.1 | 0.193 | 0.197 | 0.201 | | E | 6.2 | 6.4 | 6.6 | 0.244 | 0.252 | 0.260 | | E1 | 4.3 | 4.4 | 4.48 | 0.169 | 0.173 | 0.176 | | е | | 0.65 BSC | | | 0.0256 BSC | | | K | 0° | | 8° | 0° | | 8° | | L | 0.45 | 0.60 | 0.75 | 0.018 | 0.024 | 0.030 | Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for t consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES