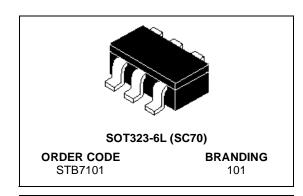
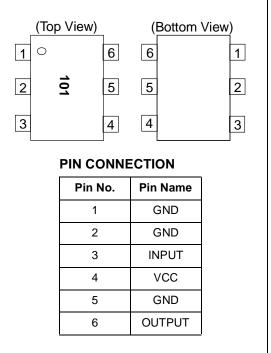


STB7101

0.9/1.9GHz BROAD BAND PRE-POWER AMPLIFIER


- OPERATING FREQUENCY 900-1900MHz
- OUTPUT POWER 9.8dBm typ. @ 900MHz
 7.5dBm typ. @ 1900MHz
- POWER GAIN $G_P = 20.3 dB$ typ. @ 900MHz $G_P = 20.5 dB$ typ. @ 1900MHz

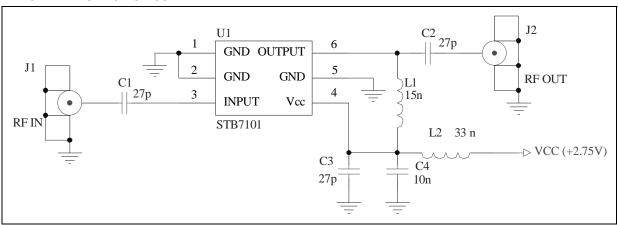


PA driver for cellular applications

DESCRIPTION

The STB7101, designed for cellular applications (0.9/1.9GHz), uses a 20 GHz F_T silicon bipolar process. This IC is a wide range amplifier operating from 900MHz to 1900MHz, in the overall frequencies range the gain flatness is less than 1 dB. The STB7101 is housed in a very small SMD package SOT323-6L.

ABSOLUTE MAXIMUM RATINGS

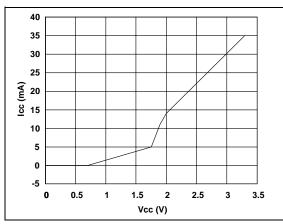

Symbol	Parameter	Conditions	Value	Unit
V _{cc}	Supply voltage	$T_a = +25$ °C, pin 4 and 6	4.5	V
T _{stg}	Storage temperature		-55 to +150	°C
Ta	Operating ambient temperature		-40 to +85	°C
Pin	Input power	T _a = +25 °C	10	dBm

January, 22 2002 1/5

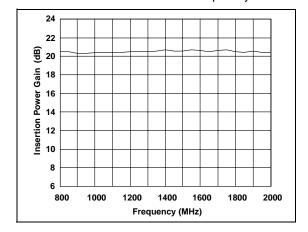
ELECTRICAL CHARACTERISTICS (Ta = +25°C, Vcc = 2.75V, ZL = Zs = 50 Ω , unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{cc}	Supply voltage		2.6	2.75	3.3	V
I _{cc}	Circuit current	No signal		28		mA
Gp	Power Gain	f = 0.9GHz f = 1.9GHz		20.3 20.5		dB
NF	Noise figure	f = 0.9GHz f = 1.9GHz		5 4.5		dB
P _{1dB}	Output 1dB Compr. Power	f = 0.9GHz f = 1.9GHz		9.8 7.5		dBm
RL _{IN}	Input return loss	f = 0.9GHz f = 1.9GHz		8 6.2		dB
RL _{OUT}	Output Return loss	f = 0.9GHz f = 1.9GHz		9.7 9.7		dB
S ₁₂	Isolation	f = 0.9GHz f = 1.9GHz		-34 -33		dB
P _o (Sat)	Saturated output power level	f = 0.9GHz f = 1.9GHz		11.3 9.7		dBm
OIP3	Output Third Order Intercept	f = 0.9GHz f = 1.9GHz		16.5 14.9		dBm

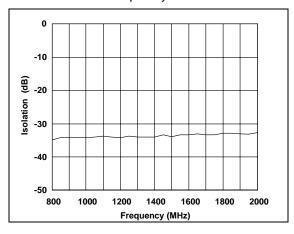
TYPICAL EVALUATION CIRCUIT

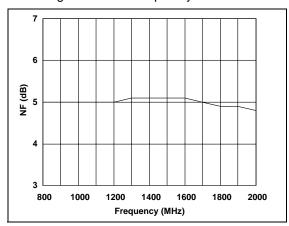

Evaluation circuit components

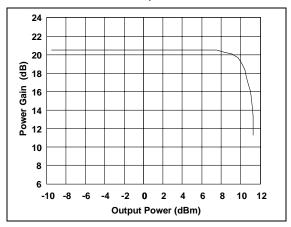
C1 = C2 = C3 = 27pF
C4 = 10nF
L1 = 15nH
L2 = 33nH

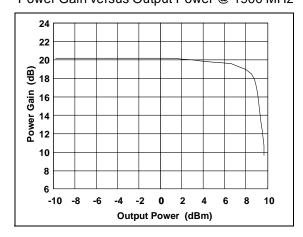

2/5

TYPICAL PERFORMANCE ($T_a = +25$ °C, Vcc = 2.75V, unless otherwise specified)

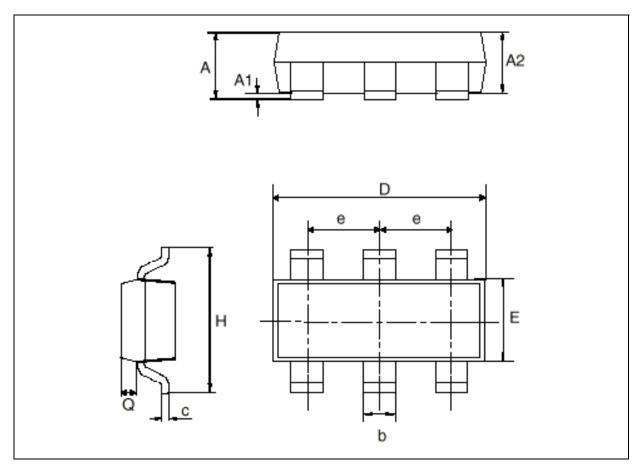

Circuit Current versus Supply Voltage


Insertion Power Gain versus Frequency


Isolation versus Frequency


Noise Figure versus Frequency

Power Gain versus Output Power @ 900 MHz



Power Gain versus Output Power @ 1900 MHz

SOT323-6L MECHANICAL DATA

	mm			Inch		
DIM.	MIN.	TYP.	MAX	MIN.	TYP.	MAX
А	0.8		1.1	0.031		0.043
A1	0		0.1	0		0.004
A2	0.8		1	0.0031		0.039
b	0.15		0.3	0.006		0.012
С	0.1		0.18	0.004		0.007
D	1.8		2.2	0.071		0.088
E	1.15		1.35	0.045		0.59
е		0.65			0.025	
Н	1.8		2.4	0.071		0.094
Q	0.1		0.4	0.004		0.016

4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2002 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

