STD40NF06LZ # N-CHANNEL 60V - 0.020 Ω - 40A DPAK Zener-Protected STripFET™ II POWER MOSFET | TYPE | V _{DSS} | R _{DS(on)} | I _D | |-------------|------------------|---------------------|----------------| | STD40NF06LZ | 60 V | $<$ 25 m Ω | 40 A | - TYPICAL $R_{DS}(on) = 0.020\Omega$ - 100% AVALANCHE TESTED - LOW GATE CHARGE - LOGIC LEVEL GATE DRIVE - SURFACE-MOUNTING DPAK (TO-252) POWER PACKAGE IN TAPE & REEL (SUFFIX "T4") - BUILT-IN ZENER DIODES TO IMPROVE ESD PROTECTION UP TO 2kV #### **DESCRIPTION** This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size^{TM"} strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility. #### **APPLICATIONS** - SINGLE-ENDED SMPS IN MONITOTS, COMPUTER AND INDUSTRIAL APPLICATION - WELDING EQUIPMENT - AUTOMOTIVE #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |-----------------------|--|------------|------| | V_{DS} | Drain-source Voltage (V _{GS} = 0) | 60 | V | | V_{DGR} | Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$) | 60 | V | | V _{GS} | Gate- source Voltage | ± 16 | V | | ΙD | Drain Current (continuous) at T _C = 25°C | 40 | A | | ΙD | Drain Current (continuous) at T _C = 100°C | 28 | A | | I _{DM} (•) | Drain Current (pulsed) | 160 | A | | P _{tot} | Total Dissipation at T _C = 25°C | 100 | W | | | Derating Factor | 0.67 | W/°C | | V _{ESD(G-S)} | Gate-source ESD(HBM-C=100pF, R=15kΩ) | ± 2.5 | kV | | dv/dt(1) | Peak Diode Recovery voltage slope | 9 | V/ns | | E _{AS} (2) | Single Pulse Avalanche Energy | 450 | mJ | | T _{stg} | Storage Temperature | -55 to 175 | | | Tį | Max. Operating Junction Temperature | -33 to 175 | °C | (•) Pulse width limited by safe operating area. #### **INTERNAL SCHEMATIC DIAGRAM** October 2002 1/8 $[\]begin{array}{l} (1)I_{SD}\leq 40A, \text{ di/dt}\leq 100\text{A/}\mu\text{s}, \text{ V}_{DD}\leq \text{V}_{(BR)DSS}, \text{ } T_{j}\leq \text{T}_{JMAX}. \\ (2) \text{ Starting } T_{j}=25 \text{ °C} \quad I_{D}=20\text{A} \quad \text{V}_{DD}=45\text{V} \end{array}$ # STD40NF06LZ # THERMAL DATA ^(#) When Mounted on 1 inch² FR-4 board, 2 oz Cu. # **ELECTRICAL CHARACTERISTICS** (T_{case} = 25 °C unless otherwise specified) # OFF | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------|--|---|------|------|---------|----------| | V _{(BR)DSS} | Drain-source
Breakdown Voltage | $I_D = 250 \ \mu A, \ V_{GS} = 0$ | 60 | | | V | | I _{DSS} | Zero Gate Voltage
Drain Current (V _{GS} = 0) | $V_{DS} = Max Rating$
$V_{DS} = Max Rating T_C = 125^{\circ}C$ | | | 1
50 | μA
μA | | I _{GSS} | Gate-body Leakage
Current (V _{DS} = 0) | V _{GS} = ± 16 V | | | ±10 | μA | # ON (*) | Symbol | Parameter | Test Conditions | | Min. | Тур. | Max. | Unit | |---------------------|--------------------------------------|---|--|------|------|----------------|--------| | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}$ | I _D = 250 μA | 1 | | | V | | R _{DS(on)} | Static Drain-source On
Resistance | V _{GS} = 5 V
V _{GS} = 10 V | I _D = 20 A
_D = 20 A | | | 0.030
0.025 | Ω
Ω | # **DYNAMIC** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|---|--|------|--------------------|------|----------------| | g _{fs} (*) | Forward Transconductance | $V_{DS} = 15 \text{ V}$ $I_{D} = 20 \text{ A}$ | | 25 | | S | | C _{iss}
C _{oss}
C _{rss} | Input Capacitance Output Capacitance Reverse Transfer Capacitance | $V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$ | | 1360
302
115 | | pF
pF
pF | # **ELECTRICAL CHARACTERISTICS** (continued) #### **SWITCHING ON** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|--|---|------|----------------|------|----------------| | t _{d(on)}
t _r | Turn-on Delay Time
Rise Time | $\begin{array}{ccc} V_{DD} = 30 \text{ V} & I_D = 20 \text{ A} \\ R_G = 4.7 \ \Omega & V_{GS} = 4.5 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{array}$ | | 17
75 | | ns
ns | | Q _g
Q _{gs}
Q _{gd} | Total Gate Charge
Gate-Source Charge
Gate-Drain Charge | V _{DD} =48 V I _D =40 A V _{GS} =10V | | 54
11
12 | | nC
nC
nC | #### **SWITCHING OFF** | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |---------------------|----------------------------------|--|------|----------|------|----------| | t _{d(off)} | Turn-off Delay Time
Fall Time | $ \begin{array}{ccc} V_{DD} = 30 V & I_D = 20 \; A \\ R_G = 4.7 \Omega, & V_{GS} = 4.5 \; V \\ (Resistive Load, Figure 3) \end{array} $ | | 38
23 | | ns
ns | #### SOURCE DRAIN DIODE | Symbol | Parameter | Test Conditions | | Min. | Тур. | Max. | Unit | |--|--|--|--|------|------------------|-----------|---------------| | I _{SD}
I _{SDM} (•) | Source-drain Current
Source-drain Current (pulsed) | | | | | 40
160 | A
A | | V _{SD} (*) | Forward On Voltage | I _{SD} = 40A | V _{GS} = 0 | | | 1.6 | V | | t _{rr}
Q _{rr}
I _{RRM} | Reverse Recovery Time
Reverse Recovery Charge
Reverse Recovery Current | I _{SD} = 40 A
V _{DD} = 30 V
(see test circui | di/dt = 100A/µs
$T_j = 150^{\circ}\text{C}$
t, Figure 5) | | 66
142
4.3 | | ns
nC
A | (*)Pulsed: Pulse duration = 300 μs, duty cycle 1.5 % (•)Pulse width limited by safe operating area. #### Safe Operating Area #### Thermal Impedance #### **Output Characteristics** #### Transconductance Gate Charge vs Gate-source Voltage #### **Transfer Characteristics** Static Drain-source On Resistance Capacitance Variations # Normalized Gate Threshold Voltage vs Temperature #### Source-drain Diode Forward Characteristics #### Normalized on Resistance vs Temperature #### Normalized Breakdown Voltage vs Temperature. Fig. 1: Unclamped Inductive Load Test Circuit Fig. 3: Switching Times Test Circuits For Resistive Load **Fig. 5:** Test Circuit For Inductive Load Switching And Diode Recovery Times Fig. 2: Unclamped Inductive Waveform Fig. 4: Gate Charge test Circuit 7/8 # **TO-252 (DPAK) MECHANICAL DATA** | DIM. | | mm | | | inch | | |-------|------|------|------|-------|-------|-------| | Divi. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | А | 2.2 | | 2.4 | 0.086 | | 0.094 | | A1 | 0.9 | | 1.1 | 0.035 | | 0.043 | | A2 | 0.03 | | 0.23 | 0.001 | | 0.009 | | В | 0.64 | | 0.9 | 0.025 | | 0.035 | | B2 | 5.2 | | 5.4 | 0.204 | | 0.212 | | С | 0.45 | | 0.6 | 0.017 | | 0.023 | | C2 | 0.48 | | 0.6 | 0.019 | | 0.023 | | D | 6 | | 6.2 | 0.236 | | 0.244 | | Е | 6.4 | | 6.6 | 0.252 | | 0.260 | | G | 4.4 | | 4.6 | 0.173 | | 0.181 | | Н | 9.35 | | 10.1 | 0.368 | | 0.397 | | L2 | | 0.8 | | | 0.031 | | | L4 | 0.6 | | 1 | 0.023 | | 0.039 | Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is registered trademark of STMicroelectronics ® 2001 STMicroelectronics - All Rights Reserved All other names are the property of their respective owners. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com