
Rev. 1.18 -June 2003 1/106
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.

TARGET SPECIFICATION

ST52F510/F513/F514
8-BIT INTELLIGENT CONTROLLER UNIT (ICU)

Two Timer/PWMs, ADC, I2C, SPI, SCI

®

Memories
■ Up to 8 Kbytes Single Voltage Flash Memory

■ 256 bytes of Register File

■ 256 bytes of RAM

■ Up to 4 Kbytes Data EEPROM

■ In Situ Programming in Flash devices (ISP)

■ Single byte and Page modes and In Application
Programming for writing data in Flash memory

■ Readout protection and flexible write protection

Core
■ Register File based architecture

■ 107 basic instructions

■ Hardware multiplication and division

■ Decision Processor for the implementation of
Fuzzy Logic algorithms

■ Deep System and User Stacks

Clock and Power Supply
■ Up to 24 MHz clock frequency

■ Programmable Oscillator modes:

– 10 MHz Internal Oscillator

– External Clock/ Oscillator

– External RC Oscillator

■ Power-On Reset (POR)

■ Programmable Low Voltage Detector (PLVD)
with 3 configurable thresholds

■ Power Saving features

Interrupts
■ 8 interrupt vectors with one SW Trap

■ Non-Maskable Interrupt (NMI)

■ Two Port Interrupts with up to 16 sources

I/O Ports
■ From 10 up to 22 I/O PINs configurable in pull-

up, push-pull, weak pull-up, open-drain and
high-impedance

■ High current sink/source in all pins

Peripherals
■ On-chip 10-bit A/D Converter with 8 channel

analog multiplexer and Autocalibration.

■ 2 Programmable 16 bit Timer/PWMs with
internal 16-bit Prescaler featuring:

– PWM output

– Input capture

– Output compare

– Pulse generator mode

■ Watchdog timer

■ Serial Communication Interface (SCI) with
asynchronous protocol (UART).

■ I2C Peripheral with master and slave mode

■ 3-wire SPI Peripheral supporting Single
Master and Multi Master SPI modes

Development tools
■ High level Software tools

■ ‘C’ Compiler

■ Emulator

■ Low cost Programmer

■ Gang Programmer

ST52F510/F513/F514

ST52F510/F513/F514

2/106

3/106

TABLE OF CONTENTS

ST52F510/F513/F514

1 GENERAL DESCRIPTION . 7
1.1 Introduction .7
1.2 Functional Description .8

1.2.1 Memory Programming Mode . 8
1.2.2 Working Mode. 8

1.3 Pin Description .16

2 INTERNAL ARCHITECTURE. 17
2.1 Control Unit and Data Processing Unit .17

2.1.1 Program Counter . 18
2.1.2 Flags . 18

2.2 Arithmetic Logic Unit .19
2.3 Register Description .20

3 ADDRESSING SPACES. 21
3.1 Memory Interface .21
3.2 Register File .21
3.3 Program/Data Memory .21
3.4 System and User Stacks. .23
3.5 Input Registers .24
3.6 Output registers .24
3.7 Configuration Registers & Option Bytes .25

4 MEMORY PROGRAMMING. 31
4.1 Program/Data Memory Organization .31
4.2 Memory Programming .32

4.2.1 Programming Mode start . 32
4.2.2 Fast Programming procedure . 33
4.2.3 Random data writing. 33
4.2.4 Option Bytes Programming. 34

4.3 Memory Verify. .35
4.3.1 Fast read procedure . 35
4.3.2 Random data reading . 36

4.4 Memory Lock .36
4.5 ID Code. .37
4.6 Error cases .37
4.7 In-Situ Programming (ISP) .38
4.8 In-Application Programming (IAP) .38

4.8.1 Single byte write . 38
4.8.2 Block write . 38
4.8.3 Memory Corruption Prevention. 38
4.8.4 Option Bytes . 39
4.8.5 Input Register . 39

TABLE OF
CONTENTS

ST52F510/F513/F514

4/106

5 INTERRUPTS . 40
5.1 Interrupt Processing .40
5.2 Global Interrupt Request Enabling .40
5.3 Interrupt Sources .41
5.4 Interrupt Maskability and Priority Levels .41
5.5 Interrupt RESET .41
5.6 Register Description .42

6 CLOCK, RESET & POWER SAVING MODES . 44
6.1 Clock. .44
6.2 Reset. .45

6.2.1 External Reset . 45
6.2.2 Reset Procedures . 45

6.3 Programmable Low Voltage Detector .46
6.4 Power Saving modes .46

6.4.1 Wait Mode. 46
6.4.2 Halt Mode . 46

6.5 Register Description .48
6.5.1 Configuration Register . 48
6.5.2 Option Bytes . 48

7 I/O PORTS . 50
7.1 Introduction .50
7.2 Input Mode .50
7.3 Output Mode .50
7.4 Interrupt Mode. .50
7.5 Alternate Functions. .51
7.6 Register Description .51

7.6.1 Configuration Registers . 52
7.6.2 Input Registers . 54
7.6.3 Output Registers. 55

8 FUZZY COMPUTATION (DP). 56
8.1 Fuzzy Inference .56
8.2 Fuzzyfication Phase .56
8.3 Inference Phase .56
8.4 Defuzzyfication .57
8.5 Input Membership Function .57
8.6 Output Singleton .58
8.7 Fuzzy Rules .58

9 INSTRUCTION SET . 60
9.1 Addressing Modes .60
9.2 Instruction Types. .60

10 10-bit A/D CONVERTER . 65
10.1 Introduction .65

ST52F510/F513/F514

5/106

10.2 Functional Description .66
10.3 Operating Modes .66

10.3.1 One Channel Single Mode . 66
10.3.2 Multiple Channels Single Mode . 66
10.3.3 One Channel Continuous Mode . 66
10.3.4 Multiple Channels Continuous Mode . 67

10.4 Power Down Mode .67
10.5 A/D Converter Register Description .67

10.5.1 A/D Converter Configuration Registers . 67
10.5.2 Input Registers . 68

11 WATCHDOG TIMER. 69
11.1 Functional Description .69
11.2 Register Description .69

12 PWM/TIMERS. 71
12.1 Introduction .71
12.2 Timer Mode. .71
12.3 PWM Mode .73

12.3.1 Simultaneous Start . 74
12.4 Timer Interrupts. .74
12.5 PWM/Timer 0 Register Description. .74

12.5.1 PWM/Timer 0 Configuration Registers . 74
12.5.2 PWM/Timer 0 Input Registers. 75
12.5.3 PWM/Timer 0 Output Registers . 76

12.6 PWM/Timer 1 Register Description. .77
12.6.1 PWM/Timer 1 Configuration Registers . 77
12.6.2 PWM/Timer 1 Input Registers. 78
12.6.3 PWM/Timer 1 Output Registers . 79

13 SERIAL COMMUNICATION INTERFACE . 80
13.1 SCI Receiver block .80

13.1.1 Recovery Buffer Block . 81
13.1.2 SCDR_RX Block. 81

13.2 SCI Transmitter Block .82
13.3 Baud Rate Generator Block .82
13.4 SCI Register Description. .84

13.4.1 SCI Configuration Registers . 84
13.4.2 SCI Input Registers. 85
13.4.3 SCI Output Register . 85

14 I2C BUS INTERFACE (I2C) . 86
14.1 Introduction .86
14.2 Main Features. .86
14.3 General Description .86

ST52F510/F513/F514

6/106

14.3.1 Mode Selection . 86
14.3.2 Communication Flow . 86
14.3.3 SDA/SCL Line Control . 87

14.4 Functional Description .87
14.4.1 Slave Mode. 87
14.4.2 Master Mode. 88

14.5 Register Description .92
14.5.1 I2C Interface Configuration Registers. 92
14.5.2 I2C Interface Input Registers . 93
14.5.3 I2C Interface Output Registers . 95

15 SERIAL PERIPHERAL INTERFACE (SPI) . 96
15.1 Introduction .96
15.2 Main Features. .96
15.3 General description. .96
15.4 Functional Description .96

15.4.1 Master Configuration . 96
15.4.2 Slave Configuration . 98
15.4.3 Data Transfer Format . 98
15.4.4 Write Collision Error . 98
15.4.5 Master Mode Fault . 99
15.4.6 Overrun Condition. 101
15.4.7 Single Master and Multimaster Configurations . 101
15.4.8 Interrupts. 102

15.5 SPI Register Description. .103
15.5.1 SPI Configuration Registers . 103
15.5.2 SPI Input Register. 104
15.5.3 SPI Output Register . 105

ST52F510/F513/F514

7/106

1 GENERAL DESCRIPTION

1.1 Introduction
ST52F510/F513/F514 are devices of ST FIVE
family of 8-bit Intelligent Controller Units (ICU),
which can perform, both boolean and Fuzzy
algorithms in an efficient manner, in order to reach
the best performances that the two methodologies
allow.
Produced by STMicroelectronics using the reliable
high performance CMOS process for Single
Voltage Flash versions, ST52F510/F513/F514
include integrated on-chip peripherals that allow
maximization of system reliability, and decreased
system costs in order to minimize the number of
external components.
The flexible I/O configuration of ST52F510/F513/
F514 allow one to interface with a wide range of
external devices (for example D/A converters or
power control devices), and to communicate with
the most common serial standards.
ST52F510/F513/F514 pins are configurable. The
user can set input or output signals on each single
pin in 8 different modes, reducing the need for
external components in order to supply a suitable
interface with the port pins.
A hardware multiplier and divider, together with a
wide instruction set, allow the implementation of
complex functions by using a single instruction.
Therefore, program memory utilization and
computational speed is optimized.
Fuzzy Logic dedicated structures in ST52F510/
F513/F514 ICU’s can be exploited to model
complex system with high accuracy in a useful and
simple manner.
Fuzzy Expert Systems for overall system
management and Fuzzy Real time Controls can be
designed to increase performance at competitive
costs.
The linguistic approach characterizing Fuzzy Logic
is based on a set of IF-THEN rules, which describe
the control behavior and on Membership Functions
associated with input and output variables.
Up to 340 Membership Functions, with triangular
and trapezoidal shapes, or singleton values are
available to describe fuzzy variables.
The Timer/PWM peripheral allows one to manage
power devices and timing signals, by implementing
different operating modes and high frequency
PWM (Pulse Width Modulation) controls. Input
Capture and Output Compare functions are
available on the Timers.
The Timer has a 16-bit programmable internal
Prescaler and a 16-bit Counter, which can use
internal or external START/STOP signals and
clock.

An internal programmable WATCHDOG is
available to avoid loop errors and reset the ICU.
ST52F510/F513/F514 includes a 10-bit, self-
calibrating, Analog to Digital Converter with an 8-
analog channel Multiplexer. Single/Multiple
channels and Single/Sequence conversion modes
are supported. External reference can be supplied
to obtain more stability and precision in the
conversion.
ST52F510/F513/F514 supply different peripherals
to implement the most common serial
communication protocols. SCI allows the
performance of serial asynchronous
communication (UART). I2C and SPI peripherals
allow the implementation of synchronous serial
protocols. I2C peripherals can work both in master
and slave mode. SPI implements Single and Multi
Master modes using 3-wire.
Up to 8 interrupt vectors are available, which allow
synchronization with peripherals and external
devices. Non-Maskable Interrupt and S/W TRAP
are available. All interrupts have configurable
priority levels and are maskable excluding the
Non-Maskable Interrupt, which has fixed top level
priority. Two versatile Port Interrupts are available
for synchronization with external sources.
The ST52F510/F513/F514 also include an on-chip
Power-on-Reset (POR), which provides an internal
chip reset during power up situation and a
Programmable Low Voltage Detector (PLVD),
which causes the ICU to reset if the voltage source
VDD dips below a threshold. Three programmable
thresholds are available, allowing to work with
different supply voltages (from 2.7 to 5.5 V).
In order to optimize energy consumption, two
different power saving modes are available: Wait
mode and Halt mode.
Internal Oscillator at 10 MHz ± 1% is available.
External clock, quartz oscillator or RC oscillator are
also applicable. The device always starts with the
Internal Oscillator, then it reads an Option Byte
where the clock mode to be used is programmed.
Program Memory addressing capability addresses
up to 8 Kbytes of memory location to store both
program instructions and data.
Memory can be locked by the user in order to
prevent external undesired operations.
Operations may be performed on data stored in
RAM, allowing direct combination of new inputs
and feedback data. All RAM bytes are used like
Register File.
An additional RAM bench is added to the Program
Memory addressing space in order to allow the
management of the System/User Stacks and user
data storage.

ST52F510/F513/F514

8/106

ST52F510/F513/F514 supply the system stack
and the user stack located in the additional RAM
bench. The user stack can be located anywhere in
the additional RAM by writing the top address in
the configuration registers, in order to avoid
overlap with other data.
Single Voltage Flash allows the user to reprogram
the devices on-board by means of the In Situ
Programming (ISP) feature. It is possible to store in
safe way up to 4K of data in the available EEPROM
memory benches. Permanent data, both in Flash
and EEPROM can be managed by means of the
In-Application-Programming (IAP) feature. Single
byte and Page write modes are supported. Flexible
write protection, of permanent data or program
instructions, is also available.
The Instruction Set composed of up to 107
instructions allows code compression and high
speed in the program implementation.
A powerful development environment consisting of
a board and software tools allows an easy
configuration and use of ST52F510/F513/F514.
The Visual FIVE software tool a l lows the
development and debugging of projects via a user-
friendly graphical interface and optimization of
generated microcode.
Third-party Hardware Emulators and ‘C’ Compiler
are avai lable to speed-up the appl icat ion
implementation and time-to-market.

1.2 Functional Description
ST52F510/F513/F514 ICU’s can work in two
modes according to the Vpp signal levels:
■ Memory Programming Mode

■ Working Mode

During Working Mode Vpp must be tied to Vss. To
enter the Memory Programming Mode, the Vpp pin
must be tied to Vdd.
A RESET signal must be applied to the device to
switch from one mode to the other.

1.2.1 Memory Programming Mode.
The ST52F510/F513/F514 memory is loaded in
the Memory Programming Mode. All instructions
and data are written inside the memory during this
phase.

The Option Bytes are loaded during this phase by
using the programming tools. The Option Bytes
can only be loaded in this phase and cannot be
modified run-time.
Data and commands are transmitted by using the
I2C protocol, implemented using the internal I2C
peripheral. The In-Situ Programming protocol
(ISP) uses the following pins:
■ SDA and SCL for transmission

■ Vpp for entering in the mode

■ RESET for starting the protocol in a stable status

■ Vdd and Vss for the power supply.

The Internal clock is used in this phase.

1.2.2 Working Mode.
The processor starts the working phase following
the instructions, which have been previously
loaded in the first locations of the memory. The first
instruction must be a jump to the first program
instruction, skipping the data (interrupt vectors,
Membership Functions, user data) stored in the
first memory page.
ST52F510/F513/F514’s internal structure includes
two computational blocks, the CONTROL UNIT
(CU) and the DATA PROCESSING UNIT (DPU),
which performs boolean functions. The DECISION
PROCESSOR (DP) block cooperates with these
blocks to perform Fuzzy algorithms.
The DP can manage up to 340 different
Membership Functions for the antecedent part of
fuzzy rules. The consequent terms of the rules are
“crisp” values (real numbers). The maximum
number of rules that can be defined is limited by
the dimensions of the standard algorithm
implemented.
The Program/Data Memory is shared between
Fuzzy and standard algorithms. Within this
memory, the user data can be stored both in non
volatile memory as well as in the RAM locations.
The Control Unit (CU) reads information and the
status of the peripherals.
Arithmetic calculus can be performed on these
values by using the internal CU and Register File,
which supports all computations. The peripheral
inputs can be Fuzzy and/or arithmetic output
values contained in the Register File or Program/
Data Memory.

ST52F510/F513/F514

9/106

Legend:

Table 1.1 ST52F510/F513/F514 Devices Summary

Device NVM RF RAM EEPROM Timers ADC Comms I/O Package

ST52F510YmM6 4/8 K FLASH 256 256 - 2X16-bit 10-bit
2 Ch

SCI I2C 10 So 16

ST52F510FmM6 4/8 K FLASH 256 256 - 2X16-bit 10-bit
6 Ch

SCI I2C 14 So 20

ST52F510FmB6 4/8 K FLASH 256 256 - 2X16-bit 10-bit
6 Ch

SCI I2C 14 Dip 20

ST52F510GmM6 4/8 K FLASH 256 256 - 2X16-bit 10-bit
8 Ch

SCI I2C SPI 22 So 28

ST52F510GmB6 4/8 K FLASH 256 256 - 2X16-bit 10-bit
8 Ch

SCI I2C SPI 22 SDip 32

ST52F513YmM6 4/8 K FLASH 256 256 256 2X16-bit 10-bit
2 Ch

SCI I2C 10 So 16

ST52F513FmM6 4/8 K FLASH 256 256 256 2X16-bit 10-bit
6 Ch

SCI I2C 14 So 20

ST52F513FmB6 4/8 K FLASH 256 256 256 2X16-bit 10-bit
6 Ch

SCI I2C 14 Dip 20

ST52F513GmM6 4/8 K FLASH 256 256 256 2X16-bit 10-bit
8 Ch

SCI I2C SPI 22 So 28

ST52F513GmB6 4/8 K FLASH 256 256 256 2X16-bit 10-bit
8 Ch

SCI I2C SPI 22 SDip 32

ST52F514YmM6 4 K FLASH 256 256 1024 / 4096 2X16-bit 10-bit
2 Ch

SCI I2C 10 So 16

ST52F514FmM6 4 K FLASH 256 256 1024 / 4096 2X16-bit 10-bit
6 Ch

SCI I2C 14 So 20

ST52F514FmB6 4 K FLASH 256 256 1024 / 4096 2X16-bit 10-bit
6 Ch

SCI I2C 14 Dip 20

ST52F514GmM6 4 K FLASH 256 256 1024 / 4096 2X16-bit 10-bit
8 Ch

SCI I2C SPI 22 So 28

ST52F514GmB6 4 K FLASH 256 256 1024 / 4096 2X16-bit 10-bit
8 Ch

SCI I2C SPI 22 SDip 32

COMMON FEATURES ST52F510/F513/F514

Watchdog Yes

Other Features NMI, PLVD, POR

Temperature Range From -40° to +85°
Operating Supply 2.7 - 5.5 V

CPU Frequency from 1 to 24 MHz.

Sales code: ST52tnnncmpy

Memory type (t): F=FLASH

Subfamily (nnn): 510, 513, 514

Pin Count (c): Y=16 pins, F=20 pins, G=28 pins, K=32/34 pins

Memory Size (m): 2=4 Kb, 3=8 Kb Flash (ST52F510 & ST52F513)
1=1024, 3=4096 EEPROM (only ST52F514)

Packages (p): B=PDIP, M=PSO, T=TQFP

Temperature (y): 0=+25, 1=0 +70, 3=-40 +125, 5=-10 +85, 6=-40 +85, 7=-40 +105

ST52F510/F513/F514

10/106

Figure 1.1 ST52F510/F513/F514 Block Diagram

PORT A

TIMER/PWM 0

PORT C

TIMER/PWM 1

I2C

PA7:0

SPI

PC5:0

PORT B PB7:0

ADC

WATCHDOG

CORE

DECISION
PROCESSOR

CONTROL
UNIT

Register File

256 bytes

Input

registers

PC FLAGS

POWER SUPPLY
& PLVD

POWER ON
RESET

OSCILLATOR

VDD VPP VSS OSCIN OSCOUT RESET

ALU &
DPU

SCI

MEMORY

FLASH
ISP/IAP

DATA RAM
256 bytes

DATA
EEPROM

MEMORY
INTERFACE

ST52F510/F513/F514

11/106

Figure 1.2 ST52F510/F513/F514 SO20/DIP20 Pin Configuration

Figure 1.3 ST52F510/F513/F514 SO16 Pin Configuration

Vdd

OscOut

OscIn

Vpp

Vss

RESET

PA0/SCL

PA1/SDA

PA2/T1OUT

PA3/RX

PA4/TSTRT

PA5/TCLK/TX

PA6/T0OUT

PA7/INT

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

Vdd

OscOut

OscIn

Vpp

Vss

RESET

PA0/SCL

PA1/SDA

PA2/T1OUT

PA3/RX

PA4/TSTRT

PA5/TCLK/TX

PA6/T0OUT

PA7/INT

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

SO20 DIP20

PB0/VREF/AIN0

PB1/AIN1

PB2/AIN2

PB3/AIN3

PB4/AIN4

PB5/AIN5

PB0/VREF/AIN0

PB1/AIN1

PB2/AIN2

PB3/AIN3

PB4/AIN4

PB5/AIN5

Vdd

OscOut

OscIn

Vpp

PB0/VREF/AIN0

PB1/AIN1

PA7/INT

PA6/T0OUT

Vss

RESET

PA0/SCL

PA1/SDA

PA2/T1OUT

PA3/RX

PA4/TSTRT

PA5/TCLK/TX

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

SO16

ST52F510/F513/F514

12/106

Figure 1.4 ST52F510/F513/F514 SDIP32/DIP28 Pin Configuration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

SDIP32

Vss

RESET

PA0/SCL

PA1/SDA

PA2/T1OUT

PA3/RX

PA4/TSTRT

PA6/T0OUT

PA7/INT

PC5/TRES

PC4/TX

PC3/SS

PC2MISO

Vdd

OscOut

OscIn

Vpp

PB0/VREF/AIN0

PB1/AIN1

PB2/AIN2

PB3/AIN3

PB4/AIN4

PB5/AIN5

PB6/AIN6

PB7AIN7

PC0/SCK

PC1/MOSI

PA5/TCLK/TX

Vdd

OscOut

OscIn

Vpp

PB0/VREF/AIN0

PB1/AIN1

PB2/AIN2

PB3/AIN3

PB4/AIN4

PB5/AIN5

PB6/AIN6

PB7/AIN7

PC0/SCK

PC1/MOSI

Vss

RESET

PA0/SCL

PA1/SDA

PA2/T1OUT

PA3/RX

PA4/TSTRT

PA5/TCLK/TX

PA6/T0OUT

PA7/INT

PC5/TRES

PC4/TX

PC3/SS

PC2/MISO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

SO28

15

16N.C. N.C.

30

29

32

31VddIO VssIO

ST52F510/F513/F514

13/106

Table 1.2 ST52F510/F513/F514 SDIP32 Pin List

SDIP32 NAME Programming Phase Working Phase

1 Vdd Digital Power Supply Digital Power Supply

2 VddIO Digital Power Supply Digital I/O Ports Power Supply

3 OSCOUT Oscillator Output

4 OSCIN Oscillator Input

5 Vpp Programming Mode Selector Programming Mode Selector

6 PB0/VREF/AIN0 Digital I/O, A/D Voltage Reference, Analog Input

7 PB1/AIN1 Digital I/O, Analog Input

8 PB2/AIN2 Digital I/O, Analog Input

9 PB3/AIN3 Digital I/O, Analog Input

10 PB4/AIN4 Digital I/O, Analog Input

11 PB5/AIN5 Digital I/O, Analog Input

12 PB6/AIN6 Digital I/O, Analog Input

13 PB7/AIN7 Digital I/O, Analog Input

14 PC0/SCK Digital I/O, SPI Serial Clock

15 PC1/MOSI Digital I/O, SPI Master out Slave in

16 N.C Not Connected

17 N.C Not Connected

18 PC2/MISO Digital I/O, SPI Master in Slave out

19 PC3/SS Digital I/O, SPI Slave Select

20 PC4/TX Digital I/O, SCI Transmission

21 PC5/TRES Digital I/O, Timer/PWM 0 Reset

22 PA7/INT Digital I/O, Non Maskable Interrupt

23 PA6/T0OUT Digital I/O, Timer/PWM 0 output

24 PA5/TCLK/TX Digital I/O, Timer/PWM 0 clock

25 PA4/TSTRT Digital I/O, Timer/PWM 0 start/stop

26 PA3/RX Digital I/O, SCI Reception

27 PA2/T1OUT Digital I/O, Timer/PWM 1 output

28 PA1/SDA Serial Data I/O Digital I/O, I2C Serial Data I/O

29 PA0/SCL Serial Clock Digital I/O, I2C Serial Clock

30 RESET General Reset General Reset

31 VssIO Digital Ground Digital I/O Ports Ground

32 Vss Digital Ground Digital Ground

ST52F510/F513/F514

14/106

Table 1.3 ST52F510/F513/F514 SO28 Pin List

SO28 NAME Programming Phase Working Phase

1 Vdd Digital Power Supply Digital Power Supply

2 OSCOUT Oscillator Output

3 OSCIN Oscillator Input

4 Vpp Programming Mode Selector Programming Mode Selector

5 PB0/VREF/AIN0 Digital I/O, A/D Voltage Reference, Analog Input

6 PB1/AIN1 Digital I/O, Analog Input

7 PB2/AIN2 Digital I/O, Analog Input

8 PB3/AIN3 Digital I/O, Analog Input

9 PB4/AIN4 Digital I/O, Analog Input

10 PB5/AIN5 Digital I/O, Analog Input

11 PB6/AIN6 Digital I/O, Analog Input

12 PB7/AIN7 Digital I/O, Analog Input

13 PC0/SCK Digital I/O, SPI Serial Clock

14 PC1/MOSI Digital I/O, SPI Master out Slave in

15 PC2/MISO Digital I/O, SPI Master in Slave out

16 PC3/SS Digital I/O, SPI Slave Select

17 PC4/TX Digital I/O, SCI Transmission

18 PC5/TRES Digital I/O, Timer/PWM 0 Reset

19 PA7/INT Digital I/O, Non Maskable Interrupt

20 PA6/T0OUT Digital I/O, Timer/PWM 0 output

21 PA5/TCLK/TX Digital I/O, Timer/PWM 0 clock

22 PA4/TSTRT Digital I/O, Timer/PWM 0 start/stop

23 PA3/RX Digital I/O, SCI Reception

24 PA2/T1OUT Digital I/O, Timer/PWM 1 output

25 PA1/SDA Serial Data I/O Digital I/O, I2C Serial Data I/O

26 PA0/SCL Serial Clock Digital I/O, I2C Serial Clock

27 RESET General Reset General Reset

28 Vss Digital Ground Digital Ground

ST52F510/F513/F514

15/106

Table 1.4 ST52F510/F513/F514 SO20/DIP20/SO16 Pin List

SO20
DIP20 SO16 NAME Programming Phase Working Phase

1 1 Vdd Digital Power Supply Digital Power Supply

2 2 OSCOUT Oscillator Output

3 3 OSCIN Oscillator Input

4 4 Vpp Programming Mode Selector Programming Mode Selector

5 5 PB0/VREF/AIN0 Digital I/O, A/D Voltage Reference, Analog Input

6 6 PB1/AIN1 Digital I/O, Analog Input

7 - PB2/AIN2 Digital I/O, Analog Input

8 - PB3/AIN3 Digital I/O, Analog Input

9 - PB4/AIN4 Digital I/O, Analog Input

10 - PB5/AIN5 Digital I/O, Analog Input

11 7 PA7/INT Digital I/O, Non Maskable Interrupt

12 8 PA6/T0OUT Digital I/O, Timer/PWM 0 output

13 9 PA5/TCLK/TX Digital I/O, Timer/PWM 0 clock, SCI transmission

14 10 PA4/TSTRT Digital I/O, Timer/PWM 0 start/stop

15 11 PA3/RX Digital I/O, SCI Reception

16 12 PA2/T1OUT Digital I/O, Timer/PWM 1 output

17 13 PA1/SDA Serial Data I/O Digital I/O, I2C Serial Data I/O

18 14 PA0/SCL Serial Clock Digital I/O, I2C Serial Clock

19 15 RESET General Reset General Reset

20 16 Vss Digital Ground Digital Ground

ST52F510/F513/F514

16/106

1.3 Pin Description
ST52F510/F513/F514 pins can be set in digital
input mode, digital output mode, interrupt mode or
in Alternate Functions. Pin configuration is
achieved by means of the configuration registers.
The functions of the ST52F510/F513/F514 pins
are described below:

VDD. Main Power Supply Voltage.

VDDIO. I/O Ports Power Supply Voltage. It is
reccomended to connect this pin with a supply
voltage de-coupled with VDD in order to improve
the immunity from the noise generated by the I/O
switching.

VSS. Digital circuit Ground.

VSSIO. I/O Ports Ground. See VDDIO

VPP. Programming/Working mode selector. During
the Programming phase VPP must be set to VDD.
In Working phase VPP must be equal to VSS.

OSCin and OSCout. These pins are internally
connected to the on-chip oscillator circuit. A quartz
crystal or a ceramic resonator can be connected
between these two pins in order to allow correct
use of ST52F510/F513/F514 with various stability/
cost trade-offs. An external clock signal can be
applied to OSCin: in this case OSCout must be
grounded. To reduce costs, an RC circuit can be
applied to the OSCin pin to establish the internal
clock frequency, instead of the quartz. Without any
connection, the device can work with its internal
clock generator (10 MHz)

RESET. This signal is used to reset the ST52F510/
F513/F514 and re-initialize the registers and
control signals. It is also used when switching from
the Programming Mode to Working Mode and vice
versa.

PA0-PA7, PB0-PB7,PC0-PC5. These lines are
organized as I/O ports. Each pin can be configured
as an input, output (with pull-up, push-pull, weak-
pull-up, open-drain, high-impedance), or as an
interrupt source.

VREF, AIN0-AIN7. These pins are used to input
the analog signals into the A/D Converter. An
analog multiplexer is available to switch these
inputs to the A/D Converter. The pin VREF is used
to input an external A/D Reference Voltage.

T0OUT, T1OUT. These pins output the signals
generated by the PWM/Timer 0 and PWM/Timer 1
peripheral.

TRES, TSTRT, TCLK . These pins are related to
the PWM/Timer 0 peripheral and are used for Input
Capture and event counting. The TRES pin is used
to set/reset the Timer; the TSTRT pin is used to
start/stop the counter. The Timer can be driven by
the internal clock or by an external signal
connected to the TCLK pin.

INT. This pin is used as input for the Non-Maskable
(top level) interrupt. The interrupt signal is detected
only if the pin is configured in Alternate Function.

SCL, SDA. These pin are used respectively as
Serial Clock and Serial Data I/O in I2C peripheral
protocol. They are used also in Programming
Mode to receive and transmit data.

TX, RX. Serial data output of SCI Transmitter block
(TX) and Serial data input of the SCI Receiver
block (RX).

SCK, MISO, MOSI, SS. These pins are used by
the Serial Peripheral Interface (SPI) peripheral.
SCK is the serial clock line. MISO (Master In Slave
Out) and MOSI (Master Out Slave In) are the serial
data lines, which work in input or in output
depending on if the device is working in slave or
master mode. The SS pin allows the selection of
the device master/slave mode.

ST52F510/F513/F514

17/106

2 INTERNAL ARCHITECTURE

ST52F510/F513/F514’s architecture is Register
File based and is composed of the following blocks
and peripherals:
■ Control Unit (CU)

■ Data Processing Unit (DPU)

■ Decision Processor (DP)

■ ALU

■ Memory Interface

■ up to 256 bytes Register File

■ Program/Data Memory

■ Data EEPROM

■ Interrupts Controller

■ Clock Oscillator

■ PLVD and POR

■ Digital I/O ports

■ Analog Multiplexer and A/D Converter

■ Timer/PWMs

■ I2C

■ SPI

■ SCI

Figure 2.1 CU Block Diagram

2.1 Control Unit and Data Processing Unit
The Control Unit (CU) decodes the instructions
stored in the Program Memory and generates the
appropriate control signals. The main parts of the
CU are illustrated in Figure 2.1.
The five different parts of the CU manage Loading,
Logic/Arithmetic, Jump, Control and the Fuzzy
instruction set.
The block called “Collector” manages the signals
deriving from the different parts of the CU. The
collector defines the signals for the Data
Processing Unit (DPU) and Decision Processor
(DP), as well as for the different peripherals of the
ICU.
The block called “Arbiter” manages the different
parts of the CU, so that only one part of the system
is activated during working mode.
The CU structure is extremely flexible and was
designed with the purpose of easily adapting the
core of the microcontroller to market needs. New
instruction sets or new peripherals can easily be
included without changing the structure of the
microcontroller, maintaining code compatibility.
A set of 107 different instructions is available. Each
instruction requires a number of clock pulses to be
performed that depends on the complexity of the
instruction itself. The clock pulses to execute the
instructions are driven directly by the masterclock,
which has the same frequency of the oscillator
signal supplied.

Loading
Instruction Set

Logic Arithmetic
Instruction Set

Jump
Instruction Set

Control
Instruction Set

Decision Processor
Instruction Set

C
O
L
L
E
C
T
O
R

Control
Signals

A
R
B
 I
T
E
R

MicroCode

Clock Master

ST52F510/F513/F514

18/106

Figure 2.2 Data Processing Unit (DPU)

The DPU receives, stores and sends the
instructions deriving from the Program/Data
Memory, Register File or from the peripherals. It is
controlled by the CU on the basis of the decoded
instruction. The Fuzzy registers store the partial
results of the fuzzy computation. The accumulator
register is used by the ALU and is not accessible
directly: the instructions used by the ALU can
address all the Register File locations as
operands, allowing a more compact code and a
faster execution.
The following addressing modes are available:
inherent, immediate, direct, indirect, bit direct.

2.1.1 Program Counter.
The Program Counter (PC) is a 16-bit register that
contains the address of the next memory location
to be processed by the core. This memory location
may be both an instruction or data address.
The Program Counter’s 16-bit length allows the
direct addressing of a maximum of 64 Kbytes in the
Program/Data Memory space.

The PC can be changed in the following ways:
■ JP (Jump) PC = Jump Address

■ Interrupt PC = Interrupt Vector

■ RETI PC = Pop (stack)

■ RET PC = Pop (stack)

■ CALL PC = Subroutines address

■ Reset PC = Reset Vector

■ Normal Instruction PC = PC + 1

2.1.2 Flags.
The ST FIVE core includes different sets of flags
that correspond to 2 different modes: normal mode
and interrupt mode. Each set of flags consist of a
CARRY flag (C), ZERO flag (Z) and SIGN flag (S).
Each set is stacked: one set of flags is used during
normal operation and other sets are used during
each level of interrupt. Formally, the user has to
manage only one set of flags: C, Z and S since the
flag stack operation is performed automatically.

PROGRAM COUNTER

REGISTER
FILE

256 Bytes

REGISTER FILE
ADDRESS

ACCUMULATOR

DECISION

REGISTERS

ALU
FLAGS REG.

Memory Address

Peripherals

Control Unit

Program Memory
Input Registers

Peripherals

Interrupts Unit

PROCESSOR

ST52F510/F513/F514

19/106

Each interrupt level has its own set of flags, which
is saved in the Flag Stack during interrupt
servicing. These flags are restored from the Flag
Stack automatically when a RETI instruction is
executed.
If the ICU was in normal mode before an interrupt,
after the RETI instruction is executed, the normal
flags are restored.

Note: A subroutine CALL is a normal mode
execution. For this reason a RET instruction,
consequent to a CALL instruction, doesn’t affect
the normal mode set of flags.

Flags are not cleared during context switching and
remain in the state they were in at the exit of the
last interrupt routine switching.
The Carry flag is set when an overflow occurs
during arithmetic operations, otherwise it is
cleared. The Sign flag is set when an underflow
occurs during arithmetic operations, otherwise it is
cleared.
The flags, related to the current context, can be
checked by reading the FLAGS Input Register 38
(026h).

Figure 2.3 Multiplication

2.2 Arithmetic Logic Unit
The 8-bit Arithmetic Logic Unit (ALU) performs
arithmetic calculations and logic instructions such
as: sum, subtraction, bitwise AND, OR, XOR, bit
set and reset, bit test and branch, right/left shift and
rotate (see the Chapter 9 Instruction Set for further
details).
In addition, the ALU of ST52F510/F513/F514 can
perform multiplication (MULT) and division (DIV).
Multiplication is performed by using 8 bit operands
storing the result in 2 registers (16 bit values); the
division instruction addresses the MSB of the
dividend (the LSB is stored in the next address):
the result and remainder are stored in these source
addresses (see Figure 2.3 and Figure 2.4).
In order to manage signed type values, the ALU
also performs addition and subtraction with offset
(ADDO and SUBO). These instructions
respectively subtract and add 128 to the overall
result, in order to manage values logically in the
range between -128,127.

Figure 2.4 Division

RAM
000h

001h

002h

i

j+1

j-1

j

0FFh

0FDh

0FEh

REG. j REG. i

LSB MSB

X

16 Bit

RAM

i

j+1

j-1

j

REG. j REG. j+1

REMAINDER QUOTIENT

REG. i:

i-1

i+1

000h

001h

002h

0FFh

0FDh
0FEh

ST52F510/F513/F514

20/106

2.3 Register Description

Flags Register (FLAG)
Input Register 38 (026h) Read Only
Reset Value: 0000 0000 (00h)

Bit 7-3: Not Used

Bit 2: Z Zero flag

Bit 1: S Sign flag

Bit 0: C Carry flag

7 0

- - - - - Z S C

ST52F510/F513/F514

21/106

3 ADDRESSING SPACES

ST52F510/F513/F514 has six separate
addressing spaces:
■ Register File

■ Program/Data Memory

■ Stacks

■ Input Registers

■ Output Registers

■ Configuration Registers

Each space is addressed by a load type instruction
that indicates the source and the destination space
in the mnemonic code (see Figure 3.1).

3.1 Memory Interface
The read/write operation in the space addresses
are managed by the Memory Interface, which can
recognize the type of memory addressed and set
the appropriate access time and mode.
In addition, the Memory Interface manages the In
Application Programming (IAP) functions in Flash
devices like writing cycle and memory write
protection.

Figure 3.1 Addressing Spaces

3.2 Register File
The Register File consists of 256 general purpose
8-bit RAM locations called “registers” in order to
recall the functionality.
The Register File exchanges data with all the other
addressing spaces and is used by the ALU to
perform all the arithmetic and logic instructions.
These instructions have any Register File address
as operands.
Data can be moved from one location to another by
using the LDRR instruction; see further ahead for
information on the instruction used to move data
between the Register File and the other
addressing spaces.

3.3 Program/Data Memory
The Program/Data Memory consists of both non-
volatile memory (Flash, EEPROM) and RAM
memory benches.
Non-volatile memory (NVM) is mainly used to store
the user program and can also be used to store
permanent data (constant, look-up tables).
Each RAM bench consists of 256 locations used to
store run-time user data. At least one bench is
present in the devices. RAM benches are also
used to implement both System and User Stacks.

CU
DPU
ALU

PERIPHERAL
BLOCK

REGISTER FILE

INPUT REGISTERS

NON VOLATILE MEMORY

RAM BANKS
AND STACKS

PROGRAM/DATA MEMORY
STFive CORE

ON CHIP PERIPHERALS

OUTPUT
REGISTERS

CONFIGURATION
REGISTERS

PERIPHERAL
BLOCK

PERIPHERAL
BLOCK

LDER

LDRE

LDRI

LDCE

LDCR

DECISION
PROCESSOR
REGISTERS

LDFR

LDPE

LDPR

LDCNF

PROGRAM
COUNTER

PGSETR

GETPG

ST52F510/F513/F514

22/106

NVM is always located beginning after the first
locations of the addressing space. RAM banks are
always located after NVM.
NVM is organized in accordance to the following
blocks (see Figure 3.2):
■ Reset Vector block (from address 0 to 2)

contains an absolute jump instruction to the first
user program instruction. The Assembler tool
automatically fills these locations with correct
data.

■ Interrupt Vectors block (from location 3 up to
32) contains the interrupt vectors. Each address
is composed of three bytes (the jump opcode
and the 16 bit address). Interrupt vectors are set
by using IRQ pseudo-instruction (see the
Programming Manual).

Figure 3.2 Program/Data Memory Organization

■ Mbfs Setting block (just after the interrupt
vectors) contains the coordinates of the vertexes
of every Mbf defined in the program. The last
address that can be assigned to this block is
1023. This area is dynamically assigned
according to the size of the fuzzy routines. The
memory area that remains unused, if any, is
assigned to the Program Instructions block.

■ The Program Instructions block (just after the
last Mbf data through the last NVM address)
contains the instruction of the user program and
the permanent data.

■ Option bytes block (from location 3000h to
307Fh) is the addressing space reserved for the
option bytes. In ST52F510/F513/F514, only the
location from 3000h to 3007h are used.

RESET VECTOR

INTERRUPT VECTORS

MEMBERSHIP FUNCTIONS
PARAMETERS

PROGRAM INSTRUCTIONS
AND PERMANENT DATA

PROGRAM INSTRUCTIONS
AND PERMANENT DATA

RAM
BENCH

NON
VOLATILE
MEMORY

OPTION BYTES

0000h

0003h

0021h

0400h

3000h

307Fh

~ ~

SYSTEM STACK

DATA

USER STACK

20FFh

2000h

~ ~

SPACE NOT
ADDRESSABLE

FFFFh

ST52F510/F513/F514

23/106

Flash and EEPROM are programmed electrically
just applying the supply voltage (2.7 V to 5.5 V) and
it is also erased electrically; this feature allows the
user to easily reprogram the memory without
taking the device off from the board (In Situ
Programming ISP). Data and commands are
transmitted through the I2C serial communication
protocol. Data can also be written run-time with the
In Application Programming (IAP)
NVM can be locked by the user during the
programming phase, in order to prevent external
operation such as reading the program code and
assuring protection of user intellectual property.
Flash and EEPROM pages can be protected by
unintentional writings.
The operations that can be performed on the NVM
during the Programming Phase, ISP and IAP are
described in detail in the Section 4.

Figure 3.3 System and User Stack

3.4 System and User Stacks
The System and User Stacks are located in the
Program/Data memory in the RAM benches.
System Stacks are used to push the Program
Counter (PC) after an Interrupt Request or a
Subroutine Call. After a RET (Return from a
subroutine) or a RETI (Return from an interrupt)
the PC that is saved is popped from the stack and
restored. After an interrupt request, the flags are
also saved in a reserved stack inside the core, so
each interrupt has its own flags.
The System Stack is located in the last RAM bench
starting from the last address (255) inside the
bench page. The System Stack Pointer (SSP) can
be read and modified by the user. For each level of
stack 2 bytes of the RAM are used. The SSP points
to the first currently available stack position. When
a subroutine call or interrupt request occurs, the
content of the PC is stored in a couple of locations
pointed to by the SSP that is decreased by 2.

20FFh

2000h

2001h

20FEh

REGISTER FILE

CONFIGURATION REGISTERS

USER STACK TOP MSB

USER STACK TOP LSB

PROGRAM COUNTER
RAM BENCH

SYSTEM STACK
POINTER

USER STACK
POINTER

USER DATA

PAGE NUMBER

LOCATION ADRESS

IRQ

RETI

POP X

PUSH X

REGISTER X

LSB

MSB

SYSTEM STACK

SYSTEM STACK

SYSTEM STACK

SYSTEM STACK

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

USER STACK LEVEL 1

USER STACK LEVEL 2

USER STACK LEVEL 3

USER STACK LEVEL 4

ST52F510/F513/F514

24/106

When a return occurs (RET or RETI instruction),
the SSP is increased by 2 and the data stored in
the pointed locations couple is restored back into
the PC.
The current SSP can be read and write in the
couple of Configuration Registers 44 02Ch (MSB:
page number, always 32 020h) and 45 02Dh (LSB:
location address) (see Figure 3.3). In ST52F510/
F513/F514 the user can only consider the LSB
because the MSB is always the same.
The User Stack is used to store user data and is
located beginning from a RAM bench location set
by the user (USTP) by writing the couple of
Configuration Registers 5 005h (MSB: page
number) and 6 005h (LSB: location address) (see
Figure 3.3). Register 5, which is the page number,
must always be set to a value between 32 (020h)
and 255 (0FFh): values higher than 32 always
address RAM on page 32.

Note: In ST52F510/F513/F514 MSB doesn’t have
to be set or read because the RAM is only 256
bytes. The LSB of the user stack is equal to 0 at
reset. The LSB of the system stack is equal to 255
at reset.

This feature allows a flexible use of the User Stack
in terms of dimension and to avoid overlaps. The
User Stack Pointer (USP) points to the first
currently available stack location. When the user
stores a byte value contained in the Register File
by using the PUSH instruction, the value is stored
in the position pointed to by the USP that is
increased (the User Stack order is opposite to the
System Stack one). When the user takes a value
from the User Stack with the POP instruction, the
USP is decreased and the value pointed to is
copied in the specified Register File location.
By writing the USTP, the new address is
automatically written in the USP. The current USP
can be read from the Input Registers 11 0Bh
(MSB: page number, always 32 020h) and 12 0Ch
(LSB: location address) (see Figure 3.3). In
ST52F510/F513/F514 the user can only consider
the LSB because the MSB is always the same.

Note: The user must pay close attention to avoid
overlapping user and Stacks data. The User Stack
Top location and the System Stack Pointer should
be configured with care in order to have enough
space between the two stacks.

3.5 Input Registers
The ST52F510/F513/F514 Input Registers bench
consists of a file of 8-bit registers containing data
or the status of the peripherals. For example, the

Input Registers contain data converted by the
ADC, Ports, serial communication peripherals,
Timers, etc.
The Input Registers can be accessed by using the
LDRI instruction that loads the specified Register
File address with the contents of the specified
Input Register. See the Programming Manual for
further details on this instruction. The Input
Registers are read-only registers.
In order to simplify the concept, a mnemonic name
is assigned to each register. The same name is
used in Visual FIVE development tools. The list of
the Input Registers is shown in Table 3.1.

3.6 Output registers
The ST52F510/F513/F514 Output Registers
bench consists of a file of 8-bit registers containing
data sent to the Peripherals and the I/O Ports (for
example: Timer Counters, data to be transmitted
by the serial communication peripherals, data to be
sent to the Port pins in output, etc.).
The registers are located inside the Peripherals
and Ports, which allow flexibility and modularity in
the design of new family devices.
The Output Registers are write only. In order to
access the configuration Register the user can use
the following instructions:
■ LDPI: loads the immediate value in the specified

Output Register.

■ LDPR: loads the contents of the specified
Register File location into the output register
specified. This instruction allows computed data
to be sent to Peripherals and Ports.

■ LDPE direct: loads the contents of the specified
Program/Data Memory location into the output
register specified. This instruction allows data to
be sent to Peripherals and Ports from a table.

■ LDPE indirect: loads the contents of the
Program/Data Memory location whose address
is contained in the specified Register File
location into the output register specified. This
instruction allows data to be sent to Peripherals
and Ports from a table pointed to by a register.

See the Programming manual for further details
about these instructions.
In order to simplify the concept, a mnemonic name
is assigned to each register. The same name is
used in Visual FIVE development tools. The list of
the Output Registers is shown in Table 3.2.

ST52F510/F513/F514

25/106

3.7 Configuration Registers & Option Bytes
The ST52F510/F513/F514 Configuration
Registers bench consists of a file of 8-bit registers
that allows the configuration of all the ICU blocks.
The registers are located inside the block they
configure in order to obtain greater flexibility and
modularity in the design of new family devices. In
the Configuration Registers, each bit has a
peculiar use, so the logic level of each of them
must be considered.
Some special configuration data, that needs to be
load at the start-up and not further changed, are
stored in Option Bytes. These are loaded only
during the device programming phase. See Table
3.3 and Section 4 for a detailed description of the
Option Bytes.
The Configuration Registers are readable and
writable; the addresses refer to the same register
both in read and in write. In order to access the
Configuration Register the user can work in
several modes by utilizing the following
instructions:

■ LDCI: loads the immediate value in the
Configuration Register specified and is the most
commonly used to write configuration data.

■ LDCR: loads the Configuration Register
specified with the contents of the specified
Register File location, allowing a parametric
configuration.

■ LDCE: loads the Configuration Register
specified with the contents of the specified
Program/Data Memory location, allowing the
configuration data to be taken from a table.

■ LDCNF: loads the Register File location
specified with the contents of the Configuration
Register indicated, allowing for the inspection of
the configuration of the device (permitting safe
run-time modifications).

In order to simplify the concept, a mnemonic name
is assigned to each register. The same name is
used in Visual FIVE development tools. The list of
the Configuration Registers is shown in Table 3.4.

ST52F510/F513/F514

26/106

Table 3.1 Input Registers

Mnemonic Description Address

PORT_A_IN Port A data Input Register 0 00h

PORT_B_IN Port B data Input Register 1 01h

PORT_C_IN Port C data Input Register 2 02h

- Not Used 3 03h

- Not Used 4 04h

SPI_IN Serial Peripheral Interface data Input Register 5 05h

I2C_IN I2C Interface data Input Register 6 06h

I2C_SR1 I2C Interface Status Register 1 7 07h

I2C_SR2 I2C Interface Status Register 2 8 08h

- Not Used 9 09h

- Not Used 10 0Ah

USP_H User Stack Pointer (MSB) 11 0Bh

USP_L User Stack Pointer (LSB) 12 0Ch

- Not Used 13-20 0Dh-
014h

PWM0_COUNT_IN_H PWM/Timer 0 Counter Input Register (MSB) 21 015h

PWM0_COUNT_IN_L PWM/Timer 0 Counter Input Register (LSB) 22 016h

PWM0_STATUS PWM/Timer 0 Status Register 23 017h

PWM0_CAPTURE_H PWM/Timer 0 Capture Register (MSB) 24 018h

PWM0_CAPTURE_L PWM/Timer 0 Capture Register (LSB) 25 019h

PWM1_COUNT_IN_H PWM/Timer 1 Counter Input Register (MSB) 26 01Ah

PWM1_COUNT_IN_L PWM/Timer 1 Counter Input Register (LSB) 27 01Bh

PWM1_STATUS PWM/Timer 1 Status Register 28 01Ch

PWM1_CAPTURE_H PWM/Timer 1 Capture Register (MSB) 29 01Dh

PWM1_CAPTURE_L PWM/Timer 1 Capture Register (LSB) 30 01Eh

- Not Used 31-35
01Fh-
023h

SCI_IN Serial Communication Interface RX data Input Register 36 024h

SCI_STATUS Serial Communication Interface Status Register 37 025h

FLAGS Flag Register 38 026h

AD_OVF 10-bit A/D Converter Overflow Register 39 027h

IAP_SR In Application Programming Status Register 40 028h

ST52F510/F513/F514

27/106

CHAN0_H 10-bit A/D Converter Channel 0 data Input Register (MSB) 41 029h

CHAN0_L 10-bit A/D Converter Channel 0 data Input Register (LSB) 42 02Ah

CHAN1_H 10-bit A/D Converter Channel 1 data Input Register (MSB) 43 02Bh

CHAN1_L 10-bit A/D Converter Channel 1 data Input Register (LSB) 44 02Ch

CHAN2_H 10-bit A/D Converter Channel 2 data Input Register (MSB) 45 02Dh

CHAN2_L 10-bit A/D Converter Channel 2 data Input Register (LSB) 46 02Eh

CHAN3_H 10-bit A/D Converter Channel 3 data Input Register (MSB) 47 02Fh

CHAN3_L 10-bit A/D Converter Channel 3 data Input Register (LSB) 48 030h

CHAN4_H 10-bit A/D Converter Channel 4 data Input Register (MSB) 49 031h

CHAN4_L 10-bit A/D Converter Channel 4 data Input Register (LSB) 50 032h

CHAN5_H 10-bit A/D Converter Channel 5 data Input Register (MSB) 51 033h

CHAN5_L 10-bit A/D Converter Channel 5 data Input Register (LSB) 52 034h

CHAN6_H 10-bit A/D Converter Channel 6 data Input Register (MSB) 53 035h

CHAN6_L 10-bit A/D Converter Channel 6 data Input Register (LSB) 54 036h

CHAN7_H 10-bit A/D Converter Channel 7 data Input Register (MSB) 55 037h

CHAN7_L 10-bit A/D Converter Channel 7 data Input Register (LSB) 56 038h

Table 3.1 Input Registers

Mnemonic Description Address

ST52F510/F513/F514

28/106

Table 3.2 Output Registers

Mnemonic Description Address

PORT_A_OUT Port A data Output Register 0 00h

PORT_B_OUT Port B data Output Register 1 01h

PORT_C_OUT Port C data Output Register 2 02h

- Not Used 3 03h

- Not Used 4 04h

SPI_OUT Serial Peripheral Interface data Output Register 5 05h

I2C_OUT I2C Interface data Output Register 6 06h

PWM0_COUNT_OUT_H PWM/Timer 0 Counter Output Register (MSB) 7 07h

PWM0_COUNT_OUT_L PWM/Timer 0 Counter Output Register (LSB) 8 08h

PWM0_RELOAD_H PWM/Timer 0 Reload Register (MSB) 9 09h

PWM0_RELOAD_L PWM/Timer 0 Reload Register (LSB) 10 0Ah

PWM1_COUNT_OUT_H PWM/Timer 1 Counter Output Register (MSB) 11 0Bh

PWM1_COUNT_OUT_L PWM/Timer 1 Counter Output Register (LSB) 12 0Ch

PWM1_RELOAD_H PWM/Timer 1 Reload Register (MSB) 13 0Dh

PWM1_RELOAD_L PWM/Timer 1 Reload Register (LSB) 14 0Eh

SCI_OUT Serial Communication Interface TX data Output Register 23 017h

Table 3.3 Option Bytes

Mnemonic Description Address

OSC_CR Oscillator Control Register 0 00h

CLK_SET Clock Parameters 1 01h

OSC_SET Oscillator Set-Up 2 02h

PLDV_CR Programmable Low Voltage Detector Control Register 3 03h

WDT_EN HW/SW Watchdog selector 4 04h

PG_LOCK First Page Write Protected 5 05h

PG_UNLOCK First Page not Write Protected 6 06h

WAKEUP Wake Up from Halt Time 7 07h

ST52F510/F513/F514

29/106

Table 3.4 Configuration Registers

Mnemonic Description Address

INT_MASK Interrupt Mask Register 0 00h

INT_POL Interrupts Polarity 1 01h

INT_PRL_H Interrupt Priority Register (higher priority) 2 02h

INT_PRL_M Interrupt Priority Register (medium priority) 3 03h

INT_PRL_L Interrupt Priority Register (lower priority) 4 04h

USTP_H User Stack Top Pointer (MSB) 5 05h

USTP_L User Stack Top Pointer (LSB) 6 06h

WDT_CR Watchdog Configuration Register 7 07h

AD_CR1 10-bit A/D Converter Control Register 1 8 08h

PWM0_CR1 PWM/Timer 0 Configuration Register 1 9 09h

PWM0_CR2 PWM/Timer 0 Configuration Register 2 10 0Ah

PWM0_CR3 PWM/Timer 0 Configuration Register 3 11 0Bh

PWM1_CR1 PWM/Timer 1 Configuration Register 1 12 0Ch

PWM1_CR2 PWM/Timer 1 Configuration Register 2 13 0Dh

- Not Used 14 0Eh

- Not Used 15 0Fh

I2C_CR I2C Interface Control Register 16 010h

I2C_CCR I2C Interface Clock Control Register 17 011h

I2C_OAR1 I2C Interface Own Address Register 1 18 012h

I2C_OAR2 I2C Interface Own Address Register 2 19 013h

SPI_CR Serial Peripheral Interface Control Register 20 014h

SPI_STATUS_CR Serial Peripheral Interface Control-Status Register 21 015h

SCI_CR1 Serial Communication Interface Control Register 1 22 016h

SCI_CR2 Serial Communication Interface Control Register 2 23 017h

PORT_A_PULLUP Port A Pull Up enable/disable Register 24 018h

PORT_A_OR Port A Option Register 25 019h

ST52F510/F513/F514

30/106

PORT_A_DDR Port A Data Direction Register 26 01Ah

PORT_A_AF Port A Alternate Function selection Register 27 01Bh

PORT_B_PULLUP Port B Pull Up enable/disable Register 28 01Ch

PORT_B_OR Port B Option Register 29 01Dh

PORT_B_DDR Port B Data Direction Register 30 01Eh

PORT_B_AF Port B Alternate Function selection Register 31 01Fh

PORT_C_PULLUP Port C Pull Up enable/disable Register 32 020h

PORT_C_OR Port C Option Register 33 021h

PORT_C_DDR Port C Data Direction Register 34 022h

PORT_C_AF Port C Alternate Function selection Register 35 023h

- Not Used 36-42
024h-
02Ah

SCI_CR3 Serial Communication Interface Control Register 3 43 02Bh

SSP_H System Stack Pointer (MSB) 44 02Ch

SSP_L System Stack Pointer (LSB) 45 02Dh

CPU_CLK CPU Clock Prescaler 46 02Eh

AD_CR2 10-bit A/D Converter Control Register 2 47 02Fh

Table 3.4 Configuration Registers

Mnemonic Description Address

ST52F510/F513/F514

31/106

4 MEMORY PROGRAMMING

ST52F510/F513/F514 provides an on-chip user
programmable non-volatile memory, which allows
fast and reliable storage of user data.
Program/Data Memory addressing space is
composed by a Single Voltage Flash Memory and
a RAM memory bench. The ST52F513/514
devices also have a Data EEPROM bench to store
permanent data with long term retention and a high
number of write/erase cycles.
All the Program Data memory addresses can
execute code, including RAM and EEPROM
benches.
The memory is programmed by setting the Vpp pin
equal to Vdd. Data and commands are transmitted
through the I2C serial communication protocol. The
same procedure is used to perform “In-Situ” the
programming of the device after it is mounted in
the user system. Data can also be written in run-
time with the In-Application Programming (IAP).
The Memory can be locked by the user during the
programming phase, in order to prevent external
operation such as reading the program code and
assuring protection of user intellectual property.
Flash and EEPROM pages can be protected by
unintentional writings.

Remark: the memory contents are protected by
the Error Correction Code (ECC) algorithm that
uses a 4-bit redundancy to correct one bit errors.

Warning: when entering the ISP, the default
values for Option Bytes are considered, so a
Voltage Supply higher than the PLVD lower
threshold must be applied to program the device.

4.1 Program/Data Memory Organization
The Program/Data Memory is organized as
described in Section 3.3. The various sales types
have different amounts of each type of memory.
Table 4.1 describes the memory benches amount
and page allocation for each sales type.
The addressing spaces are organized in pages of
256 bytes. Each page is composed by blocks of 32
bytes. Memory programming is performed one
block at a time in order to speed-up the
programming time (about 2.5 ms per block).
The whole location address is composed as
follows:

15 8 7 5 4 0

Page address Block address address inside the block

Table 4.1 Sales Type Memory Organization

Device
Flash Memory RAM Memory EEPROM Memory

Amount Pages Amount Page Amount Page(s)

ST52F510c2p6 4096 bytes 0 to 15 256 bytes 32 - -

ST52F510c3p6 8192 bytes 0 to 31 256 bytes 32 - -

ST52F513c2p6 3840 bytes 0 to 14 256 bytes 32 256 bytes 15

ST52F513c3p6 7936 bytes 0 to 30 256 bytes 32 256 bytes 31

ST52F514c1p6 4096 bytes 0 to 15 256 bytes 32 1024 bytes 16-19

ST52F514c3p6 4096 bytes 0 to 15 256 bytes 32 4096 bytes 16-31

legend:
c: Y=16 pins, F=20 pins, G=28 pins, K=32/34 pin
p: B=DIP, M=SO, T=TQFP

ST52F510/F513/F514

32/106

4.2 Memory Programming
The Programming procedure writes the user
program and data into the Flash Memory,
EEPROM and Option Bytes. The programming
procedures are entered by setting the Vpp pin
equal to Vdd and releasing the Reset signal. The
following pins are used in Programming mode:
■ VPP used to switch to programming mode

■ VDD device supply

■ VSS device ground

■ RESET device reset

■ SCL I2C serial clock

■ SDA I2C serial data

During the device programming, the internal clock
is used, so the OSCin and OSCout pins don’t have
to be considered.

4.2.1 Programming Mode start. The following
sequence starts the Programming Mode:

1. VPP is set to VDD

2. The device is Reset (RESET=VSS)

3. The Reset is released (RESET=VDD)

4. The internal oscillator starts at 10 MHz

5. The memory is turned on

6. The I2C Interface and Ports are initialized

7. The I2C Interface is configured to work as
Slave, Receiver, 7-bit address and waits for
data

8. The Start signal is sent to the chip followed by
the Slave Address 1010000 and the direction
bit set to 0 (the addressed slave waits for da-
ta). The device sends the acknowledge

9. The Programming Mode code 00000000 is
sent and acknowledged

10. A command code is sent to the device

11. The procedure related to the command is ex-
ecuted

Table 4.2 Programming Mode Commands

Command Code Data in Data out Erase Description

BlockWrite 00000001 32 - Yes
Write the currently addressed block with the 32 bytes
following the command. The Block locations are erased
before being written.

ByteWrite 00000010 2 - Yes Write the byte addressed by the next data sent in the
currently addressed page.

BlockErase 00000011 1 Yes
Erase the block addressed by 3 MSB of the next data sent
and inside the currently addressed page.

ByteErase 00000100 1 Yes
Erase the byte addressed by the next data sent and inside
the currently addressed page.

ByteRead 00000101 1 1 -
Read the byte addressed by the next data sent and inside
the current page. The read data is sent by the device after
the re-send of the Slave Address with the R/W bit changed.

GlobalErase 00001001 - - Yes All the memory is erased.

FastBlockWrite 00001011 32 - No
Write the currently addressed block with the 32 bytes
following the command. The Block locations aren’t erased.

SetPage 00001100 1 - - The currently addressed page is set with the next data sent.

ReadData 00001101 - 1 -

Read the memory location currently addressed. The read
data is sent by the device after the command is
acknowledged. The current memory absolute address is
post-incremented.

IncBlock 00001111 - - -
The current block address is incremented modulo 8
(address 0 follows after address 7 and the Page is post-
incremented)

ReadStatus 00010011 - 1 -
This command is followed by a status data byte. Mostly
used in error condition and to check if the device is locked

ST52F510/F513/F514

33/106

Figure 4.1 Commands and Data Communication Sequences

The generic procedure of commands execution,
with the data communication in both directions is
displayed in Figure 4.1.

Remark: the Slave Address 1010000 must be sent
after a Stop (i.e. each time the data direction
changes, to specify the R/W bit). For example: if a
command to send data to the device has been
executed, a command for receiving data must be
followed by the slave address and the R/W bit must
be set to 1. The Programming Mode code doesn’t
need to be specified again .

Warning: After entering the Programming Mode,
the currently pointed address is the Page 48, Block
3, byte 0 (Lock Byte).

The list of the available commands in
Programming Mode is showed in Table 4.2

4.2.2 Fast Programming procedure. The
fastest way to program the device memory is the
use of the FastBlockWrite command. The following
procedure can be used to write the memory with a
new program and new data, starting from the first
memory location:
1. The Programming Mode is entered with the

sequence described above

2. The memory is erased (all bits are put to 0)
with the GlobalErase command. The device
holds the SCL line low, releasing it after the
command is completed (about 2 ms). This
command also unlocks the device if locked.

3. The FastBlockWrite command is sent and the
device acknowledges it

4. The 32 bytes of data to be written in the first
memory Block are sent in a sequence. The
device acknowledges each of them

5. After the device acknowledges the 32nd byte,
it holds the SCL line until the parallel writing of
the 32 byte is completed (about 2.5 ms)

6. The Block Pointer is incremented by sending
the IncBlock command

7. The procedure is repeated from point 3 until
there is data to be sent to the memory

Note: the Block Pointer assumes values between
0 to 7 (there are 8 blocks in a page). When the
Block Pointer is equal to 7, the IncBlock command
puts this pointer to 0 and increments the Page
Pointer. The Page Pointer, after page writing is
completed, does’t have to be incremented in the
procedure above described.

4.2.3 Random data writing. A single byte can be
written in a specified memory location by using the
following procedure:
1. The Programming Mode is entered with the

sequence described in Section 4.2.1

2. The SetPage command is sent, followed by
the page number where the data should be
written

3. The ByteWrite command is sent followed by
two bytes

4. The first bytes that follows the ByteWrite com-
mand is the address inside the pointed page
where the data must be written.

5. The second byte is the data to be written

6. The device held the SCL line low until the data
is not stored in the memory (about 4.5 ms: 2
ms for erasing and 2.5 for writing)

Programming mode start sequence

Execution of commands for writing data:

Execution of commands for reading data:

S=Start, P=Stop, A=Acknowledge, NA=Non-acknowledge
 From Slave to Master From Master to Slave

S 10100000 A 00000000 A Command A Data1 A DataN A P

Command A Data1 A DataN A Command A Data1 A DataN A P

Command A Address A P S 10100001 A Data read NA P

ST52F510/F513/F514

34/106

A similar procedure can be used to write a single
block:
1. The SetPage command is sent, followed by

the page number where the data should be
written

2. The IncBlock command is sent as many times
as the block number inside the page (for ex-
ample: to address the block 3 the IncBlock
must be sent 3 times)

3. The WriteBlock command is sent followed by
the 32 data bytes to be written.

4. After the 32th byte is sent, the device holds
the SCL line low until all the data are not
stored in the memory (about 4.5 ms: 2 ms for
erasing and 2.5 for writing: the same time for
a single byte)

The procedures described previously can be
repeated as many time as needed, without exiting
from Programming Mode or re-sending the Slave
Address again.

The commands ByteErase and BlockErase, used
instead of ByteWrite and BlockWrite, erase (put all
bit to 0) the specified memory location or block.

4.2.4 Option Bytes Programming. The Option
Byte addresses cannot be accessed with a
sequential procedure like the one described in
Section 4.2.2. Actually, the pointers are
automatically incremented up to the last block or
address in page 31. A further increment sets all the
pointers to 0.
The Option Byte addresses (located at page 48,
block 0, addresses 0-7) must be accessed with a
direct addressing procedure as the one described
in Section 4.2.3.
If the Fast Programming procedure is used, it must
be followed by a Random Block Writing procedure
to program the Option Bytes. The other 24 bytes of
the block can be written with dummy or user
values. The blocks 0, 1, 2 and 3 of Page 48 can be
used for writing data as well (see Section 4.5) and
for locking the device (see Section 4.4).

Figure 4.2 Programming Procedures

Fast Programming Procedure

Random Byte Writing Procedure

Random Block Writing Procedure

Option Byte Writing Procedure

S=Start, P=Stop, A=Acknowledge, NA=Non-acknowledge
 From Slave to Master From Master to Slave

S 10100000 A 00000000 A GlobalErase A FastBlockWrite A Data0 A

..... Data31 A IncBlock A FastBlockWrite A Data31 A Data31 A P

..... SetPage A Page Address A ByteWrite A Byte Address A Data A Command

..... SetPage A Page Address A IncBlock A IncBlock A BlockWrite A Data0 A

..... Data31 A Command

..... SetPage A 00110000 A WriteBlock A Option Byte 0 A Option Byte 7 A

..... Dummy 0 A Dummy 23 A P

ST52F510/F513/F514

35/106

Figure 4.3 Reading and Erasing Procedures

4.3 Memory Verify
To verify the memory contents or just to read part
of data stored in memory, the ByteRead and the
ReadData command can be used. The first
instruction needs the specification of the address;
the second one allows the sequential reading of
consecutive memory locations.
Since the device is “Slave” for the I2C protocol,
after receiving a command for reading, it must be
configured as Slave Transmitter to send the data.
In order to do so, the Slave Address (1010000)
must be sent again with the R/W byte set to 1, as
stated by the communication protocol.

4.3.1 Fast read procedure. The memory can be
read sequentially by using the following procedure:
1. The Programming mode is entered with the

sequence described in Section 4.2.1

2. The pointers address the memory location 0

3. The ReadData command is sent and the de-
vice acknowledges it.

4. The Master generates a Stop condition fol-
lowed by a Start condition

5. The Slave Address with the R/W byte set to 1
(10100001) is sent. The device receives the
Slave Address and acknowledges it.

6. The device sends the data to be read in the
serial data line SDA. The current absolute ad-
dress is post-incremented.

7. The Master device doesn’t send the acknowl-
edge and generates a stop condition.

8. To read the next data, the Master generates a
Start condition followed by the Slave Address
with the R/W byte set to 0 (10100000). The
device receives the Slave Address and ac-
knowledges it.

9. The sequence restarts from point 3 until there
is data to be read.

Remark: for the same reasons explained in
Section 4.2.4 the Option Bytes cannot be read with
this procedure: they can be read with a direct
addressing procedure as the one explained in the
next section.

Fast Reading Procedure

Random Byte Reading Procedure

Byte Erasing Procedure

Block Erasing Procedure

(*) Block address is specified by the 3 most significative bits of the whole given address (less significative bits are don’t care)

S=Start, P=Stop, A=Acknowledge, NA=Non-acknowledge
 From Slave to Master From Master to Slave

S 10100000 A 00000000 A ReadData A P S 10100001 A Data read NA P

..... S 10100000 A ReadData A P S 10100001 A Data read NA P Data read NA P

..... SetPage A Page Address A ByteRead A Byte Address A P S 10100001 A

..... Data read NA P S 10100000 A Command

..... SetPage A Page Address A ByteErase A Byte Address A Command

..... SetPage A Page Address A BlockErase A Block Address (*) A Command

ST52F510/F513/F514

36/106

4.3.2 Random data reading. To read a specified
memory location, the following procedure should
be used:
1. The Programming mode is entered with the

sequence described in Section 4.2.1

2. The SetPage command is sent, followed to
the page number where the data to be read is
located

3. The ByteRead command is sent, followed by
an address inside the page

4. The Master generates a Stop condition fol-
lowed by a Start condition

5. The Slave Address with the R/W byte set to 1
(10100001) is sent. The device receives the
Slave Address and acknowledges it.

6. The device sends the data to be read in the
serial data line SDA.

7. The Master device doesn’t send the acknowl-
edge and generates a stop condition.

8. To send the next command, the Master
should generate a Start condition followed by
the Slave Address with the R/W byte set to 0
(10100000).

Figure 4.4 Device Lock Procedure

4.4 Memory Lock
The Program/Data Memory space can be locked to
inhibit the reading of contents and protect the
intellectual property.
To lock the device, the user must set all the bit of
the Lock Byte to ‘1’. The Lock Byte is located on
Page 48 (030h), Block 3, byte 0 inside the block i.e.
byte 96 (060h) inside the page.
After writing 255 (0FFh) into the Lock Byte, with the
procedure described in the Section 4.2.3, the
memory is locked and the only command allowed
are the following:
– GlobalErase: this command, writing ‘0’ in all the

memory, also unlock the device.
– ReadData: the only block that can be read is the

Block 3 in Page 48 (030h); this allows the read-
ing of the Lock Byte and the ID Code locations
(see Section 4.5).

– ReadStatus: this command allows the detection
of an error condition in Programming mode op-
eration (see Section 4.6). It can also be used to
check if the device is locked. The most significa-
tive bit return the Lock Bit (0=unlocked,
1=locked).

Remark: the Lock Byte is checked when entering
the Programming Mode. For this reason after
writing the Lock Byte, all the commands can be
carried out until the Programming mode is exited.

Device Lock Procedure

Device Lock and ID Code Writing Procedure

Device Lock Reading Procedure

(*) The most significative bit return the Lock Bit (0=unlocked, 1=locked)

S=Start, P=Stop, A=Acknowledge, NA=Non-acknowledge
 From Slave to Master From Master to Slave

..... SetPage A 00110000 A ByteWrite A 01100000 A 11111111 A Command

..... SetPage A 00110000 A IncBlock A IncBlock A IncBlock A BlockWrite A

..... 11111111 A ID Code 1 A ID Code 2 A ID Code 31 A Command

..... ReadStatus A P S 10100001 A Status Byte (*) NA P S 10100000 A Command

ST52F510/F513/F514

37/106

Figure 4.5 Error Handling Procedure

When the device is locked, if memory reading is
attempted, with the exception of the Lock Byte and
ID Code block, the device returns no data and an
error sequence. If memory writing is attempted in
any memory location, the device doesn’t carry out
the command and returns an error sequence.
To unlock the device the GlobalErase command
must be executed before any writing or reading
command.

4.5 ID Code
Block 3 on Page 48 (030h) can also be read if the
device is locked. The first byte of the block is the
Lock Byte, the other 31 locations are available to
the user for writing data, as for example
identification codes to distinguish the firmware
version loaded in the device.
The ID Code must be written before locking the
device: after the device is locked it can only be
read. The use of the Block writing procedure is the
fastest way: both the ID Code and the Lock bytes
are written together. The lock Bytes are sent first
and then the 31 bytes of ID Code follow.
The blocks 0, 1 and 2 on Page 48 can be also be
used for writing data, but they cannot be accessed
when the device is locked.

Note: the ID Code cannot be modified if the device
is locked: it can only be read.

4.6 Error cases
If a wrong command or data is sent to the device,
it generates an error condition by not sending the
acknowledge after the first successive data or
command. Figure 4.5 shows the error sequence.
The error case can be handled by using the
ReadStatus command. This command can be sent
after the error condition is detected; the device
returns a Status Byte containing the error code.
The ReadStatus command sequence is showed in
Figure 4.5. The list of the error codes is illustrated
in Table 4.3.

Remark: after the ReadStatus command
execution or after any error, the Start Sequence
must be carried out before sending a new
command.

The Most Significative Bit of the error codes
indicates (when set to ‘1’) that the memory is
locked. When a command, that is not allowed
when the memory is locked, is sent, the “Not
Allowed” code is sent. If another code is sent with
the MSB to ‘1’ it indicates that the error condition is
not caused by the memory lock, but by the event
related with the code sent.

Warning: when the data writing into a non existing
location is attempted, no error condition is
generated. The user must take care in specifying
the correct page address.

Wrong command/data case handling:

S=Start, P=Stop, A=Acknowledge, NA=Non-acknowledge
 From Slave to Master From Master to Slave

Wrong Command/Data A Command/Data NA ReadStatus A P S 10100001 A Status Byte NA P

Table 4.3 Error codes

Name Code Description

Device Locked xyyyyyyy x=lock bit (1=device locked), yyyyyyy=error code

Wrong Direction x0000001 A transmit direction, not correct in the running sequence, has been set

Stop Missed x0000010 The Master missed generating a necessary Stop Condition

Data Missing x0000011 The Master missed to send necessary data to the device

Receive Error x0000100 The data sent by the Master hasn’t been received correctly by the device

Wrong Command x0000101 The Master sent a wrong command code

Not Allowed x0000110 A command not allowed when the device is locked has been sent

Wrong Mode x0010000 A code different form the Programming mode code (00000000) has been sent

ST52F510/F513/F514

38/106

4.7 In-Situ Programming (ISP)
The Program/Data Memory can be programmed
using the ISP mode. This mode allows the device
to be programmed when it is mounted in the user
application board.
This feature can be implemented by adding a
minimum number of components and board
impact.
The programming procedures and pins used are
identical to the ones described before for the
standard Programming Mode. All the features
previously described in this chapter are applicable
in ISP mode.
If RESET, SCL and SDA pins are used in the user
application board for other purposes, it is
recommended to use a serial resistor to avoid a
conflict when the other devices force the signal
level.
The ISP can be applied by using the standard tools
for the device programming.The ISP can be
applied by using the standard tools for the device
programming. The ST52F510 Starter Kit supplies
a cable to perform the ISP. The user application
board should supply a suited connector type for the
cable (see Starter Kit User Manual).

4.8 In-Application Programming (IAP)
The In Application Programming Mode (IAP)
allows the writing of user data in the Flash and
EEPROM memories when the user program is
running.
There are two ways to write data in IAP mode:
single byte write and Block write. Both procedures
take about 4.5 ms to complete the writing: the
Block write allows the writing of 32 byte in parallel.

Remark: during data writing, the execution of the
user program is stopped until the procedure is
completed. Interrupt requests stop the writing
operation and the data may be not stored. The bit
ABRT in the IAP_SR Input register signals that the
data writing hasn’t been completed. To assure
writing completion, the user should globally disable
the interrupts (UDGI instruction) before starting
IAP data writing.

4.8.1 Single byte write. Writing of a single byte in
the Non-Volatile Program/Data memory is
performed by using the LDER instruction (both
direct and indirect addressing). The memory page
should be indicated before the LDER instruction
with the PGSET or PGSETR instruction. The byte
address inside the page is specified by the LDER
instruction itself.
As soon as the instruction is executed, the data
writing starts and is performed in about 4.5 ms.

4.8.2 Block write. This procedure allows the
writing of 32 bytes in parallel. These bytes should
belong to the same block.
Before the writing in the Program/Data memory,
data must be buffered in the Register File in the
first 32 locations (0-31, 00h-020h) by using the
normal instructions to load the Register File
locations.
Then the data writing starts by using the BLKSET
instruction. The destination block is addressed by
specifying the memory page with the PGSET or
PGSETR instruction before to start the writing; the
block inside the page is addressed with the
argument of the BLKSET instruction.
Example:

PGSET 5
BLKSET 4

This instruction sequence writes the contents of
the first 32 bytes of the Register File in the
locations 1408-1439 (0580h-059Fh).

Warning: the user should be careful in specifying
the correct page and block: the addressing of an
not existing block can cause the unwanted writing
of a different block.

As soon as the BLKSET instruction is executed,
the data writing starts and is performed in about
4.5 ms.
This procedure may also be used to write few data,
taking in account that all the 32 byte are written in
the block anyway.

4.8.3 Memory Corruption Prevention.
The user can protect some pages (or all the
memory) from unintentional writings. The only
constraint is that the protected pages must be
consecutive.
Two Option Bytes allow the specification of the
page to be protected: PG_LOCK (Option Byte 5)
and PG_UNLOCK (Option Byte 6). PG_LOCK is
used to specify the first protected page;
PG_UNLOCK is used to specify the first page not
protected after the protected ones. The pages
between the two addresses are protected.
When writing in a protected page is attempted, the
procedure is aborted and the bit PRTCD of
IAP_SR Input register is set.
If the PG_LOCK and PG_UNLOCK have the same
value, no page is protected. By default, the two
Option Bytes are programmed with the value 0, so
the memory is not write protected by default.
In Programming Mode the protection is not
considered and the pages can be written unless
the device is locked.

ST52F510/F513/F514

39/106

4.8.4 Option Bytes.

First Protected Page (PG_LOCK)
Option Byte 5 (05h)
Reset Value: 0000 0000 (00h)

Bit 7-0: LCK7-0 First Page write protected

In this register the address of first page to be
protected in writing is specified. The pages
following this one are protected up to the page
specified by the PG_UNLOCK Option Byte (not
included among the protected ones).

First Page not Protected (PG_UNLOCK)
Option Byte 6 (06h)
Reset Value: 0000 0000 (00h)

Bit 7-0: UNLCK7-0 First Page not write protected

In this register the address of first page not write
protected after the protected ones is specified. The
pages following this one aren’t protected.

4.8.5 Input Register.

IAP Status Register (IAP_SR)
Input Register 40 (028h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-2: Not Used

Bit 1: PRTCD Page Protected
0: The writing has been completed
1: The writing has been aborted because the

page is protected.

Bit 0: ABRT Writing operation aborted
0: The writing has been completed
1: The writing has been aborted because an

interrupt or another unspecified cause
occurred.

The ABRT and PRTCD bits are reset after the next
successful data writing in the Flash of EEPROM
memory.

7 0

LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

7 0

UNLCK7 UNLCK6 UNLCK5 UNLCK4 UNLCK3 UNLCK2 UNLCK1 UNLCK0

7 0

- - - - - - PRTCD ABRT

ST52F510/F513/F514

40/106

5 INTERRUPTS

The Control Unit (CU) responds to peripheral
events and external events through its interrupt
channels.
When such events occur, if the related interrupt is
not masked and doesn’t have a priority order, the
current program execution can be suspended to
allow the CU to execute a specific response
routine.
Each interrupt is associated with an interrupt
vector that contains the memory address of the
related interrupt service routine. Each vector is
located in the Program/Data Memory space at a
fixed address (see Figure 3.2 Program/Data
Memory Organization).

5.1 Interrupt Processing
If interrupts are pending at the end of an arithmetic
or logic instruction, the interrupt with the highest
priority is acknowledged. When the interrupt is
acknowledged the flags and the current PC are
saved in the stacks and the associated Interrupt
routine is executed. The start address of this
routine (Interrupt Vector) is located in three bytes
of the Program/Data Memory between address 3
and 32 (03h-020h). See Table 5.1 for the list of the
Interrupt Vector addresses.
The Interrupt routine is performed as a normal
code. At the end of each instruction, the CU checks
if a higher priority interrupt has sent an interrupt
request. An Interrupt request with a higher priority
stops lower priority Interrupts. The Program
Counter and the flags are stored in their own
stacks.
With the instruction RETI (Return from Interrupt)
the flags and the Program Counter (PC) are
restored from the top of the stacks. These stacks
have already been described in Paragraph 3.4.
An Interrupt request cannot stop fuzzy rule
processing, but only after the end of a fuzzy rule or
at the end of a logic or arithmetic instruction,
unless a Global Interrupt Disable instruction has
been executed before (see below).

Remark: A fuzzy routine can be interrupted only in
the Main program. When a Fuzzy function is
running inside another interrupt routine an interrupt
request can cause side effects in the Control Unit.
For this reason, in order to use a Fuzzy function
inside an interrupt routine, the user MUST include
the Fuzzy function between an UDGI (MDGI)
instruction and an UEGI (MEGI) instruction (see
the following paragraphs), in order to disable the
interrupt request during the execution of the fuzzy
function.

Figure 5.1 Interrupt Flow

5.2 Global Interrupt Request Enabling
When an Interrupt occurs, it generates a Global
Interrupt Pending (GIP). After a GIP a Global
Interrupt Request (GIR) will be generated and
Interrupt Service Routine associated with the
interrupt with higher priority will start.
In order to avoid possible conflicts between the
interrupt masking set in the main program, or
inside high level language compiler macros, the
GIP is put in AND through the User Global Interrupt
Mask or the Macro Global Interrupt Mask (see
Figure 5.2).
The UEGI/UDGI instruction switches the User
Global Interrupt Mask enabling/disabling the GIR
for the main program.
MEGI/MDGI instructions switch the Macro Global
Interrupt Mask on/off in order to ensure that the
macro will not be interrupted.

Figure 5.2 Global Interrupt Request

NORMAL
PROGRAM

FLOW

INTERRUPT
SERVICE
ROUTINE

RETI
INSTRUCTION

INTERRUPT

Global Interrupt
Pending

User Global
Interrupt Mask

Macro Global

Global Interrupt
Request

ST52F510/F513/F514

41/106

5.3 Interrupt Sources
ST52F510/F513/F514 manages interrupt signals
generated by the internal peripherals or generated
by software by the TRAP instruction or coming
from the Port pins. There are two kinds of
interrupts coming from the Port pins: the NMI and
the Ports Interrupts.
NMI (Not Maskable Interrupt) is associated with pin
PA7 when it is configured as Alternate Function.
This interrupt source doesn’t have a configurable
level priority and cannot be masked. The fixed
priority level is lower than the software TRAP and
higher than all the other interrupts. The NMI can be
configured to be active on the rising or the falling
edge.
The Port Interrupts sources are connected with
Port A and Port B pins. The pins belonging to the
same Port are associated with the same interrupt
vector: there is one vector for Port A and one for
Port B. In order to use one port pin as interrupt, it
must be configured as an interrupt source (see I/O
Ports chapter). In this manner, up to 16 Port
Interrupt sources are available. By reading the Port
the sources that belong to the same Port can be
discriminated. The Port Interrupts can be
configured to be active on the rising or the falling
edge.

Warning: changing the NMI or Port Interrupt
polarity an interrupt request is generated.

All the interrupt sources are filtered, in order to
avoid false interrupt requests caused by glitches.
The Trap instruction is something between a
interrupt and a call: it generated an interrupt
request at top priority level and the control is
passed to the associated interrupt routine which
vector is located in the fixed addresses 30-32. This
routine cannot be interrupted and it is serviced
even if the interrupts are globally disabled.

Note: Similarly to the CALL instruction, after a
TRAP the flags are not stacked.

Figure 5.3 Example of Interrupt Requests

5.4 Interrupt Maskability and Priority Levels
Interrupts can be masked by the corresponding
INT_MASK Configuration Register 0 (00h). An
interrupt is enabled when the mask bit is “1". Vice
versa, when the bit is “0”, the interrupt is masked
and the eventual requests are kept pending.
All the interrupts, with the exception of the NMI and
TRAP that have fixed level priority, have a
configurable priority level. The configuration of the
priority levels is completed by writing three
consecutive Configuration Registers: INT_PRL_H,
INT_PRL_M, INT_PRL_L, addresses from 2 to 4
(02h-04h). The 24 bits of these registers are
divided into 8 groups of three bits: each group is
associated with a priority level. The three bits of
each group are written with the code number
associated with the interrupt source. See Table 5.1
to know the codes.

Remark: The priority levels Configuration
Registers must be programmed with different
values for each 3-bit groups to avoid erroneous
operation. For this reason the Interrupt priority
must be fixed at the beginning of the main
program, because the reset values of the
Configuration Registers correspond to an
undefined configuration (all zeros). During
program execution the interrupt priority can only be
modified within the Main Program: it cannot be
changed within an interrupt service routine.

5.5 Interrupt RESET
When an interrupt is masked, all requests are not
acknowledged and remain pending. When the
pending interrupt is enabled it is immediately
serviced. This event may be undesired; in order to
avoid this a RINT instruction may be inserted
followed by the code number that identifies the
interrupt to reset the pending request. See Table
5.1 to know the codes.

MAIN PROGRAM

5

4

3

2

1

0

INT2

INT0

INT2

INT1

INT2

INT3

INT4

MAIN PROGRAM

PRIORITY
LEVEL

INT2 INT0 INT4 INT1 INT3

6

ST52F510/F513/F514

42/106

5.6 Register Description

Interrupt Mask Register (INT_MASK)
Configuration Register 0 (00h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: MSKPB Interrupt Mask Port B
0: Port B interrupt masked
1: Port B interrupt enabled

Bit 6: MSKPA Interrupt Mask Port A
0: Port A interrupt masked
1: Port A interrupt enabled

Bit 5: MSKI2C Interrupt Mask I2C Interface
0: I2C Interface interrupt masked
1: I2C Interface interrupt enabled

Bit 4: MSKSPI Interrupt Mask SPI
0: SPI interrupt masked
1: SPI interrupt enabled

Bit 3: MSKSCI Interrupt Mask SCI
0: SCI interrupt masked
1: SCI interrupt enabled

Bit 2: MSKT1 Interrupt Mask PWM/Timer 1
0: Pwm/Timer 1 interrupt masked
1: Pwm/Timer 1 interrupt enabled

Bit 1: MSKT0 Interrupt Mask Pwm/Timer 0
0: Pwm/Timer 0 interrupt masked
1: Pwm/Timer 0 interrupt enabled

Bit 0: MSKAD Interrupt Mask A/D Converter
0: A/D interrupt masked
1: A/D interrupt enabled

Interrupt Polarity Register (INT_POL)
Configuration Register 1 (01h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-5: Not Used

Bit 4-3: See Timer 0 Registers Description

Bit 2: POLPB Port B Interrupt Polarity
0: The Port B interrupt is triggered on the

rising edge of the applied external signal.
1: The Port B interrupt is triggered on the

falling edge of the applied external signal.

Bit 1: POLPA Port A Interrupt Polarity
0: The Port A interrupt is triggered on the

rising edge of the applied external signal.
1: The Port A interrupt is triggered on the

falling edge of the applied external signal.

Bit 0: POLNMI Non Maskable Interrupt Polarity
0: The NMI is triggered on the rising edge of

the applied external signal.
1: The NMI is triggered on the falling edge of

the applied external signal.

High Priority Register (INT_PRL_H)
Configuration Register 2 (02h) Read/Write
Reset Value: 1111 1010 (0FAh)

Medium Priority Register (INT_PRL_M)
Configuration Register 3 (03h) Read/Write
Reset Value: 1100 0110 (0C6h)

7 0

MSKPB MSKPA MSKI2C MSKSPI MSKSCI MSKT1 MSKT0 MSKAD

7 0

- - - RESPOL STRPOL POLPB POLPA POLNMI

7 0

PRL23 PRL22 PRL21 PRL20 PRL19 PRL18 PRL17 PRL16

7 0

PRL15 PRL14 PRL13 PRL12 PRL11 PRL10 PRL9 PRL8

ST52F510/F513/F514

43/106

Low Priority Register (INT_PRL_L)
Configuration Register 4 (04h) Read/Write
Reset Value: 1000 1000 (088h)

These three register are used to configure the
priority level of each interrupt source. The 24 bits
of these registers (PRL24-PRL0) are divided into 8
groups of three bits: each group is associated with
a priority level (from level 1, the highest, to level 8,
the lowest: level 0 is fixed for the NMI that can be
interrupted only by the TRAP) . The three bits of
each group are written with the code number
associated with the interrupt source (see Table
5.1).

PRL2-PRL1: Interrupt priority level 1 (highest)
PRL5-PRL3: Interrupt priority level 2
PRL8-PRL6: Interrupt priority level 3
PRL11-PRL9:Interrupt priority level 4
PRL14-PRL12: Interrupt priority level 5
PRL17-PRL15: Interrupt priority level 6
PRL20-PRL18: Interrupt prioritylevel 7
PRL23-PRL21: Interrupt priority level 8 (lowest)

Example: writing the code 110 into PRL8-PRL6
bits the priority level 3 is assigned to the Port A
Interrupt.

Warning: the Priority Level configuration registers
must be always configured.

7 0

PRL7 PRL6 PRL5 PRL4 PRL3 PRL2 PRL1 PRL0

Table 5.1 Interrupt sources paramethers

Interrupt Source Priority type PRL code RINT code Maskable Vector Addresses

A/D Converter Programmable 000 0 Yes 3-5 (03h-05h)

PWM/Timer 0 Programmable 001 1 Yes 6-8 (06h-08h)

PWM/Timer 1 Programmable 010 2 Yes 9-11 (09h-0Bh)

SCI Programmable 011 3 Yes 12-14 (0Ch-0Eh)

SPI Programmable 100 4 Yes 15-17 (0Fh-011h)

I2C Interface Programmable 101 5 Yes 18-20 (012h-014h)

Port A Programmable 110 6 Yes 21-23 (015h-017h)

Port B Programmable 111 7 Yes 24-26 (018h-01Ah)

NMI Fixed - 8 No 27-29 (01Bh-01Dh)

TRAP Fixed to highest - - No 30-32 (01Eh-020h)

ST52F510/F513/F514

44/106

6 CLOCK, RESET & POWER SAVING MODES

6.1 Clock
The ST52F510/F513/F514 Clock Generator
module generates the internal clock for the internal
Control Unit, ALU and on-chip peripherals. The
Clock is designed to require a minimum of external
components.
ST52F510/F513/F514 devices supply the internal
oscillator in four clock modes:
■ External oscillator

■ External clock

■ External RC oscillator

■ Internal clock

The device always starts in internal clock mode,
excluding any external clock source. After the
start-up phase the clock is configured according to
the user definition programmed in the Option Byte
0 (OSC_CR). The internal clock generator can
supply an internal clock signal with a fixed
frequency of 10 MHz ± 1%, without the need for
external components. In order to obtain the
maximum accuracy, the frequency can be
calibrated by configuring the related Option byte 2
(OSC_SET).
The external oscillator mode uses a quartz crystal
or a ceramic resonator connected to OSCin and
OSCout as illustrated in Figure 6.1. This figure also
illustrates the connection of an external clock.
The ST52F510/F513/F514 oscillator circuit
generates an internal clock signal with the same
period and phase as the OSCIN input pin. The
maximum frequency allowed is 24 MHz.
When the external oscillator is used, the loop gain
can be adapted to the various frequencies values
by configuring the three bits of the Option Byte 1
CLK_SET (see Register Decription, Table 6.2).
When an external clock is used, it must be
connected to the pin OSCIN while OSCOUT can

be floating. In this case, Option Byte 1 bits must be
written with 0 (000).
The crystal oscillator start-up time is a function of
many variables: crystal parameters (especially
Rs), oscillator load capacitance (CL), IC
parameters, environment temperature and supply
voltage.
The crystal or ceramic leads and circuit
connections must be as short as possible. Typical
values for CL1, CL2 are 10pF for a 20 MHz crystal.
The clock signal can also be generated by an
external RC circuit offering additional cost savings.
Figure 6.1 illustrates the possible connections.
Frequency is a function of resistor, capacitance,
supply voltage and operating temperature; some
indicative values when Vdd=5V and T=25°, are
shown in Table 6.1.
The clock signal generates two internal clock
signals: one for the CPU and one for the
peripherals. The CPU clock frequency can be
reduced, in order to decrease current consuption,
by setting the CPU_CLK Configuration Register 46
(02Eh). The CPU clock can be reduced up to 64
times (see Register Description).

Figure 6.1 Oscillator Connections

OSCin OSCout

ST FIVE

OSCin

ST FIVE

OSCout

CRYSTAL CLOCK EXTERNAL CLOCK

Cl1
10pF

Cl2
10pF CLOCK

INPUT

OSCin

ST FIVE

OSCout

RC CIRCUIT CLOCK

Vdd Vss

R C

Table 6.1 RC Oscillator indicative frequencies

C (pF) R(Ω) fosc (KHz) Variation

20 pF

9.5K 5000 6.6%

10K 4870 7.1%

20K 3000 5.3%

50K 1360 3.3%

100K 724 2.8%

100 pF

10K 1720 7.5%

20K 926 8%

50K 424 11.2%

100K 248 15%

ST52F510/F513/F514

45/106

6.2 Reset
Four Reset sources are available:
■ RESET pin (external source)

■ WATCHDOG (internal source)

■ POWER ON Reset (Internal source)

■ PLVD Reset (Internal source)

When a Reset event occurs, the user program
restarts from the beginning.

6.2.1 External Reset. Reset is an input pin. An
internal reset does not affect this pin. A Reset
signal originated by external sources is
recognized immediately. The RESET pin may be
used to ensure Vdd has risen to a point where the
ICU can operate correctly before the user program
is run. Reset must be set to Vdd in working mode.
A Pull up resistor of 100 KΩ guarantees that the
RESET pin is at level “1” when no HALT or Power-
On events occur. If an external resistor is
connected to the RESET pin a minimum value of
10KΩ must be used.

6.2.2 Reset Procedures. After the Reset pin is
set to Vdd or following a Power-On Reset event,
the device is not started until the internal supply
voltage has reached the nominal level of 2.5 V
(corresponding roughly to Vdd=2.8 V).

Figure 6.2 Reset Block Diagram

After this level has been reached, the internal
oscillator (10 MHZ) is started and a delay period of
4.096 clock cycles is initiated, in order to allow the
oscillator to stabilize and to ensure that recovery
has taken place from the Reset state.
If the device has been configured to work with the
internal clock, the user program starts, otherwise
the Option Byte 7 (WAKEUP) is read and another
count starts before running the user program. The
duration of the count depends on the contents of
the Option Byte 7 (WAKEUP), that works as a
prescaler, according to the follwing formula:

This delay has been introduced in order to ensure
that the oscillator has become stable after its
restart.
If the Reset is generated by the PLVD or the
Watchdog, the oscillator is not turned off; for this
reason the CPU is then restarted immediately,
without the delay.
After a RESET procedure is completed, the core
reads the instruction stored in the first 3 bytes of
the Program/Data Memory, which contains a
JUMP instruction to the first instruction of the user
program. The Assembler tool automatically
generates this Jump instruction with the first
instruction address.

POWER-ON
RESET

Vdd

RESET 4096 x TCLK
INTERNAL RESET

WATCHDOG RESET

(WAKEUP+1) x
4096 x TCLK

WATCHDOG

PROGRAMMABLE LOW VOLTAGE DETECTOR RESETPLVD

CKMOD1:0

INTERNAL CLOCK SOURCES

EXTERNAL CLOCK

TCLK = Internal Clock period (100 ns)

CKMOD1:0 = see Option Byte 0 (OSC_CR)

WAKEUP = see Option Byte 7 (WAKEUP)

Delay 4096 WAKEUP 1+() Tclk××=

ST52F510/F513/F514

46/106

6.3 Programmable Low Voltage Detector
The on-chip Programmable Low Voltage Detector
(PLVD) circuit prevents the processor from falling
into an unpredictable status if the power supply
drops below a certain level.
When Vdd drops below the detection level, the
PLVD causes an internal processor Reset that
remains active as long as Vdd remains below the
trigger level.
The PLVD resets the entire device except the
Power-on Detector and the PLVD itself.
The PLVD can be enabled/disabled at reset by
setting the Option Byte 3 (PLVD_CR) bits.
When Vdd increases above the Trigger Level, the
PLVD reset is deactivated and the user program is
started from the beginning.
The detection levels are programmable by means
of the Option Byte 3 (PLVD_CR). There are three
levels for the PLVD falling voltages (2.9V, 3.4V,
3.9V) and for rising voltages (3.1V, 3.65V, 4.2V).
The hysteresis for each level are respectively 200
mV, 250 mV and 300 mV.
The PLVD circuit will only detect a drop if Vdd
voltage stays below the safe threshold for at least
5µs before activation/deactivation of the PLVD in
order to filter voltage spikes.

Remark: the PLVD function isn’t active when it is
in HALT mode. In that case the device is reset if the
Vdd voltage stays below the threshold of 2 V.

6.4 Power Saving modes
There are two types of Power Saving modes:
WAIT and HALT mode. These conditions may be
entered by using the WAIT or HALT instructions.

6.4.1 Wait Mode. Wait mode places the ICU in a
low power consumption status by stopping the
CPU. All peripherals and the watchdog remain
active. During WAIT mode the Interrupts are
enabled. The ICU remains in Wait mode until an
Interrupt or a RESET occurs, whereupon the
Program Counter jumps to the interrupt service
routine or, if a Reset occurs, to the beginning of the
user program.

6.4.2 Halt Mode. Halt mode is the lowest ICU
power consumption mode, which is entered by
executing the HALT instruction. The internal
oscillator is turned off, causing all internal
processing to be terminated, including the
operations of the on-chip peripherals. Halt mode
cannot be used when the watchdog is enabled. If
the HALT instruction is executed while the
watchdog system is enabled, it will be skipped
without modifying the normal CPU operations.

The ICU can exit Halt mode upon reception of an
NMI, a Port Interrupt or a Reset. The internal
oscillator (10 MHZ) is started and a delay period of
4.096 clock cycles is initiated, in order to allow the
oscillator to stabilize and to ensure that recovery
has taken place from the Reset state.
If the device has been configured to work with the
internal clock, the user program is started,
otherwise the Option Byte 7 (WAKEUP) is read
and another count is started before running the
user program. The count duration depends on the
contents of the Option Byte 7 (WAKEUP), that
works as prescaler, according to the follwing
formula:

This delay has been introduced in ordet to ensure
that the oscillator has become stable after it is
restarted.
After the start up delay, by exiting with the NMI or
a Port interrupt, the CPU restarts operations by
serving the associated interrupt routine.

Note: if the Port Interrupt is masked, the ICU
doesn’t exit the Halt mode with this interrupt.

Figure 6.3 WAIT Flow Chart

Delay 4096 WAKEUP 1+() Tclk××=

OSCILLATOR

PERIPHERALS CLOCK

CPU CLOCK

INTERRUPTS

ON

ON

OFF

ENAB.

WAIT ISTRUCTION

RESET

INTERRUPT

YES

NO
CPU CLOCK ON

PROGRAM COUNTER RESET

NO

JUMP TO INT. ROUTINE

CPU CLOCK ON

NORMAL PROGRAM FLOW

ST52F510/F513/F514

47/106

Figure 6.4 HALT Flow Chart

HALT INSTRUCTION

WATCHDOG
ENABLED

HALT INSTRUCTION
SKIPPED

YES

NO

OSCILLATOR OFF
PERIPHERALS CLOCK OFF
CPU CLOCK OFF

RESTART PROGRAM
SERVICING THE

INTERRUPT ROUTINE

NMI or PORT
INTERRUPT

NO

YES

NO

YES

RESET

RESET CPU
AND RESTART

USER PROGRAM

OSCILLATOR ON
PERIPHERALS CLOCK ON
CPU CLOCK ON

4096 INTERNAL CLOCK
CYCLES DELAY

OSCILLATOR ON
PERIPHERALS CLOCK ON
CPU CLOCK ON

4096 INTERNAL CLOCK
CYCLES DELAY

YES

NO

INTERNAL
CLOCK ?

INTERNAL
CLOCK ?

4096 X (WAKEUP+1)
CLOCK CYCLES

DELAY

4096 X (WAKEUP+1)
CLOCK CYCLES

DELAY

NO

YES

PORT INTERRUPT
MASKED

NO

YES

ST52F510/F513/F514

48/106

6.5 Register Description
The following section describes the Register which
are used to configure the Clock, Reset and PLVD.

6.5.1 Configuration Register.

CPU Clock Prescaler (CPU_CLK)
Configuration Register 46 (02Eh) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-6: Not Used

Bit 5-0: CPUCK5-0 CPU Clock Prescaler bits
The CPU Clock frequency is divided by a
factor described in the following table

6.5.2 Option Bytes.

Clock Mode (OSC_CR)
Option Byte 0 (00h)
Reset Value: 0000 0000 (00h)

Bit 7-2: Not Used

Bit 1-0: CKMOD1-0 Clock Mode
00: Internal Oscillator
01: External Clock or quartz
1x: External RC oscillator

External Clock Parameters (CLK_SET)
Option Byte 1 (01h)
Reset Value: 0000 0000 (00h)

Bit 7-3: Not Used

Bit 2-0: CKPAR2-0 Oscillator Gains
These three bits enable/disable the loop
gains when a external clock or quartz are
used for generating the clock. The
following table decribes the possible
configuration options. Table 6.2 illustrates
the reccomended values for the most
common frequencies used, time to start the
oscillations and the settling time to have a
duty cycle of 40%-60% (at steady state it is
50%).

Warning: If an External Clock is used instead of a
quartz or ceramic resonator, it is reccomended that
no gain be enabled (CKPAR2-0=000) in order lo
lower the current consumption.

7 0

- - CPUCK5 CPUCK4 CPUCK3 CPUCK2 CPUCK1 CPUCK0

CPUCK5-0 CPU Clock

000000 fCPU=fOSC

000001 fCPU=fOSC/2

000010 fCPU=fOSC/4

000100 fCPU=fOSC/8

001000 fCPU=fOSC/16

010000 fCPU=fOSC/32

100000 fCPU=fOSC/64

others fCPU=fOSC/64

7 0

- - - - - - CKMOD1CKMOD0

7 0

- - - - - CKPAR2 CKPAR1 CKPAR0

CKPAR2-0 Enabled Gain Stages

000 No Gains (External Clock Mode)

001 1 gain stage enabled

010 not allowed

011 3 gain stage enabled

100 not allowed

101 6 gain stage enabled

110 not allowed

111 8 gain stage enabled

ST52F510/F513/F514

49/106

Internal Oscillator Calibration (OSC_SET)
Option Byte 2 (02h)
Reset Value: 0001 0100 (14h)

Bit 7-6: Not Used

Bit 5-0: OSPAR5-0 Internal Oscillator Parameters
These bits are used in order to calibrate the
precision of the internal oscillator working
at 10 MHz. The six bits enable some
current generators with steps of 0.05 µA
corresponding to interval of frequency of
100KHz.

Warning: the maximum configuration value
allowed is 101000 (40). The value coresponding to
the 10 MHz by design is 010100 (20).

PLVD Control Register (PLVD_CR)
Option Byte 3 (03h)
Reset Value: 0000 0010 (02h)

Bit 7-2: Not Used

Bit 1-0: PLVD1-0 PLVD detection levels
00: PLVD disabled
01: Medium detection level
10: Lowest detection level
11: Highest detection level

Wake-Up Time Prescaler (WAKEUP)
Option Byte 7 (07h)
Reset Value: 0000 0000 (00h)

Bit 7-0: WK7-0 Wake-up prescaler
This byte determinates the time delay for
the stabilization of the oscillator after an
External Reset or a POR and after the
wake-up from Halt. The time delay is
computed according to the following
formula:

Warning: If the internal clock is used as clock
source the prescaler is not used.

Table 6.2 Recomended Gains for the most common frequencies

Frequency Recommend
Gain Stages CKPAR2-0 Oscillation

Start Times
Settling Times for

40% duty-cycle

External Clock 0 000 - -

1 MHz 1 001 367 µs 27 µs

4 MHz 1 001 84 µs 10 µs

8 MHz 3 011 75 µs 9 µs

10 MHz 3 011 79 µs 5 µs

12 MHz 6 101 110 µs 8 µs

16 MHz 6 101 352 µs 7 µs

20 MHz 8 111 165 µs 11µs

(1) The recommended values have been chosen to have the best tradeoff beetwen start time and current
consumption. Higher gains give shorter Start times; lower gains give less current consumption.

(2) Indicative values by design at 25° Celsius, VDD=2.6 V. Not Tested in production.

7 0

- - OSPAR5 OSPAR4 OSPAR3 OSPAR2 OSPAR1 OSPAR0

7 0

- - - - - - PLVD1 PLVD0

7 0

WK7 WK6 WK5 WK4 WK3 WK2 WK1 WK0

Delay 4096 WAKEUP 1+() Tclk××=

ST52F510/F513/F514

50/106

7 I/O PORTS

7.1 Introduction
ST52F510/F513/F514 are characterized by
flexible individually programmable multi-functional
I/O lines. The ST52F510/F513/F514 supplies
devices with up to 3 Ports (named from A to C) with
up to 22 I/O lines.
Each pin can be used as a digital I/O or can be
connected with a peripheral (Alternate Function).
The I/O lines belonging to Port A and Port B can
also be used to generate Port Interrupts.
The I/O Port pins can be configured in the following
modes:
■ Input high impedance (reset state)

■ Input with pull-up

■ Output with pull-up

■ Output push-pull

■ Output with weak pull-up

■ Output open drain

■ Interrupt with pull-up

■ Interrupt without pull-up

These eight modes can be selected by
programming three Configuration Registers for
each Port. All the pins that belong to the same Port
can be configured separately by setting the
corresponding bits in the three registers (see
Register Description).
To avoid side effects, the Configuration Registers
register are latched only when the Direction
Register (PORT_x_DDR) is written. For this
reason this register must be always written when
modifying the pin configuration.
All the I/O digital pins are TTL compatible and have
a Schmitt Trigger. The output buffer can supply
high current sink (up to 8mA).

Figure 7.1 Digital Pin

7.2 Input Mode
The pins configured as input can be read by
accessing the corresponding Port Input Register
by means of the LDRI instruction. The addresses
for Port A , B and C are respectively 0 (00h), 1
(01h), and 2 (02h).
When executing the LDRI instruction all the signals
connected to the input pins of the Port are read and
the logical value is copied in the specified Register
File location. If some pins are configured in output,
the port buffer contents, which are the last written
logical values in the output pins, are read.

7.3 Output Mode
The pins configured as output can be written by
accessing the corresponding Port Output Register
by means of the LDPR, LDPI and LDPE
instructions. The addresses for Port A , B and C
are respectively, 0 (00h), 1 (01h), and 2 (02h).
When executing the above mentioned instructions,
the Port buffer is written and the Port pin signals
are modified. If some pins are configured as input
or as interrupt, the values are ignored.

7.4 Interrupt Mode
The pins configured as Interrupt Mode can
generate a Port Interrupt request. Only Port A and
Port B pins can be configured in this mode.
An Interrupt vector is associated to each Port:
there are two Port Interrupts available but more
pins of the ports can act as source at the same
time.
The Configuration Registers switch the signals
deriving from interrupt pins to an OR gate that
generates the interrupt request signal. The signal
deriving from the pins can be read, allowing the
discrimination of the interrupt sources when more
than one pin can generate the interrupt signal.
The interrupt trigger can be configured either in the
rising or falling edge of the external signal.

Figure 7.2 Analog Pin

PAD

PULL UP
ENABLE

DIGITAL OUT
ENABLE

DATA
OUT

PORT A,C,D,E
PIN

DATA
IN

ST52F510/F513/F514

51/106

7.5 Alternate Functions
The Alternate Function allows the pins to be
connected with the peripheral signals or NMI. Not
all Port pins have an Alternate Function
associated.
A Configuration Register (PORT_x_AF) for each
Port is used to switch from the Digital I/O function
or the Alternate Function.
Some pins can have two Alternate Functions: one
input function and one output function. To switch
between the two functions, the PORT_x_AF must
be configured in Alternate Function mode and the
PORT_x_DDR Configuration Register must be
switched in Input mode or in Output mode.
NMI is considered an Alternate Function. For this
reason an NMI interrupt request can’t be
generated unless the PA7 pin is configured in
Alternate Function and in one of the Input modes.

Figure 7.3 Port Pin Architecture

When an on-chip peripheral is configured to use a
pin, the correct I/O mode of the related pin should
be selected by selecting one of the appropriate
modes. See the Registers description in order to
obtain the right configurations.Some peripherals,
as for example the I2C peripheral, directly drive the
pin configuration according to the current function,
overriding the user configuration.

7.6 Register Description
In order to configure the Port’s pins, the three
Configuration Registers PORT_x_PULLUP,
PORT_x_OR and PORT_x_DDR must be
configured. The combination of these three
registers determine the pin’s configuration,
according to the scheme shown in Table 7.1.
In order to select between the digital functions or
Alternate functions PORT_x_AF register must be
configured. Each bit of the configuration registers
configures the pin of the corresponding position
(example: PORT_A_DDR bit 5 configures the pin
PA5).

CONF. REG.
D
E
C
O
D
E
R

FFREGISTER
FILE

ALTERNATE
FUNCTION

INTERRUPT
POLARITY

IRQ

TO INPUT
REGISTER

Vdd

DIGITAL
PORT PIN

INT

PU

SEL

EN

ENABLE

DATA

CONF. REG.

CONF. REG.

CONF. REG.

ST52F510/F513/F514

52/106

7.6.1 Configuration Registers.

Port A Pull-Up Register (PORT_A_PULLUP)
Configuration Register 24 (018h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-0: PUA7-0 Port A pull-up (see Table 7.1)
 0: Port A pin without pull-up
 1: Port A pin with pull-up

Port A Option Register (PORT_A_OR)
Configuration Register 25 (019h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-0: ORA7-0 Port A option (see Table 7.1)

Port A Data Direction Register (PORT_A_DDR)
Configuration Register 26 (01Ah) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-0: DDRA7-0 Port A direction (see Table 7.1)
 0: Port A pin configured as input
 1: Port A pin configured as output

Port A Alternate Fuction (PORT_A_AF)
Configuration Register 27 (01Bh) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: AFA7 Alternate Function PA7
0: Digital I/O
1: INT

Bit 6: AFA6 Alternate Function PA6
0: Digital I/O
1: T0OUT

Bit 5: AFA5 Alternate Function PA5
0: Digital I/O
1: TCLK

Bit 4: AFA4 Alternate Function PA4
0: Digital I/O
1: TSTRT

Bit 3: AFA3 Alternate Function PA3
0: Digital I/O
1: TRES

Bit 2: AFA2 Alternate Function PA2
0: Digital I/O
1: T1OUT

Bit 1: AFA1 Alternate Function PA1
0: Digital I/O
1: SDA

Bit 0: AFA0 Alternate Function PA0
0: Digital I/O
1: SCL

7 0

PUA7 PUA6 PUA5 PUA4 PUA3 PUA2 PUA1 PUA0

7 0

ORA7 ORA6 ORA5 ORA4 ORA3 ORA2 ORA1 ORA0

7 0

DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0

7 0

AFA7 AFA6 AFA5 AFA4 AFA3 AFA2 AFA1 AFA0

Table 7.1 Pin mode configuration

MODE PU OR DDR

Input high impedance 0 0 0

Input with pull-up 1 0 0

Interrupt without pull-up 0 1 0

Interrupt with pull-up 1 1 0

Output push-pull 0 0 1

Output with pull-up 1 0 1

Output open drain 0 1 1

Output weak pull-up 1 1 1

ST52F510/F513/F514

53/106

Port B Pull-Up Register (PORT_B_PULLUP)
Configuration Register 28 (01Ch) Read/Write
Reset Value: 0000 0000 (00h)

(*) Not used in 16/20 pin package devices
(**) Not used in 16 pin package devices

Bit 7-0: PUB7-0 Port B pull-up (see Table 7.1)
 0: Port B pin without pull-up
 1: Port B pin with pull-up

Port B Option Register (PORT_B_OR)
Configuration Register 29 (01Dh) Read/Write
Reset Value: 0000 0000 (00h)

(*) Not used in 16/20 pin package devices
(**) Not used in 16 pin package devices

Bit 7-0: ORB7-0 Port B option (see Table 7.1)

Port B Data Direction Register (PORT_B_DDR)
Configuration Register 30 (01Eh) Read/Write
Reset Value: 0000 0000 (00h)

(*) Not used in 16/20 pin package devices
(**) Not used in 16 pin package devices

Bit 7-0: DDRB7-0 Port B direction (see Table 7.1)
 0: Port B pin configured as input
 1: Port B pin configured as output

Port B Alternate Fuction (PORT_B_AF)
Configuration Register 31 (01Fh) Read/Write
Reset Value: 0000 0000 (00h)

Note: This register is not used in 16 pin devices

Bit 7: AFB7 Alternate Function PB7
0: Digital I/O
1: AIN7

Bit 6: AFB6 Alternate Function PB6
0: Digital I/O
1: AIN6

Bit 5: AFB5 Alternate Function PB5
0: Digital I/O
1: AIN5

Bit 4: AFB4 Alternate Function PB4
0: Digital I/O
1: AIN4

Bit 3: AFB3 Alternate Function PB3
0: Digital I/O
1: AIN3

Bit 2: AFB2 Alternate Function PB2
0: Digital I/O
1: AIN2

Bit 1: AFB1 Alternate Function PB1
0: Digital I/O
1: AIN1

Bit 0: AFB0 Alternate Function PB0
0: Digital I/O
1: AIN0 / VREF

Port C Pull-Up Register (PORT_C_PULLUP)
Configuration Register 32 (020h) Read/Write
Reset Value: 0000 0000 (00h)

Note: This register is not used in 16/20 pin devices

Bit 7-6: Not Used

Bit 5-0: PUC5-0 Port C pull-up (see Table 7.1)
 0: Port C pin without pull-up

7 0

PUB7* PUB6* PUB5** PUB4** PUB3** PUB2** PUB1 PUB0

7 0

ORB7* ORB6* ORB5** ORB4** ORB3** ORB2** ORB1 ORB0

7 0

DDRB7* DDRB6* DDRB5** DDRB4** DDRB3** DDRB2** DDRB1 DDRB0

7 0

AFB7 AFB6 AFB5 AFB4 AFB3 AFB2 AFB1 AFB0

7 0

- - PUC5 PUC4 PUC3 PUC2 PUC1 PUC0

ST52F510/F513/F514

54/106

 1: Port C pin with pull-up
Port C Option Register (PORT_C_OR)
Configuration Register 33 (021h) Read/Write
Reset Value: 0000 0000 (00h)

Note: This register is not used in 16/20 pin devices

Bit 7-6: Not Used

Bit 5-0: ORC5-0 Port C option (see Table 7.1)

Port C Data Direction Register (PORT_C_DDR)
Configuration Register 34 (022h) Read/Write
Reset Value: 0000 0000 (00h)

Note: This register is not used in 16/20 pin devices

Bit 7-6: Not Used

Bit 5-0: DDRC5-0 Port C direction (see Table 7.1)
 0: Port C pin configured as input
 1: Port C pin configured as output

Note: in order to achieve low current consuption,
the port pins must be configured as input pull-up,
even though they are not existing in the package.
For example in 20 pin devices, the pins PB6-7 and
PC0-7 must be configured in input pull-up.

Port C Alternate Fuction (PORT_C_AF)
Configuration Register 35 (023h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-6: Not Used

Bit 5: AFC5 Alternate Function PC5
0: Digital I/O

1: TRES
Bit 4: AFC4 Alternate Function PC4

0: Digital I/O
1: TX

Bit 3: AFC3 Alternate Function PC3
0: Digital I/O
1: SS

Bit 2: AFC2 Alternate Function PC2
0: Digital I/O
1: MISO

Bit 1: AFC1 Alternate Function PC1
0: Digital I/O
1: MOSI

Bit 0: AFC0 Alternate Function PC0
0: Digital I/O
1: SCK

7.6.2 Input Registers.

Port A Data Input Register (PORT_A_IN)
Input Register 0 (00h) Read only
Reset Value: XXXX XXXX

Bit 7-0: PAI7-0 Port A Input data

The logical level applied in the Port A pins,
configured as digital input, can be achieved by
reading this register.

Port B Data Input Register (PORT_B_IN)
Input Register 1 (01h) Read only
Reset Value: XXXX XXXX

(*) Not used in 16/20 pin package devices

(**) Not used in 16 pin package devices

7 0

- - ORC5 ORC4 ORC3 ORC2 ORC1 ORC0

7 0

- - DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0

7 0

- - AFC5 AFC4 AFC3 AFC2 AFC1 AFC0

7 0

PAI7 PAI6 PAI5 PAI4 PAI3 PAI2 PAI1 PAI0

7 0

PBI7* PBI6* PBI5** PBI4** PBI3** PBI2** PBI1 PBI0

ST52F510/F513/F514

55/106

Bit 7-0: PBI7-0 Port B Input data
The logical level applied in the Port B pins,
configured as digital input, can be achieved by
reading this register.

Port C Data Input Register (PORT_C_IN)
Input Register 2 (02h) Read only
Reset Value: XXXX XXXX

Note: This register is not used in 16/20 pin devices

Bit 7-6: Not Used

Bit 5-0: PCI5-0 Port C Input data

The logical level applied in the Port C pins,
configured as digital input, can be achieved by
reading this register.

7.6.3 Output Registers.

Port A Data Output Register (PORT_A_OUT)
Output Register 0 (00h) Write only
Reset Value: 0000 0000 (00h)

Bit 7-0: PAO7-0 Port A Output data

The logical values written in these register bits are
put in the Port A pins configured as digital output.

Port B Data Output Register (PORT_B_OUT)
Output Register 1 (01h) Write only
Reset Value: 0000 0000 (00h)

(*) Not used in 16/20 pin package devices
(**) Not used in 16 pin package devices

Bit 7-0: PBO7-0 Port B Input data
The logical values written in these register bits are
put in the Port B pins configured as digital output.

Port C Data Output Register (PORT_C_OUT)
Output Register 2 (02h) Write only
Reset Value: 0000 0000 (00h)

Note: This register is not used in 16/20 pin devices

Bit 7-6: Not Used

Bit 5-0: PCO5-0 Port C Input data

The logical values written in these register bits are
put in the Port C pins configured as digital output.

7 0

- - PCI5 PCI4 PCI3 PCI2 PCI1 PCI0

7 0

PAO7 PAO6 PAO5 PAO4 PAO3 PAO2 PAO1 PAO0

7 0

PBO7* PBO6* PBO5** PBO4** PBO3** PBO2** PBO1 PBO0

7 0

- - PCO5 PCO4 PCO3 PCO2 PCO1 PCO0

ST52F510/F513/F514

56/106

8 FUZZY COMPUTATION (DP)

The ST52F510/F513/F514 Decision Processor
(DP) main features are:
■ Up to 8 Inputs with 8-bit resolution;

■ 1 Kbyte of Program/Data Memory available to
store more than 300 to Membership Functions
(Mbfs) for each Input;

■ Up to 128 Outputs with 8-bit resolution;

■ Possibility of processing fuzzy rules with an
UNLIMITED number of antecedents;

■ UNLIMITED number of Rules and Fuzzy Blocks.

The limits on the number of Fuzzy Rules and
Fuzzy program blocks are only related to the
Program/Data Memory size.

8.1 Fuzzy Inference
The block diagram shown in Figure 8.1 describes
the different steps performed during a Fuzzy
algorithm. The ST52F510/F513/F514 Core allows
for the implementation of a Mamdami type fuzzy
inference with crisp consequents. Inputs for fuzzy
inference are stored in 8 dedicated Fuzzy input
registers. The LDFR instruction is used to set the
Input Fuzzy registers with values stored in the
Register File. The result of a Fuzzy inference is
stored directly in a location of the Register File.

8.2 Fuzzyfication Phase
In this phase the intersection (alpha weight)
between the input values and the related Mbfs
(Figure 8.2) is performed.
Eight Fuzzy Input registers are available for Fuzzy
inferences.

Figure 8.1 Fuzzy Inference

Figure 8.2 Alpha Weight Calculation

After loading the input values by using the LDFR
assembler instruction, the user can start the fuzzy
inference by using the FUZZY assembler
instruction. During fuzzyfication: input data is
transformed in the activation level (alpha weight) of
the Mbf’s.

8.3 Inference Phase
The Inference Phase manages the alpha weights
obtained during the fuzzyfication phase to compute
the truth value (ω) for each rule.
This is a calculation of the maximum (for the OR
operator) and/or minimum (for the AND operator)
performed on alpha values according to the logical
connectives of Fuzzy Rules.
Several conditions may be linked together by
linguistic connectives AND/OR, NOT operators
and brackets.
The truth value ω and the related output singleton
are used by the Defuzzyfication phase, in order
to complete the inference calculation.

11

1m

n1

nm

FUZZYFICATION INFERENCE
PHASE

DEFUZZYFICATION

N rules

N rules -1

2

1

Input Values Output Values

1

αij

j-th Mbf

i-th INPUT VARIABLE

ST52F510/F513/F514

57/106

Figure 8.3 Fuzzyfication

8.4 Defuzzyfication
In this phase the output crisp values are
determined by implementing the consequent part
of the rules.
Each consequent Singleton Xi is multiplied by its
weight values ωi, calculated by the Decision
processor, in order to compute the upper part of
the Defuzzyfication formula.
Each output value is obtained from the consequent
crisp values (Xi) by carrying out the following
Defuzzyfication formula:

where:
i = identifies the current output variable
N = number of the active rules on the current
output
ωij = weight of the j-th singleton
Xij = abscissa of the j-th singleton

The Decision Processor outputs are stored in the
RAM location i-th specified in the assembler
instruction OUT i.

8.5 Input Membership Function
The Decision Processor allows the management of
triangular Mbfs. In order to define an Mbf, three
different parameters must be stored on the
Program/Data Memory (see Figure 8.4):
■ the vertex of the Mbf: V;

■ the length of the left semi-base: LVD;

■ the length of the right semi-base: RVD;

In order to reduce the size of the memory area and
the computational effort the vertical range of the
vertex is fixed between 0 and 15 (4 bits)
By using the previous memorization method
different kinds of triangular Membership Functions
may be stored. Figure 8.5 shows some examples
of valid Mbfs that can be defined in ST52F510/
F513/F514.
Each Mbf is then defined storing 3 bytes in the first
Kbyte of the Program/Data Memory.
The Mbf is stored by using the following instruction:

MBF n_mbf lvd v rvd

where:
n_mbf is a tag number that identifies the Mbf
lvd, v, and rvd are the parameters that describe the
Mbf’s shape as described above.

Figure 8.4 Mbfs Parameters

Input 1X1

α1

Input 2X2

α2

OR = Max

IF INPUT 1 IS X1 OR INPUT 2 IS X2 THEN

Input 1X1

α1

Input 2X2

α2

IF INPUT 1 IS X1 AND INPUT 2 IS X2 THEN

Yi

Xijωij

j

N

∑

ωij

j

N

∑

---------------------=

X

15

LVD RVD

V

15

0

0

Input Mbf

Output Singleton

Output Variable

Input Variable

w

ST52F510/F513/F514

58/106

Figure 8.5 Example of valid Mbfs

8.6 Output Singleton
The Decision Processor uses a particular kind of
membership function called Singleton for its output
variables. A Singleton doesn’t have a shape, like a
traditional Mbf, and is characterized by a single
point identified by the couple (X, w), where w is
calculated by the Inference Unit as described
earlier. Often, a Singleton is simply identified with
its Crisp Value X.

Figure 8.6 Output Membership Functions

8.7 Fuzzy Rules
Rules can have the following structures:
if A op B op C...........then Z
if (A op B) op (C op D op E...)then Z
where op is one of the possible linguistic operators
(AND/OR)
In the first case the rule operators are managed
sequentially; in the second one, the priority of the
operator is fixed by the brackets.
Each rule is codified by using an instruction set, the
inference time for a rule with 4 antecedents and 1
consequent is about 3 microseconds at 20 MHz.
The Assembler Instruction Set used to manage the
Fuzzy operations is reported in the table below.

1

i-th OUTPUT0 X
ij

X
i0

X
in

ω
i0

ω
ij

ω
in

j-th Singleton

Table 8.1 Fuzzy Instructions Set

Instruction Description

MBF n_mbf Ivd v rvd Stores the Mbf n_mbf with the shape identified by the parameters Ivd, v and rvd

IS n m Fixes the alpha value of the input n with the Mbf m

ISNOT n m Calculates the complementary alpha value of the input n with the Mbf m.

FZAND Implements the Fuzzy operation AND

FZOR Implements the Fuzzy operation OR

CON crisp Multiplies the crisp value with the last ω weight

OUT n_out
Performs Defuzzyfication and stores the currently Fuzzy output in the register
n_out

FUZZY Starts the computation of a sigle fuzzy variable

() Modify the priority in the rule evaluation

ST52F510/F513/F514

59/106

Example 1:

IF Input1 IS NOT Mbf1 AND Input4 is Mbf12 OR Input3 IS Mbf8 THEN Crisp1

is codified by the following instructions:

Example 2, the priority of the operator is fixed by the brackets:

IF (Input3 IS Mbf1 AND Input4 IS NOT Mbf15) OR (Input1 IS Mbf6 OR Input6 IS NOT Mbf14) THEN Crisp2

At the end of the fuzzy rules related to the current Fuzzy Variable, by using the instruction OUT reg, the
specified register is written with the computed value. Afterwards, the control of the algorithm returns to the
CU. The next Fuzzy Variable evaluation must start again with a FUZZY instruction.

ISNOT 1 1 calculates the NOT α value of Input1 with Mbf1 and stores the result in internal registers

FZAND implements the operation AND between the previous and the next alpha value evaluated

IS 4 12 fixes the α value of Input4 with Mbf12 and stores the result in internal registers

FZOR implements the operation OR between the previous and the next alpha value evaluated

IS 3 8 fixes the α value of Input3 with Mbf8 and stores the result in internal registers

CON crisp1 multiplies the result of the last Ω operation with the crisp value crisp1

(parenthesis open to change the priority

IS 3 1 fixes the α value of Input3 with Mbf1 and stores the result in internal registers

FZAND implements the operation AND between the previous and the next alpha value evaluated

ISNOT 4 15 calculates the NOT α value of Input4 with Mbf15 and stores the result in internal registers

) parenthesis closed

FZOR implements the operation OR between the previous and the next alpha value evaluated

(parenthesis open to change the priority

IS 1 6 fixes the α value of Input1 with Mbf6 and stores the result in internal registers

FZOR implements the operation OR between the previous and the next alpha value evaluated

ISNOT 2 14 calculates the NOT α value of Input6 with Mbf14 and stores the result in internal registers

) parenthesis closed

CON crisp2 multiplies the result of the last Ω operation with the crisp value crisp2

ST52F510/F513/F514

60/106

9 INSTRUCTION SET

ST52F510/F513/F514 supplies 107 (98 + 9 Fuzzy)
instructions that perform computations and control
the device. Computational time required for each
instruction consists of one clock pulse for each
Cycle plus 2 clock pulses for the decoding phase.
Total computation time for each instruction is
reported in Table 9.1
The ALU of ST52F510/F513/F514 can perform
multiplication (MULT) and division (DIV).
Multiplication is performed by using 8 bit operands
storing the result in 2 registers (16 bit values), see
Figure 2.3.
Division is performed between a 16 bit dividend
and an 8 bit divider, the result and the remainder
are stored in two 8-bit registers (see Figure 2.4).

9.1 Addressing Modes
ST52F510/F513/F514 instructions allow the
following addressing modes:
■ Inherent: this instruction type does not require

an operand because the opcode specifies all the
information necessary to carry out the
instruction. Examples: NOP, SCF.

■ Immediate: these instructions have an operand
as a source immediate value. Examples: LDRC,
ADDI.

■ Direct: the operands of these instructions are
specified with the direct addresses. The

operands can refer (according to the opcode) to
addresses belonging to the different addressing
spaces. Example: SUB, LDRE.

■ Indirect: data addresses that are required are
found in the locations specified as operands.
Both source and/or destination operands can be
addressed indirectly. The operands can refer,
(according to the opcode) to addresses
belonging to different addressing spaces.
Examples: LDRR(reg1),(reg2);

 LDER mem_addr,(reg1).
■ Bit Direct: operands of these instructions directly

address the bits of the specified Register File
locations. Examples: BSET, BTEST.

9.2 Instruction Types
ST52F510/F513/F514 supplies the following
instruction types:
■ Load Instructions

■ Arithmetic and Logic Instructions

■ Bitwise instructions

■ Jump Instructions

■ Interrupt Management Instructions

■ Control Instructions

The instructions are listed in Table 9.1

Table 9.1 Instruction Set

Load Instructions

Mnemonic Instruction Bytes Cycles Z S C

BLKSET BLKSET const 2 (*) - - -

GETPG GETPG regx 2 7 - - -

LDCE LDCE confx,memy 3 8/9 - - -

LDCI LDCI confx, const 3 7 - - -

LDCNF LDCNF regx, conf 3 7 - - -

LDCR LDCR confx, regy 3 8 - - -

LDER LDER memx, regy 3 10 - - -

LDER LDER (regx),(regy) 3 11 - - -

LDER LDER (regx), regy 3 10 - - -

LDER LDER memx,(regy) 3 11 - - -

LDFR LDFR fuzzyx, regy 3 8 - - -

ST52F510/F513/F514

61/106

LDPE LDPE outx, memy 3 8/9 - - -

LDPE LDPE outx, (regy) 3 9/10 - - -

LDPI LDPI outx, const 3 7 - - -

LDPR LDPR outx, regy 3 8 - - -

LDRC LDRC regx, const 3 7 - - -

LDRE LDRE regx, memy 3 8/9 - - -

LDRE LDRE (regx), (regy) 3 10/11 - - -

LDRE LDRE (regx), memy 3 9/10 - - -

LDRE LDRE regx, (regy) 3 9/10 - - -

LDRI LDRI regx, inpx 3 7 - - -

LDRR LDRR regx, regy 3 9 - - -

LDRR LDRR (regx), (regy) 3 10 - - -

LDRR LDRR (regx), regy 3 9 - - -

LDRR LDRR regx, (regy) 3 10 - - -

PGSET PGSET const 2 4 - - -

PGSETR PGSETR regx 2 5 - - -

POP POP regx 2 7 - - -

PUSH PUSH regx 2 8 - - -

Load Instructions (continued)

Arithmetic Instructions

Mnemonic Instruction Bytes Cycles Z S C

ADD ADD regx, regy 3 9 I - I

ADDC ADDC regx, regy 3 9 I - I

ADDI ADDI regx, const 3 8 I - I

ADDIC ADDIC regx, const 3 8 I - I

ADDO ADDO regx, regy 3 11 I I I

ADDOC ADDOC regx, regy 3 11 I I I

ADDOI ADDOI regx, const 3 10 I I I

ADDOIC ADDOICregx,const 3 10 I I I

AND AND regx, regy 3 9 I - -

ANDI ANDI regx,const 3 8 I - -

CP CP regx, regy 3 8 I I -

CPI CPI regx,const 3 7 I I -

DEC DEC regx 2 7 I I -

ST52F510/F513/F514

62/106

DIV DIV regx, regy 3 16 I I I

INC INC regx 2 7 I - I

MIRROR MIRROR regx 2 7 I - -

MULT MULT regx, regy 3 11 I - -

NOT NOT regx 2 7 I - -

OR OR regx, regy 3 9 I - -

ORI ORI regx, const 3 8 I - -

SUB SUB regx, regy 3 9 I I -

SUBI SUBI regx, const 3 8 I I -

SUBIS SUBIS regx, const 3 8 I I -

SUBO SUBO regx, regy 3 11 I I I

SUBOI SUBOI regx, const 3 10 I I I

SUBOIS SUBOISregx,const 3 10 I I I

SUBOS SUBOS regx, regy 3 11 I I I

SUBS SUBS regx, regy 3 9 I I -

RCF RCF 1 4 - - I

RSF RSF 1 4 - I -

RZF RZF 1 4 I - -

SCF SCF 1 4 - - I

SSF SSF 1 4 - I -

SZF SZF 1 4 I - -

XOR XOR regx, regy 3 9 I - -

XORI XORI regx, cons 3 8 I - -

Bitwise Instructions

Mnemonic Instruction Bytes Cycles Z S C

ASL ASL regx 2 7 I - I

ASR ASR regx 2 7 I I -

BNOT BNOT regx, bit 3 8 I - -

BRES BRES regx, bit 3 8 I - -

BSET BSET regx, bit 3 8 I - -

BTEST BTEST regx, bit 3 7 I - -

MTEST MTEST regx,const 3 7 I - -

RLC RLC regx 2 7 I - I

Arithmetic Instructions (continued)

ST52F510/F513/F514

63/106

ROL ROL regx 2 7 I - I

ROR ROR regx 2 7 I I -

RRS RRS regx 2 7 I I -

Jump Instructions

Mnemonic Instruction Bytes Cycles Z S C

CALL CALL addr 3 11 - - -

JP JP addr 3 6 - - -

JPC JPC addr 3 5/6 - - -

JPNC JPNC addr 3 5/6 - - -

JPNS JPNS addr 3 5/6 - - -

JPNZ JPNZ addr 3 5/6 - - -

JPS JPS addr 3 5/6 - - -

JPZ JPZ addr 3 5/6 - - -

RET RET 1 8 - - -

Interrupt Management Instructions

Mnemonic Instruction Bytes Cycles Z S C

HALT HALT 1 4/13 - - -

MEGI MEGI 1 6/11 - - -

MDGI MDGI 1 5 - - -

RETI RETI 1 9 - - -

RINT RINT INT 2 6 - - -

UDGI UDGI 1 5 - - -

UEGI UEGI 1 6/11 - - -

TRAP TRAP 1 9 - - -

WAITI WAITI 1 7/10 - - -

Bitwise Instructions (continued)

Control Instructions

Mnemonic Instruction Bytes Cycles Z S C

FUZZY FUZZY 1 4 - - -

NOP NOP 1 5 - - -

WDTRFR WDTRFR 1 6 - - -

WDTSLP WDTSLP 1 5 - - -

ST52F510/F513/F514

64/106

Notes:
regx, regy: Register File Address
memx, memy: Program/Data Memory Addresses
confx, confy: Configuration Registers Addresses
outx: Output Registers Addresses
inpx: Input Registers Addresses
const: Constant value
fuzzyx: Fuzzy Input Registers
I flag affected
- flag not affected

(*) The instruction BLKSET determines the start of a 32 byte block writing in Flash or EEPROM Program/
Data Memory. During this phase (about 4 ms), the CPU is stopped to executing program instructions. The
duration of the BLKSET instruction can be identified with this time.

ST52F510/F513/F514

65/106

10 10-BIT A/D CONVERTER

10.1 Introduction
ST52F510/F513/F514 A/D Converter is a 10-bit
analog to digital converter with up to 8 analog
inputs. The A/D converter offers a typical
conversion time of 10 µs in fast mode and of 20 µs
in slow mode. This period also includes the time of
the integral Sample and Hold circuitry, which
minimizes the need for external components and
allows quick sampling of the signal for the
minimum warping effect and integral conversion
error.
In addition the peripheral performs a calibration
procedure in order to get the maximum precision
allowed in the data of conversion. The calibration
procedure is performed in two phases: the pre-
charging phase and the tuning phase. The pre-
charging process can be executed, after the
peripheral start, to set-up the internal references
and to speed-up the tuning process. The tuning
process is carried-out during the channels
conversion.

Note: The user must be take in account both the
pre-charging time and some dummy conversion (at
least 20) for the tuning before starting the data
acquisition. It is recommended to repeat this
procedure at the start-up and after a long time
peripheral stop.

Figure 10.1 A/D Converter Structure

The pre-charging process starts by starting the
peripheral by setting to 1 the STR bit of the AD_CR
Configuration Register. To speed-up the
calibration procedure, the pre-charging phase can
be skipped when not necessary (for example when
consecutive single conversions are performed).
The user can disable the pre-charging by setting
the PRECH bit in the AD_CR Configuration
Register.
The A/D peripheral converts the input voltage with
a process of successive approximations using a
fixed clock frequency derived from the 10 MHz
internal oscillator, divided by a factor that depends
on the speed mode: about 1.6 MHz in Fast Mode
and 800 kHz in Slow Mode. The speed mode is
chosen by the SCK bit of the AD_CR Configuration
Register.
The conversion range is found between the analog
VSS and the A/D VREF references. The VREF can
be either internal, derived from the VDD, or external
by using the VREF pin. The external reference
voltage allows the application of more precise and
stable reference voltages. The two modes are
selected by using the REF bit of the AD_CR
Configuration Register.

Remark: the voltage applied to the VREF pin must
be in the range VSS-VDD.

The external reference voltage VREF is applied to
the analog pin PB0. This pin shares the alternate
functions with the first analog channel Ain0: if the

CONFIGURATION REGISTERS

CONTROL
LOGIC

ANALOG
MUX

Ain0

Ain1

Ain2

Ain3

Ain4

Ain5

Ain6

Ain7

VREF

VDD

AUTO-ZERO /
AUTO-CALIBRATION

COMPARATOR

SUCCESSIVE
APPROXIMATION

REGISTER

SAMPLE
&

HOLD

DAC

RESISTIVE
REFERENCE

LADDER

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

STATUS REGISTER

INPUT REGISTERS

VREF

SUCCESSIVE APPROXIMATION A/D CONVERTER

INT1REF CH0 CH1 CH2

: 6

: 12

Internal
Oscillator
10 MHz

A/D
clock

SCK SEQ POW STRCONT INT0RESOL PRECH

ST52F510/F513/F514

66/106

external reference mode is chosen the Ain0
channel is not used and the first channel of the
conversion sequence becomes Ain1.
The converter uses a fully differential analog input
configuration for a better noise immunity and
precision performances.
Up to 8 multiplexed Analog Inputs are available. A
single signal or a group of signals can be
converted sequentially by simply programming the
starting address of the last analog channel to be
converted. Single or continuous conversion modes
are available.
The result of the conversion of each A/D channel is
stored in the 8-bit Input Register pairs (addresses
from 41 to 56 (029h-038h)) according to the 8-bit or
10-bit mode. The resolution of conversion (8 or 10
bit) can be chosen by programming the RESOL bit
of the AD_CR Configuration Register. In 8-bit
mode the eight most significative bits (9:2) of the
result of conversion is stored in the least
significative byte of the register pair and the most
significative is put to zero. In 10-bit mode the two
most significative bits (9:8) are stored in the most
significative byte of the register pair; the other bits
(7:0) are stored in the least significative byte.
In 10-bit mode the result of the conversion must be
read in two steps: the MSB and the LSB. The
peripheral has been designed to avoid the side
effects that can occur when the register are
modified between the reading of the two bytes. In
fact the latching of the input register pair is
disabled after the reading of the first byte and it is
enabled again after the reading of the second byte.
User should pay attention to complete the two
readings to guarantee the data of the conversion to
be latched.
When the converted signal is higher than VREF, an
overflow occurs. In this case the 8/10 bits result are
all set to 1 and the A/D Overflow Register bit
(address 39 027h) corresponding to the channel is
set to 1. The bit is reset at the next conversion
having no overflow occurrence.
ST52F510/F513/F514 Interrupt Unit provides one
maskable channel for the End of Conversion and
for the overflow control. It is possible to set the
interrupt source on EOC or on overflow or on both
by programming the INT0 and INT1 bits in the
AD_CR Configuration Registers.

Note: the A/D Converter interrupts are not enabled
unless the bit 0 (MSKAD) of the Configuration
Register 0 (INT_MASK) is enabled (set to 1).

A Power-Down programmable bit (POW) allows
the A/D converter to be set to a minimum
consumption idle status. A stabilization time is
required, after the Power On, before accurate
conversions can be performed.

10.2 Functional Description
The conversion is monotonic, meaning that the
result never decreases if the analog input doesn’t
and never increases if the analog input doesn’t.
If input voltage is less than Vss (voltage supply
low) then the result is equal to 00h.
The A/D converter is linear and the digital result of
the conversion is provided by the following
formula:

 Where Reference Voltage is Vref - Vss.
The accuracy of the conversion is described in the
Electrical Characteristics Section of the device
datasheets.
The A/D converter is not affected by the WAIT
mode.
When the ICU enters HALT mode with the A/D
converter enabled, the converter is disabled until
HALT mode is exited and the start-up delay has
elapsed.

10.3 Operating Modes
Four main operating modes can be selected by
setting the values of the CONT and SEQ bit in the
A/D Configuration Register AD_CR.

10.3.1 One Channel Single Mode. In this mode
(CONT=0, SEQ=0), the A/D provides an EOC
signal after the end of the conversion of the
specified channel; then the A/D waits for a new
start event. The channel is identified by the bits
CH2-CH0 in the Configuration Register AD_CR,
while the bit STR is used to command the Start/
Stop.

10.3.2 Multiple Channels Single Mode. In this
mode (CONT=0, SEQ=1) the A/D provides an
EOC signal after the end of the channels sequence
conversion identified by the three AD_CR
Configuration Register bits CH2-0; then A/D waits
for a new start event.

10.3.3 One Channel Continuous Mode. In this
mode (CONT=1, SEQ=0) a continuous conversion
flow is entered by a start event on the selected
channel. At the end of each conversion, the
relative Input Register is updated with the last
conversion result, while the former value is lost.
The conversion continues until a stop command is
executed by writing a ‘0’ in the apposite AD_CR
Configuration Register bit STR.

Digitalresult
255 InputVoltage×
ReferenceVoltage
--=

ST52F510/F513/F514

67/106

10.3.4 Multiple Channels Continuous Mode.
In this mode (CONT=1, SEQ=1) a continuous
conversion flow is entered by a start event on the
selected channel sequence. The CH2-0 bits
indicate the last channel of the sequence.
At the end of each conversion the relative Input
Registers are updated with the last conversion
results, while the former values are lost.
The conversion continues until a stop command is
executed by writing a ‘0’ in the apposite AD_CR
Configuration Register bit STR.

10.4 Power Down Mode
Before enabling any A/D operation modes, set the
Power On bit (POW) of the Configuration Register
AD_CR to ‘1’ and then start the A/D Converter by
setting the STR bit. It is suggested to execute the
pre-charging after the Power on to speed-up the
auto calibration process. Clearing the Power On bit
is useful when the A/D is not used, reducing the
total chip power consumption. This state is also the
reset configuration and it is forced by hardware
when the core is in HALT state (after a HALT
instruction execution).

10.5 A/D Converter Register Description
The following registers are related to the use of the
A/D Converter.

10.5.1 A/D Converter Configuration Registers.

A/D Converter Control Register 1 (AD_CR1)
Configuration Register 8 (08h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-5: CH2-CH0 Channel Number
The number specified identifies the number
of channels to be converted (Multiple
Channel mode) or the channel to be
converted (One Channel mode)

Bit 4: SCK A/D speed mode
0: Slow mode (800 kHz)
1: Fast mode (1600 kHz)

Bit 3: SEQ One/Multiple Channel Mode
0: One Channel Mode
1: Multiple Channel Mode

Bit 2: POW A/D Converter Power Down/Up
0: Power down
1: Power up

Bit 1: CONT Single/Continuous Mode
0: Single Mode
1: Continuous Mode

Bit 0: STR A/D Converter Start bit
0: A/D Converter stopped
1: A/D Converter started

A/D Converter Control Register 2 (AD_CR2)
Configuration Register 47 (02Fh) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-5: not used

Bit 4: PRECH Pre-charging process on/off
0: Pre-charge on (default)
1: Pre-charge off

Bit 3: REF Voltage Reference (VREF) source
0: Internal from Vdd
1: External from VREF pin

Bit 2: RESOL 8/10 bits resolution
0: 10 bits
1: 8 bits

Bit 1: INT1 Overflow interrupt mask
0: interrupt disabled
1: interrupt enabled (if MSKAD=1)

Bit 0: INT0 End of Conversion interrupt mask
0: interrupt disabled
1: interrupt enabled (if MSKAD=1)

7 0

CH2 CH1 CH0 SCK SEQ POW CONT STR

7 0

- - - PRECH REF RESOL INT1 INT0

ST52F510/F513/F514

68/106

10.5.2 Input Registers.

A/D Converter Overflow Register (AD_OVF)
Input Register 39 (027h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: OVF7-OVF0 Overflow Flag
0: no overflow occurred in the last conversion
1: overflow occurred in the last conversion

A/D Converter Data Registers
The converted digital values of the analog level
applied to AIN0-7 pins, are buffered in the following
register couples:

A/D Channel 0 data MSB (CHAN0_H)
Input Register 41 (029h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 0 data LSB (CHAN0_L)
Input Register 42 (02Ah) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 1 data MSB (CHAN1_H)
Input Register 43 (02Bh) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 1 data LSB (CHAN1_L)
Input Register 44 (02Ch) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 2 data MSB (CHAN2_H)
Input Register 45 (02Dh) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 2 data LSB (CHAN2_L)
Input Register 46 (02Eh) Read only

Reset Value: 0000 0000 (00h)

A/D Channel 3 data MSB (CHAN3_H)
Input Register 47 (02Fh) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 3 data LSB (CHAN3_L)
Input Register 48 (030h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 4 data MSB (CHAN4_H)
Input Register 49 (031h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 4 data LSB (CHAN4_L)
Input Register 50 (032h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 5 data MSB (CHAN5_H)
Input Register 51 (033h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 5 data LSB (CHAN5_L)
Input Register 52 (034h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 6 data MSB (CHAN6_H)
Input Register 53 (035h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 6 data LSB (CHAN6_L)
Input Register 54 (036h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 7 data MSB (CHAN7_H)
Input Register 55 (037h) Read only
Reset Value: 0000 0000 (00h)

A/D Channel 7 data LSB (CHAN7_L)
Input Register 56 (038h) Read only
Reset Value: 0000 0000 (00h)

7 0

OVF7 OVF6 OVF5 OVF4 OVF3 OVF2 OVF1 OVF0

ST52F510/F513/F514

69/106

11 WATCHDOG TIMER

11.1 Functional Description
The Watchdog Timer (WDT) is used to detect the
occurrence of a software fault, usually generated
by external interference or by unforeseen logical
conditions, which causes the application program
to abandon its normal sequence. The WDT circuit
generates an ICU reset on expiry of a programmed
time period, unless the program refreshes the
WDT before the end of the programmed time
delay. Sixteen different delays can be selected by
using the WDT configuration register.
After the end of the delay programmed by the
configuration register, if the WDT is active, it starts
a reset cycle pulling the reset signal low.
Once the WDT is activated, the application
program has to refresh the counter (by the
WDTRFR instruction) during normal operation in
order to prevent an ICU reset.
In ST52F510/F513/F514 devices it is possible to
choose between “Hardware” or “Software”
Watchdog. The Hardware WDT allows the
counting to avoid unwanted stops for external
interferences. The first mode is always enabled
unless the Option Byte 4 (WDT_EN) is written with
a special code (10101010b): only this code can
switch the WDT in “Software” Mode, the other 255
possibilities keep the “Hardware” Mode enabled.
The WDT is started and refreshed by using the
WDTRFR instruction. When the software mode is
enabled, the WDTSLP instruction stops the WDT
avoiding timeout resets.
When the WDT is in Hardware Mode, neither the
WDTSLP instruction nor external interference can
stop the counting. The “Hardware” WDT is always
enabled after a Reset.

Figure 11.1 Watchdog Block Diagram

The working frequency of WDT (PRES CLK in the
Figure 11.1) is equal to the clock master. The clock
master is divided by 500, obtaining the WDT CLK
signal that is used to fix the timeout of the WDT.
According to the WDT_CR Configuration Register
values, a WDT delay between 0.1ms and 937.5ms
can be defined when the clock master is 5 MHz. By
changing the clock master frequency the timeout
delay can be calculated according to the
configuration register values. The first 4 bits of the
WDT_CR register are used, obtaining 16 different
delays.

11.2 Register Description

SW Watchdog Enable (WDT_EN)
Option Byte 4 (04h)
Reset Value: 0000 0000 (00h)

Bit 7-0: WDTEN7-0 SW Watchdog Enable byte
Writing the code 10101010 in this byte the
Software Watchdog mode is enabled.

D0D1D2D3

Configuration Register

RESET

WDTRFR

PRES CLK = CLK MASTER

WDTSLP

PRESCALER

WDT

RESET

GENERATOR

RESETWTD CLK

Table 11.1 Watchdog Timing Range (5 MHz)

WDT timeout period (ms)

min 0.1

max 937.5

7 0

WDTEN7 WDTEN6 WDTEN5 WDTEN4 WDTEN3 WDTEN2 WDTEN1 WDTEN0

ST52F510/F513/F514

70/106

Watchdog Control Register (WDT_CR)
Configuration Register 7 (07h) Read/Write
Reset Value: 0000 0001 (00h)

Bit 7-4: Not Used

Bit 3-0: D3-0 Watchdog Clock divisor factor bits
The Watchdog Clock (WDT CLK) is divided
by the numeric factor determined by these
bits, according with Table 11.2 and the
following formula:7 0

- - - - D3 D2 D1 D0 Timeout ms() 5 10
5

DivisionFactor××
Clock MHz()

---=

Table 11.2 Watchdog Timeout configuration examples

WDT_CR(3:0) Division Factor
Timeout Values (ms)

5 MHz 10 MHz 20MHz

0000 1 0.1 0.05 0.025

0001 625 62.5 31.25 15.625

0010 1250 125 62.5 31.25

0011 1875 187.5 93.75 46.875

0100 2500 250 125 62.5

0101 3125 312.5 156.25 78.125

0110 3750 375 187.5 93.75

0111 4375 437.5 218.75 109.375

1000 5000 500 250 125

1001 5625 562.5 281.25 140.625

1010 6250 625 312.5 156.25

1011 6875 687.5 343.75 171.875

1100 7500 750 375 187.5

1101 8125 812.5 406.25 203.125

1110 8750 875 437.5 218.75

1111 9375 937.5 468.75 234.375

ST52F510/F513/F514

71/106

12 PWM/TIMERS

12.1 Introduction
ST52F510/513/514 offers two on-chip PWM/Timer
peripherals. All ST52F510/513/514 PWM/Timers
have the same internal structure. The timer
consists of a 16-bit counter with a 16-bit
programmable Prescaler, giving a maximum count
of 232 (see Figure 12.1).
Each timer has two different working modes, which
can be selected by setting the correspondent bit
TxMOD of the PWMx_CR1 Configuration
Register: Timer Mode and PWM (Pulse Width
Modulation) Mode.
All the Timers have Autoreload Functions; in PWM
Mode the reload value can be set by the user.
Each timer output is available on the apposite
external pins configured in Alternate Function and
in one of the Output modes.
PWM/Timer 0 can also use external START/STOP
signals in order to perform Input capture and
Output compare, external RESET signal, and
external CLOCK to count external events: TSTRT,
TRES and TCLK pins. In addition, the START/
STOP and RESET signals have configurable
polarity (falling or rising edge).

Remark: To use TRES, TSTRT, TCLK external
signals the related pins must be configured in
Alternate Function and in one of Input modes.

For each timer, the contents of the 16-bit counter
are incremented on the Rising Edge of the 16-bit
prescaler output (PRESCOUT) and it can be read
at any instant of the counting phase by accessing
the Input Registers PWMx_COUNT_IN_x; the
value is stored in two 8-bit registers (MSB and
LSB) for each PWM/Timer.

Figure 12.1 PWM/Timer Counter block diagram

The Input Registers couple PWMx_CAPTURE_x
store the counter value after the last Stop signal
(only Timer Mode). The counter value is not stored
after a Reset Signal.
The peripheral status can also be read from the
Input Registers (one for each Timer). These
registers report START/STOP, SET/RESET
status, TxOUT signal and the counter overflow
flag. This last signal is set after the first EOC and it
is reset by a Timer RESET (internal or external).

12.2 Timer Mode
Timer Mode is selected writing 0 in the TxMOD bit.
Each Timer requires three signals: Timer Clock
(TMRCLKx), Timer Reset (TxRES) and Timer Start
(TxSTRT) (see Figure 12.1). Each of these signals
can be generated internally, and/or externally only
for Timer 0, by using TRES, TSTRT and TCLK
pins.
The Prescaler output (PRESCOUT) increments
the Counter value on the rising edge. PRESCOUT
is obtained from the internal clock signal (CLKM)
or, only for TIMER0, from the external signal
provided on the apposite pin.

Note: The external clock signal applied on the
TCLK pin must have a frequency that is at least two
times smaller than the internal master clock.

The prescaler output period can be selected by
setting the TxPRESC bits with one of the 17
division factors available. TMRCLK frequency is
divided by a factor equal to the power of two of the
prescaler values (up to 216).
TxRES resets the content of the 16-bit counter to
zero. It is generated by writing 0 in the TxRES bit
of the PWMx_CR1 Configuration Register and/or it
can be driven by the TRES pin if configured (only
Timer0).

BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 14 BIT 15

BIT 3BIT 0 BIT 1 BIT 2 BIT 4 BIT 5

17 - 1 MULTIPLEXER

16-BIT PRESCALER

16-BIT COUNTER

PRESCx

TMRCLKx

PRESCOUT

TxRES

TxSTRTBIT 14 BIT 15

ST52F510/F513/F514

72/106

Figure 12.2 Timer 0 External Start/Stop Mode

TxSTRT signal starts/stops the Timer from
counting only if the peripherals are configured in
Timer mode. The Timers are started by writing 1 in
the TXSTRT bit of the PWMx_CR1 and are
stopped by writing 0. This signal can be generated
internally and/or externally by forcing the TSTRT
pin (only TIMER0).
TIMER 0 START/STOP can be given externally on
the TSTRT pin. In this case, the T0STRT signal
allows the user to work in two different configurable
modes (see Figure 12.2):
■ LEVEL (Time Counter): If the T0STRT signal is

high, the Timer starts counting. When the
T0STRT is low the timer stops counting and the
16-bit current value is stored in the
PWM0_COUNT_IN_x Input Registers couple.

■ EDGE (Period Counter): After reset, on the first
T0STRT rising edge, TIMER 0 starts counting
and at the next rising edge it stops. In this
manner the period of an external signal may be
measured.

The same above mentioned modes, can be used
to reset the Timer0 by using the TRES pin signal.
The polarity of the T0SRTR Start/Stop signal can
be changed by setting the STRPOL and RESPOL
bits in the INT_POL Configuration Register (01h bit
3 and 4). When these bits are set, the PWM/Timer
0 is Started/Set on the low level or in the falling
edge of the signal applied in the pins.
The Timer output signal, TxOUT, is a signal with a
frequency equal to the one of the 16 bit-Prescaler
output signal, PRESCOUTx, divided by a 16-bit
counter set by writing the Output Register couple
PWMx_COUNT_OUT_x.

Note: the contents of these registers upgrades the
Timer counter after it stops counting. Since the
register couple is written in two steps this can
cause side effects. In order to avoid this, the user
should write the MSB before writing the LSB:
actually, the 16-bit value is latched in parallel when
the LSB is written. By writing only the LSB (and
MSB equal to 0), the PWM/Timer is used as with
an 8 bit counter.

Warning: in Timer Mode the Reload Register
couple PWMx_RELOAD_x (see PWM mode) must
be set to the higher value FFFFh (65535)
otherwise it can affect the count duration.

There can be two types of TxOUT waveforms:
■ type 1: TxOUT waveform equal to a square

wave with a 50% duty-cycle

■ type 2: TxOUT waveform equal to a pulse signal
with the pulse duration equal to the Prescaler
output signal.

Figure 12.3 TxOUT Signal Types

Level

Edge

start stop start

start

stop

start

0 1 104432

Reset

C lock

Counted
Value

Timer Output

Type 1

Type 2

Prescout*Counter

ST52F510/F513/F514

73/106

Figure 12.4 PWM Mode with Reload

12.3 PWM Mode
The PWM working mode for each timer is obtained
by setting the TxMOD bit of the Configuration
Register PWMx_CR1.
The TxOUT signal in PWM Mode consists of a
signal with a fixed period, whose duty cycle can be
modified by the user.
The TxOUT period is fixed by setting the 16-bit
Prescaler bits (TxPRESC) in the PWMx_CR2 and
the 16-bit Reload value by writing the relative
Output Registers couple PWMx_RELOAD_x. The
16-bit Prescaler divides the master clock CLKM by
powers of two, determining the maximum length
period.
Reload determines the maximum value that the
counter can count before starting a new period.
The use of the two 16-bit values allows the TxOUT
period to be set with more precision when needed.
By setting the Reload value the counting resolution
decreases. In order to obtain the maximum
resolution, Reload value should be set to 0FFFFh
and the period corresponds to the one established
by the Prescaler value.
The value set in the 16-bit counter by writing the
Counter Output Registers couple, determines the
duty-cycle: when count reaches the Counter value
the TxOUT signal changes from high to low level.
The period of the PWM signal is obtained by using
the following formula:
T=PWMx-RELOAD * 2TxPRESCTMRCLKx
where TxPRES equals the value set in the
TxPRESC bits of the PWMx_CR2 Configuration
Register and TMRCLKx is the period of the Timer
clock that drives the Prescaler.
The duty cycle of the PWM signal is obtained by
the following formula:

Note: the PWM_x_COUNT value must be lower
than or equal to the PWM_X_RELOAD value.
When it is equal, the TxOUT signal is always at
high level. If the Output Register PWM_x_COUNT
is 0, TxOUT signal is always at a low level.

By using a 24 MHz clock a PWM frequency that is
close to 100 Khz can be obtained.
The TIMER0 clock CLKM can also be supplied
with an external signal, applied on the TCLK pin,
which must have a frequency that is at least two
times smaller than the internal master clock.

Note: he Timers have to complete the previous
counting phase before using a new value of the
Counter. If the Counter value is changed during
counting, the new values of the timer Counter are
only used at the end of the previous counting
phase. The Counter buffer is written in two steps
(one byte per time) and is latched only after the
LSB is written. In order to avoid side effects, the
user should write the MSB before writing the LSB.
By only writing the LSB, the PWM/Timer is used as
with a 8 bit counter. The same mechanism is
applied to the two bytes of Reload but, differently
of the Counter it is set immediately. Nevertheless,
it is recommended that the Reload value be written
when the Timer is stopped in order to avoid
incongruence with the Counter value. The same
recommendation is made when reading the two
bytes of the counter: It is performed in two steps,
so if the timer is running, the carry of the LSB to the
MSB can cause the wrong 16-bit value reading. A
Reload value greater than 1 must always be used.

t

t

65535

Reload
Value

Counter
Value

0

PWM
Output

Ton

T

dcycle

Ton

T
-------- PWMxCOUNT

PWMxRELOAD
--= =

ST52F510/F513/F514

74/106

When the Timers are in Reset status, or when the
device is reset, the TxOUT pins goes in threestate.
If these outputs are used to drive external devices,
it is recommended that the related pins be left in
the default configuration (Input threestate) or
change them in this configuration.
In PWM mode the PWM/Timers can only be Set or
Reset: Start/Stop signals do not affect the Timers.
TxRES resets the content of the 16-bit counter to
zero. It is generated by writing 0 in the
corresponding TxRES bit of the PWMx_CR1
Configuration Register and/or it can be driven by
the TRES pin if it is configured (only Timer0).

12.3.1 Simultaneous Start. The PWM/Timers
can be started simultaneously when working in
PWM mode. The T0SYNC and T1SYNC bits in
PWM0_CR3 Configuration Registers mask the
reset of each timer; after enabling each single
PWM/Timer. They are started by putting off the
mask with a single writing in the PWM0_CR3
Register.
Simultaneous start is also possible in Timer mode.
The timers start counting simultaneously, but the
output pulses are generated according to the
modality configured (square or pulse mode).

12.4 Timer Interrupts
The PWM/Timer can be programmed to generate
an Interrupt Request, both on the falling and the
rising of the TxOUT signal and when there’s a
STOP signal (external or internal).
By using the TxIES, TxIER and TxIEF bits of the
Configuration Registers PWMx_CR1, the interrupt
sources can be switched on/off. All the interrupt
sources may be activated at the same time:
sources can be distinguished by reading the
PWMx_STATUS Input Register.
The interrupt on the falling edge corresponds to
half of a counting period in Timer mode when the
waveform is set to Square Wave and to the end of
the Ton phase in PWM mode.

Note: when the PWM Counter is set to 0 or 65535,
the interrupt occurs at the end of each control
period.

In order to be active, the PWM/Timers interrupts
must be enabled by writing the Interrupt Mask
Register (INT_MASK) in the Configuration
Register Space, bits MSKT0 And MSKT1.

12.5 PWM/Timer 0 Register Description
The following registers are related to the use of the
PWM/Timer 0.

12.5.1 PWM/Timer 0 Configuration Registers.

PWM/Timer 0 Control Register 1 (PWM0_CR1)
Configuration Register 9 (09h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: T0MOD PWM/Timer 0 Mode
0: Timer Mode
1: PWM Mode

Bit 6: T0IES Interrupt on Stop signal Enable
0: interrupt disabled
1: interrupt enabled

Bit 5: T0IEF Interrupt on T0OUT falling Enable
0: interrupt disabled
1: interrupt enabled

Bit 4: T0IER Interrupt on T0OUT rising Enable
0: interrupt disabled
1: interrupt enabled

Bit 3: STRMOD Start signal mode
0: start on level
1: start on edge

Bit 2: T0STRT PWM/Timer 0 Start bit
0: Timer 0 stopped
1: Timer 0 started

Bit 1: RESMOD Reset signal mode
0: reset on level
1: reset on edge

Bit 0: T0RES PWM/Timer 0 Reset bit
0: PWM/Timer 0 reset
1: PWM/Timer 0 set

7 0

T0MOD T0IES T0IEF T0IER STRMOD T0STRT RESMOD T0RES

ST52F510/F513/F514

75/106

PWM/Timer 0 Control Register 2 (PWM0_CR2)
Configuration Register 10 (0Ah) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-6: Not Used

Bit 5: T0WAV T0OUT Waveform
0: pulse (type2)
1: square (type1)

Bit 4-0: T0PRESC PWM/Timer 0 Prescaler
The PWM/Timer 0 clock is divided by a
factor equal to 2T0PRESC. The maximum
value allowed for T0PRESC is 10000
(010h).

PWM/Timer 0 Control Register 3 (PWM0_CR3)
Configuration Register 11 (0Bh) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: T0SYNC PWM/Timer 0 Set/Reset mask
0: Set/Reset activated
1: Set/Reset masked

Bit 6: not used

Bit 5: T1SYNC PWM/Timer 1 Set/Reset mask
0: Set/Reset activated
1: Set/Reset masked

Bit 4: T0CKS PWM/Timer 0 Clock Source
0: Internal clock
1: External Clock from TCLK

Bit 3-2: STRSRC PWM/Timer 0 Start signal source
00: Internal from T0STRT bit
01: External from TSTRT pin
10: Both internal and external

Bit 1-0: RESSRC PWM/Timer 0 Reset source
00: Internal from T0RES bit
01: External from TRES pin
10: Both internal and external

Interrupt Polarity Register (INT_POL)
Configuration Register 1 (01h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-5: Not Used

Bit 4: RESPOL Reset signal polarity
0: Reset on low level/rising edge
1: Reset on high level/falling edge

Bit 3: STRPOL Start signal polarity
0: Start on high level/rising edge
1: Start on low level/falling edge

Bit 2-0: See Interrupt Registers Description

12.5.2 PWM/Timer 0 Input Registers.

PWM/Timer 0 Counter High Input Register
(PWM0_COUNT_IN_H)
Input Register 21 (015h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T0CI15-8 PWM/Timer 0 Counter MSB

In this register the current value of the Timer 0
Counter MSB can be read.

7 4 0

- - T0WAV T0PRESC

7 4 2 0

T1SYNC - T0SYNC T0CKS STRSRC RESSRC

7 0

- - - RESPOL STRPOL POLPB POLPA POLNMI

7 0

T0CI15 T0CI14 T0CI13 T0CI12 T0CI11 T0CI10 T0CI9 T0CI8

ST52F510/F513/F514

76/106

PWM/Timer 0 Counter Low Input Register
(PWM0_COUNT_IN_L)
Input Register 22 (016h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T0CI7-0 PWM/Timer 0 Counter MSB

In this register the current value of the Timer 0
Counter LSB can be read.

PWM/Timer 0 Status Register (PWM0_STATUS)
Input Register 23 (017h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-4: Not Used

Bit 3: T0OVFL PWM/Timer 0 counter overflow flag
0: no overflow occurred since last reset
1: overflow occurred

Bit 2: T0OUT T0OUT pin value
0: T0OUT pin is at logical level 0
1: T0OUT pin is at logical level 1

Bit 1: T0RST Reset Status
0: PWM/Timer 0 is reset
1: PWM/Timer 0 is set

Bit 0: T0SST Start Status
0: PWM/Timer 0 is stopped
1: PWM/Timer 0 is running

PWM/Timer 0 Capture High Input Register
(PWM0_CAPTURE_H)
Input Register 24 (018h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T0CP15-8 PWM/Timer 0 Capture MSB

In this register the counter value after the last stop
can be read.

PWM/Timer 0 Capture Low Input Register
(PWM0_CAPTURE_L)
Input Register 25 (019h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T0CP7-0 PWM/Timer 0 Capture LSB

In this register the counter value after the last stop
can be read.

12.5.3 PWM/Timer 0 Output Registers.

PWM/Timer 0 Counter High Output Register
(PWM0_COUNT_OUT_H)
Output Register 7 (07h) Write only
Reset Value: 0000 0000 (00h)

Bit 7-0: T0CO15-8 PWM/Timer 0 Counter MSB
This register is used to write the Timer 0 Counter
value (MSB).

Note: this register is latched after writing the LSB
part (PWM_COUNT_OUT_L: see below). For this
reason this register must be written before the
LSB.

PWM/Timer 0 Counter Low Output Register
(PWM0_COUNT_OUT_L)
Output Register 8 (08h) Write only
Reset Value: 0000 0000 (00h)

7 0

T0CI7 T0CI6 T0CI5 T0CI4 T0CI3 T0CI2 T0CI1 T0CI0

7 0

- - - - T0OVFL T0OUT T0RST T0SST

7 0

T0CP15 T0CP14 T0CP13 T0CP12 T0CP11 T0CP10 T0CP9 T0CP8

7 0

T0CP7 T0CP6 T0CP5 T0CP4 T0CP3 T0CP2 T0CP1 T0CP0

7 0

T0CO15 T0CO14 T0CO13 T0CO12 T0CO11 T0CO10 T0CO9 T0CO8

7 0

T0CO7 T0CO6 T0CO5 T0CO4 T0CO3 T0CO2 T0CO1 T0CO0

ST52F510/F513/F514

77/106

Bit 7-0: T0CO7-0 PWM/Timer 0 Counter MSB

This register is used to write the Timer 0 Counter
value (LSB).

Note: writing this register, the
PWM0_COUNT_OUT_x couple is latched in the
internal registers of the peripherals. For this
reason, this register should be written after the
MSB one.

PWM/Timer 0 Reload High Output Register
(PWM0_RELOAD_H)
Output Register 9 (09h) Write only
Reset Value: 1111 1111 (0FFh)

Bit 7-0: T0REL15-8 PWM/Timer 0 Reload MSB

This register is used to write the Timer 0 Reload
value (MSB).

Note: this register is latched after writing the LSB
part (PWM0_RELOAD_L: see below). For this
reason, this register must be written before the
LSB.

PWM/Timer 0 Reload Low Output Register
(PWM0_RELOAD_L)
Output Register 10 (0Ah) Write only
Reset Value: 1111 1111 (0FFh)

Bit 7-0: T0REL7-0 PWM/Timer 0 Reload LSB

This register is used to write the Timer 0 Reload
value (LSB).

Note: by writing this register, the
PWM0_RELOAD_x couple is latched in the
internal registers of the peripherals. For this reason
this register should be written after the MSB one.

12.6 PWM/Timer 1 Register Description
The following registers are related to the use of the
PWM/Timer 1.

12.6.1 PWM/Timer 1 Configuration Registers.

PWM/Timer 1 Control Register 1 (PWM1_CR1)
Configuration Register 12 (0Ch) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: T1MOD PWM/Timer 1 Mode
0: Timer Mode
1: PWM Mode

Bit 6: T1IES Interrupt on Stop signal Enable
0: interrupt disabled
1: interrupt enabled

Bit 5: T1IEF Interrupt on T1OUT falling Enable
0: interrupt disabled
1: interrupt enabled

Bit 4: T1IER Interrupt on T1OUT rising Enable
0: interrupt disabled
1: interrupt enabled

Bit 3: not used

Bit 2: T1STRT PWM/Timer 1 Start bit
0: Timer 0 stopped
1: Timer 0 started

Bit 1: not used

Bit 0: T1RES PWM/Timer 1 Reset bit
0: PWM/Timer 0 reset
1: PWM/Timer 0 set

7 0

T0REL15 T0REL14 T0REL13 T0REL12 T0REL11 T0REL10 T0REL9 T0REL8

7 0

T0REL7 T0REL6 T0REL5 T0REL4 T0REL3 T0REL2 T0REL1 T0REL0

7 0

T1MOD T1IES T1IEF T1IER - T1STRT - T1RES

ST52F510/F513/F514

78/106

PWM/Timer 1 Control Register 2 (PWM1_CR2)
Configuration Register 13 (0Dh) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-6: Not Used

Bit 5: T1WAV T1OUT Waveform
0: pulse (type2)
1: square (type1)

Bit 4-0: T1PRESC PWM/Timer 1 Prescaler
The PWM/Timer 1 clock is divided by a
factor equal to 2T1PRESC. The maximum
value allowed for T1PRESC is 10000
(010h).

12.6.2 PWM/Timer 1 Input Registers.

PWM/Timer 1 Counter High Input Register
(PWM1_COUNT_IN_H)
Input Register 26 (01Ah) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T1CI15-8 PWM/Timer 1 Counter MSB

In this register the current value of the Timer 1
Counter MSB can be read.

PWM/Timer 1 Counter Low Input Register
(PWM1_COUNT_IN_L)
Input Register 27 (01Bh) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T1CI7-0 PWM/Timer 1 Counter LSB
In this register the current value of the Timer 1
Counter LSB can be read.

PWM/Timer 1 Status Register (PWM1_STATUS)
Input Register 28 (01Ch) Read only
Reset Value: 0000 0000 (00h)

Bit 7-4: Not Used

Bit 3: T1OVFL PWM/Timer 1 counter overflow flag
0: no overflow occurred since last reset
1: overflow occurred

Bit 2: T1OUT T1OUT pin value
0: T1OUT pin is at logical level 0
1: T1OUT pin is at logical level 1

Bit 2: T1RST Reset Status
0: PWM/Timer 1 is reset
1: PWM/Timer 1 is set

Bit 2: T1SST Start Status
0: PWM/Timer 1 is stopped
1: PWM/Timer 1 is running

PWM/Timer 1 Capture High Input Register
(PWM1_CAPTURE_H)
Input Register 29 (01Dh) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T1CP15-8 PWM/Timer 1 Capture MSB

In this register the counter value after the last stop
can be read.

7 5 0

- - T1WAV T1PRESC

7 0

T1CI15 T1CI14 T1CI13 T1CI12 T1CI11 T1CI10 T1CI9 T1CI8

7 0

T1CI7 T1CI6 T1CI5 T1CI4 T1CI3 T1CI2 T1CI1 T1CI0

7 0

- - - - T1OVFL T1OUT T1RST T1SST

7 0

T1CP15 T1CP14 T1CP13 T1CP12 T1CP11 T1CP10 T1CP9 T1CP8

ST52F510/F513/F514

79/106

PWM/Timer 1 Capture Low Input Register
(PWM1_CAPTURE_L)
Input Register 30 (01Eh) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: T1CP7-0 PWM/Timer 1 Capture LSB

In this register the counter value after the last stop
can be read.

12.6.3 PWM/Timer 1 Output Registers.

PWM/Timer 1 Counter High Output Register
(PWM1_COUNT_OUT_H)
Output Register 11 (0Bh) Write only
Reset Value: 0000 0000 (00h)

Bit 7-0: T1CO15-8 PWM/Timer 1 Counter MSB

This register is used to write the Timer 1 Counter
value (MSB).

Note: this register is latched after writing the LSB
part (PWM1_COUNT_OUT_L: see below). For this
reason, this register must be written before the
LSB.

PWM/Timer 1 Counter Low Output Register
(PWM1_COUNT_OUT_L)
Output Register 12 (0Ch) Write only
Reset Value: 0000 0000 (00h)

Bit 7-0: T1CO7-0 PWM/Timer 0 Counter MSB

This register is used to write the Timer 1 Counter
value (LSB).

Note: by writing this register, the
PWM1_COUNT_OUT_x couple is latched in the
internal registers of the peripherals. For this reason
this register should be written after the MSB one.

PWM/Timer 1 Reload High Output Register
(PWM1_RELOAD_H)
Output Register 13 (0Dh) Write only
Reset Value: 1111 1111 (0FFh)

Bit 7-0: T1REL15-8 PWM/Timer 0 Reload MSB

This register is used to write the Timer 1 Reload
value (MSB).

Note: this register is latched after writing the LSB
part (PWM1_RELOAD_L: see below). For this
reason, this register must be written before the
LSB.

PWM/Timer 1 Reload Low Output Register
(PWM0_RELOAD_L)
Output Register 14 (0Eh) Write only
Reset Value: 1111 1111 (0FFh)

Bit 7-0: T1REL7-0 PWM/Timer 1 Reload LSB

This register is used to write the Timer 1 Reload
value (LSB).

Note: by writing this register, the
PWM1_RELOAD_x couple is latched in the
internal registers of the peripherals. For this
reason, this register should be written after the
MSB one.

7 0

T1CP7 T1CP6 T1CP5 T1CP4 T1CP3 T1CP2 T1CP1 T1CP0

7 0

T1CO15 T1CO14 T1CO13 T1CO12 T1CO11 T1CO10 T1CO9 T1CO8

7 0

T1CO7 T1CO6 T1CO5 T1CO4 T1CO3 T1CO2 T1CO1 T1CO0

7 0

T1REL15 T1REL14 T1REL13 T1REL12 T1REL11 T1REL10 T1REL9 T1REL8

7 0

T1REL7 T1REL6 T1REL5 T1REL4 T1REL3 T1REL2 T1REL1 T01REL0

ST52F510/F513/F514

80/106

13 SERIAL COMMUNICATION INTERFACE

The Serial Communication Interface (SCI)
integrated into ST52F510/F513/F514 provides a
general purpose shift register peripheral, several
widely distributed devices to be linked, through
their SCI subsystem. SCI gives a serial interface
providing communication with the speed from less
than 300 up to over 115200 baud, and a flexible
character format.
SCI is a full-duplex UART-type asynchronous
system with standard Non Return to Zero (NRZ)
format for the transmitted/received bit. The length
of the transmitted word is 10/11 bits (1 start bit, 8/
9 data bits, 1 stop bit).
SCI is composed of three modules: Receiver,
Transmitter and Baud-Rate Generator.

13.1 SCI Receiver block
The SCI Receiver block manages the
synchronization of the serial data stream and
stores the data characters. The SCI Receiver is
mainly composed of two sub-systems: Recovery
Buffer Block and SCDR_RX Block.
SCI receives data deriving from the RX pin and
drives the Recovery Buffer Block, which is a high-
speed shift register operating at a clock frequency
(CLOCK_RX) 16 times higher than the fixed baud
rate (CLOCK_TX). This sampling rate, higher than
the Baud Rate clock, detects the START condition,
Noise error and Frame error.
When the SCI Receiver is in IDLE status, it is
waiting for the START condition, which is obtained
with a logic level of 0, consecutive to a logic level
1. This condition is detected if, with the fixed

sampling time, a logic level 0 is sampled after three
logic levels of 1.
The recognition of the START bit forces the SCI
Receiver Block to start a data acquisition
sequence.
The data acquisition sequence is configured by the
apposite Configuration Register, allowing the
following data frame formats (see Figure 13.1):

Figure 13.1 SCI transmitted word structures

■ 8 bit length, 1 stop bit, no parity bit

■ 8 bit length, 2 stop bit, no parity bit

■ 8 bit length, 1 stop bit, with parity bit

■ 9 bit length, 1 stop bit, no parity bit

The parity bit (if used) can be configured for even
or odd parity check. If the 9-bit length format is
configured, this bit is used in transmission for the
ninth bit (see below). The ninth bit received can be
read in the R8 bit of the SCI Status Register,
address 37 (035h) bit 2 (see Figure 13.3).

Figure 13.2 SCI Block Diagram

7 6 5 4 3 2 1 089

7 6 5 4 3 2 1 08910

STOP DATA START

STOP DATA START

SCI

Register File

SCDR_TXLDPR/LDPE/LDPI

Baud-Rate
Generator

LDRI

SHIFT REGISTER

SCDR_RX

RECOVERY BUFFER RX

TX

SCI Transmitter

SCI Receiver

MCLK

Program/Data
Memory

IR

OR

ST52F510/F513/F514

81/106

Recognition of a STOP condition transfers data
received from the Recovery Buffer to the
SCDR_RX buffer, adding the eventual ninth data
bit. After this operation, RXF flag (bit 5) of SCI
Status Input Register is set to logic level 1. The
Control Unit reads data from the SCDR_RX buffer
(in read-only mode) by reading the SCI_IN Input
Register (address 36 024h) with the LDRI
instruction and provides a reset at logic level 0 to
the RXF flag.
If data of the Recovery Buffer is ready to be
transferred into the SCDR_RX buffer, but the
previous one has not been read by the Core, an
OVERRUN Error takes place: the SCI Status
Register flag OVERR (bit 4) indicates the error
condition. In this case, information that is stored in
the SCDR_RX buffer is not altered, but the one
that has caused the OVERRUN error can be
overwritten by new data deriving from the serial
data line.

13.1.1 Recovery Buffer Block .

This block is structured as a synchronized finite
state machine on the CLOCK_RX signal.
When the Recovery Buffer Block is in IDLE state it
waits for the reception of the correct 1 and 0
sequence representing START.
Recognition takes place by sampling the input RX
at CLOCK_RX frequency, which has a frequency
that is 16 times higher than CLOCK_TX. For this
reason, while the external transmitter sends a
single bit, the Recovery Buffer Block samples 16
states (from SAMPLE1 to SAMPLE16).
Analysis of the RX input signal is carried out by
checking three samples for each bit received.
If these three samples are not equal, then the
noise error flag, NSERR (bit 7), of SCI Status
Register is set to 1 and the data received value will
be the one assumed by the majority of the
samples.

The procedure described above, allows SCI not to
becomes IDLE, because of a limited noise due to
an erroneous sampling, the transmission is
recognized as correct and the noise flag error is
set.
At the end of the cycle of the reception of a bit, the
Recovery Buffer Block will repeat the same steps 9
times: one step for each bit received, plus one for
the stop acquisition (10 times in case of 9-bit data,
double stop or parity check).
At the end of data reception the Recovery Buffer
Block will supply information about eventual frame
errors by setting the 1 FRERR flag (bit 6) of the SCI
Status Register to 1.
A frame error can occur if the parity check hasn’t
been successfully achieved or if the STOP bit has
not been detected.
If the Recovery Buffer Block receives 10
consecutive bits at logic level 0, a Line Break
condition occurs and the related Interrupt Request
is sent.

13.1.2 SCDR_RX Block.

It is a finite state machine synchronized with the
clock master signal, CKM.
The SCDR_RX block waits for the signal of
complete reception from the Recovery Buffer in
order to load the word received. Moreover, the
SCDR_RX block loads the values of FRERR and
NSERR flag bits of the Status Register, and sets
the RXF flag to 1.
By using the LDRI instruction data is transferred to
Register File and RXF flag is reset to 0, to indicate
that the SCDR_RX block is empty.
If new data arrives before the previous one has
been transferred to Register File, the overrun error
occurs and the OVERR flag of Status Register is
set to 1.

Figure 13.3 SCI Status Register

D7 D6 D5 D4 D3 D2 D1 D0

SCI_STATUS Input Register 37

TXEND - END TRANSMISSION

TXEM - TRANSMISSION DATA REGISTER EMPTY

R8 - RECEIVED NINTH BIT

NSERR - NOISE ERROR

NOT USED

OVERR - OVERRUN ERROR

RXF - RECEIVE DATA REGISTER FULL

FRERR - FRAME ERROR

ST52F510/F513/F514

82/106

13.2 SCI Transmitter Block
The SCI Transmitter Block consists of the following
blocks: SCDR_TX and SHIFT REGISTER,
synchronized, respectively, with the clock master
signal (CKM) and the CLOCK_TX.
The whole block receives the settings for the
following transmission modes through the
Configuration Register:
■ 8 bit length, 1 stop bit, no parity bit

■ 8 bit length, 2 stop bit, no parity bit

■ 8 bit length, 1 stop bit, with parity bit

■ 9 bit length, 1 stop bit, no parity bit

In case of 9 bit frame transmission, the most
significative bit arrives through the bit PAR/T8 (bit
2) of the SCI_CR1 Configuration Register. In an 8-
bit transmission, instead, this bit is used to
configure the data format: in particular to choose
the polarity control (even or odds) to implement the
parity check (see above).
After a RESET, the SCDR_TX block is in IDLE
state until it receives an enabling signal by writing
the TXSTRT bit of the SCI_CR2 Configuration
Register.
The data is loaded on the Peripheral Register
SCI_OUT (address 23 017h) by using the
instruction LPPR, LDPI or LDPE. If the
transmission is enabled, the data to be transmitted
is transferred from the Output Register to
SCDR_TX block and the TXEM flag (bit 1) of the
SCI Status Register is reset to 0 to indicate
SCDR_TX block is full.
If the core supplies new data, this could not be
loaded in the SCDR_TX block until the current data
has not been unloaded on the Shift Register block.
Meaning that only when TXEM is 1 data can be
loaded in the SCDR_TX Block.
When the SHIFT REGISTER Block loads the data
to be transmitted on an internal buffer, the TXEND
flag (bit 0) of the SCI Status Register is reset to 0
to indicate the beginning of a new transmission. At
the end of transmission TXEND is set to 1, allowing
new data coming from SCDR_TX to be loaded in
the SHIFT REGISTER.
It is important to underline that TXEND = 1 does
not mean SCDR_TX is ready to receive a new
data. For this reason, it is better to utilize the TXEM
signal to synchronize the load instruction to the
SCI TRANSMITTER block
If the TXSTRT bit is reset, the transmission is
stopped, but the SCI Transmitter block completes
the transmission in progress before resetting.

13.3 Baud Rate Generator Block
The Baud Rate Generator Block performs the
division of the clock master signal (CKM) in a set of
synchronism frequencies for the serial bit
reception/transmission on the external line.
Reception frequency (CLOCK_RX) is 16 times
higher than the transmission frequency
(CLOCK_TX).
To adapt the Baud Rate Generator to the clock
master frequency supplied by the user, a 12-bit
Prescaler must be programmed by loading the
Configuration Registers SCI_CR2 (PRESC_H bit
11:8 of the 12 bit prescaler) and SCI_CR3
(PRESC_L bit 7:0 of the 12 bit prescaler). The
prescaler allows the programming of all standard
Baud Rates by using the most common clock
master sources.
The Prescaler value can be obtained by the
following formula:

Where CKM is the clock master frequency
(expressed in Hz) and BAUD is the desired Baud
Rate (expressed in bit/second). The obtained
value is rounded to the nearest integer value. This
rounding can cause an error in the obtained Baud
Rate. This error must be lower than 3%. To verify
that the PRESC value satisfies this constrain, the
obtained Baud Rate must be computed by
inverting the previous formula:

then the following relation can be used to verify
that the difference with the desired Baud Rate is
lower than 3%:

Table 13.1 shows the recommended Prescaler
values for common clock master frequencies. To
get more precision in Baud Rate, standard quartz
frequencies for serial communication can be used.
The corresponding Prescaler values for these
frequencies are showed in the Table 13.2.

PRESC round
CKM

16 BAUD×
----------------------------- 

 =

BAUD
CKM

16 PRESC×
-------------------------------=

BAUD BAUD–
BAUD

--- 0.03<

ST52F510/F513/F514

83/106

Table 13.1 Recommended Prescaler values for common frequencies (Baud/MHz)

1 4 5 8 10 12 16 20 24

1200 52 208 260 417 521 625 833 1042 1250

2400 26 104 130 208 260 313 417 521 625

4800 13 52 65 104 130 156 208 260 313

9600 - 26 33 52 65 78 104 130 156

19200 - 13 16 26 33 39 52 65 78

38400 - - 8 13 16 20 26 33 39

57600 - - - - 11 13 17 22 26

115200 - - - - - - - 11 13

Table 13.2 Recommended Prescaler values for serial communication quartz (Baud/MHz)

1.843 2.458 3.686 4.915 6.144 7.373 9.830 11.059 12.288 14.746 19.661 22.118

1200 96 128 192 256 320 384 512 576 640 768 1024 1152

2400 48 64 96 128 160 192 256 288 320 384 512 576

4800 24 32 48 64 80 96 128 144 160 192 256 288

9600 12 16 24 32 40 48 64 72 80 96 128 144

19200 6 8 12 16 20 24 32 36 40 48 64 72

38400 3 4 6 8 10 12 16 18 20 384 32 36

57600 2 - 4 - - 8 - 12 13 16 21 24

115200 1 - 2 - - 4 - 6 - 8 - 12

ST52F510/F513/F514

84/106

13.4 SCI Register Description
The following registers are related to the use of the
SCI peripheral.

13.4.1 SCI Configuration Registers.

SCI Control Register 1 (SCI_CR1)
Configuration Register 22 (016h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: RXFINT SCDR_RX buffer full interrupt mask
0: interrupt disabled
1: interrupt enabled

Bit 6: OVRINT Overrun interrupt mask
0: interrupt disabled
1: interrupt enabled

Bit 5: BRKINT Break interrupt mask
0: interrupt disabled
1: interrupt enabled

Bit 4: TXEMINT SCDR_TX buffer empty interrupt
0: interrupt disabled
1: interrupt enabled

Bit 3: TXENINT TX end interrupt mask
0: interrupt disabled
1: interrupt enabled

Bit 2: PAR/T8 Parity type selection or TX 9th bit
0: parity odd if enabled, else TX 9th bit=0
1: parity even if enabled, else TX 9th bit=1

Bit 1-0: FRM Frame type selection
00: 8 bit, no parity, 1 stop bit
01: 8 bit, no parity, 2 stop bit
10: 8 bit, parity, 1 stop bit
11: 9 bit, no parity, 1 stop bit

Note: the SCI interrupts are not enabled unless the
bit 3 (MSKSCI) of the Configuration Register 0
(INT_MASK) is enabled (set to 1).

SCI Control Register 2 (SCI_CR2)
Configuration Register 23 (017h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-4: PRESC_H Baud Rate prescaler (bit 11:8)
These bits are the higher part of the
prescaler (see SCI_CR3 Configuration
Register) which determinates the baud rate
of the communication, according to Table
13.1 and Table 13.2, as explained in
Paragraph 13.3.

Bit 3-2: not used

Bit 1: RXSTRT Reception enable
0: RX disabled
1: RX enabled

Bit 0: TXSTRT Transmission enable
0: TX disabled
1: TX enabled

SCI Control Register 3 (SCI_CR3)
Configuration Register 43 (02Bh) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-0: PRESC_L Baud Rate prescaler (bit 7:0)
These bits are the lower part of the
prescaler (see SCI_CR2 Configuration
Register) which determinates the baud rate
of the communication, according to Table
13.1 and Table 13.2, as explained in
Paragraph 13.3.

7 2 0

RXFINT OVRINT BRKINT TXEMINTTXENINT PAR/T8 FRM

7 4 2 0

PRESC_H - RXSTRT TXSTRT

7 0

PRESC_L

ST52F510/F513/F514

85/106

13.4.2 SCI Input Registers.

SCI RX data Input Register (SCI_IN)
Input Register 36 (024h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-0: RX7-0 RX Data

In this register the last received serial data can be
read.

SCI Status Register (SCI_STATUS)
Input Register 37 (025h) Read only
Reset Value: 0000 0011 (03h)

Bit 7: NSERR Noise error
0: noise error not occurred
1: noise error occurred

Bit 6: FRERR Frame error
0: frame error not occurred
1: frame error occurred

Bit 5: RXF RX data register full
0: RX data register already read
1: RX data register full but not read yet

Bit 4: OVERR Overrun error
0: overrun error not occurred
1: overrun error occurred

Bit 3: not used

Bit 2: R8 Received 9th bit
0: RX 9th bit=0
1: RX 9th bit=1

Bit 1: TXEM TX data register empty
0: TX data register full
1: TX data register empty

Bit 0: TXEND TX end flag
0: data transferred to the shift register
1: data transmission completed

13.4.3 SCI Output Register.

SCI TX data Output Register (SCI_OUT)
Input Register 23 (017h) Write only
Reset Value: 0000 0000 (00h)

Bit 7-0: TX7-0 TX Data

In this register the serial data to be transmitted can
be written.

7 0

RX7 RX6 RX5 RX4 RX3 RX2 RX1 RX0

7 0

NSERR FRERR RXF OVERR - R8 TXEM TXEND

7 0

TX7 TX6 TX5 TX4 TX3 TX2 TX1 TX0

ST52F510/F513/F514

86/106

14 I2C BUS INTERFACE (I2C)

14.1 Introduction
The I2C Bus Interface serves as an interface
between the microcontroller and the serial I2C bus,
providing both multimaster and slave functions and
controls all I2C bus-specific sequencing, protocol,
arbitration and timing. The I2Bus Interface
supports fast I2C mode (400kHz).

14.2 Main Features
■ Parallel-bus/I2C protocol converter

■ Multi-master capability

■ 7-bit/10-bit Addressing

■ Transmitter/Receiver flag

■ End-of-byte transmission flag

■ Transfer problem detection

I2C Master Features:
■ Clock generation

■ I2C bus busy flag

■ Arbitration Lost Flag

■ End of byte transmission flag

■ Transmitter/Receiver Flag

■ Start bit detection flag

■ Start and Stop generation

I2C Slave Features:
■ Stop bit detection

■ I2C bus busy flag

■ Detection of misplaced start or stop condition

■ Programmable I2C Address detection

■ Transfer problem detection

■ End-of-byte transmission flag

■ Transmitter/Receiver flag

Figure 14.1 I2C BUS Protocol

14.3 General Description
In addition to receiving and transmitting data, this
interface converts it from serial to parallel format
and vice versa, using either an interrupt or polled
handshake. The interrupts are enabled or disabled
via software. The interface is connected to the I2C
bus by a data pin (SDA) and by a clock pin (SCL).
The interface can be connected both with a
standard I2C bus and a Fast I2C bus. This
selection is made via software.

14.3.1 Mode Selection.

The interface can operate in the following four
modes:
– Slave transmitter/receiver
– Master transmitter/receiver
By default, it operates in slave mode.
The interface automatically switches from slave to
master after it generates a START condition and
from master to slave in case of arbitration loss or a
STOP generation, providing Multi-Master
capability.

14.3.2 Communication Flow.

In Master mode, Communication Flow initiates
data transfer and generates the clock signal. A
serial data transfer always begins with a start
condition and ends with a stop condition. Both start
and stop conditions are generated in master mode
by software.
In Slave mode the interface is capable of
recognizing its own address (7 or 10-bit) and the
General Call address. The General Call address
detection may be enabled or disabled by software.
Data and addresses are transferred as 8-bit bytes,
(MSB first). The first byte(s) follow the start
condition is the address (one in 7-bit mode, two in
10-bit mode), which is always transmitted in
Master mode.A 9th clock pulse follows the 8 clock
cycles of a byte transfer, during which the receiver
must send an acknowledge bit to the transmitter.
Refer to Figure 14.1.

SCL

SDA

1 2 8 9

MSB ACK

STOP START
CONDITIONCONDITION

ST52F510/F513/F514

87/106

Acknowledge may be enabled and disabled via
software.
The I2C interface address and/or general call
address can be selected via software.
The speed of the I2C interface may be selected
between Standard (0-100KHz) and Fast I2C (100-
400KHz).

14.3.3 SDA/SCL Line Control.

Transmitter mode: the interface holds the clock line
low before transmission, in order to wait for the
microcontroller to write the byte in the Data
Register.
Receiver mode: the interface holds the clock line
low after reception to wait for the microcontroller to
read the byte in the Data Register.
SCL frequency is controlled by a programmable
clock divider which depends on the I2C bus mode.

When the I2C cell is enabled, the SDA and SCL
pins must be configured as floating open-drain I/O.
The value of the external pull-up resistance used
depends on the application.

14.4 Functional Description
By default the I2C interface operates in Slave
mode (M/SL bit is cleared) except when it initiates
a transmit or receive sequence.
First, the interface frequency must be configured
using the related bits of the Configuration
Registers.

14.4.1 Slave Mode.

As soon as a start condition is detected, the
address is received from the SDA line and sent to
the shift register; then it is compared with the
address of the interface or the General Call
address (if selected by software).

Figure 14.2 I2C Interface Block Diagram

DATA REGISTER

DATA SHIFT REGISTER

COMPARATOR

OWN ADDRESS REGISTER (OAR)

CLOCK CONTROL REGISTER (I2C_CCR)

STATUS REGISTER 1 (I2C_SR1)

CONTROL REGISTER (I2C_CR)

SDA

SCL

CONTROL LOGIC

STATUS REGISTER 2 (I2C_SR2)

INTERRUPT

CLOCK CONTROL

DATA CONTROL

SCL

SDA

ST52F510/F513/F514

88/106

Note: In 10-bit addressing mode, the comparison
includes the header sequence (11110xx0) and the
two most significant bits of the address.

Header matched (10-bit mode only): the interface
generates an acknowledgement pulse if the ACK
bit is set.
Address not matched: the interface ignores it and
waits for another Start condition.
Address matched: the interface generates in
sequence:
– Acknowledge pulse if the ACK bit is set.
– EVF and ADSL bits are set with an interrupt if the

ITE bit is set.
Afterwards, the interface waits for the I2C_SR1
register to be read, holding the SCL line low (see
Figure 14.3 Transfer sequencing EV1).
Next, in 7-bit mode read the I2C_IN register to
determine from the least significant bit (Data
Direction Bit) if the slave must enter Receiver or
Transmitter mode.
In 10-bit mode, after receiving the address
sequence the slave is always in receive mode. It
will enter transmit mode on receiving a repeated
Start condition followed by the header sequence
with matching address bits and the least significant
bit set (11110xx1).

Slave Receiver
Following reception of the address and after the
I2C_SR1 register has been read, the slave
receives bytes from the SDA line into the I2C_IN
register via the internal shift register. After each
byte, the interface generates the following in
sequence:
– Acknowledge pulse if the ACK bit is set
– EVF and BTF bits are set with an interrupt if the

ITE bit is set.
Afterwards, the interface waits for the I2C_SR1
register to be read followed by a read of the I2C_IN
register, holding the SCL line low (see Figure
14.3 Transfer sequencing EV2).

Slave Transmitter
Following the address reception and after the
I2C_SR1 register has been read, the slave sends
bytes from the I2C_OUT register to the SDA line
via the internal shift register.
The slave waits for a read of the I2C_SR1 register
followed by a write in the I2C_OUT register,
holding the SCL line low (see Figure 14.3
Transfer sequencing EV3).
When the acknowledge pulse is received:
– The EVF and BTF bits are set by hardware with

an interrupt if the ITE bit is set.

Closing slave communication
After the last data byte is transferred a Stop
Condition is generated by the master. The
interface detects this condition and sets:
– EVF and STOPF bits with an interrupt if the ITE

bit is set.
Afterwards, the interface waits for a read of the
I2C_SR2 register (see Figure 14.3 Transfer
sequencing EV4).

Error Cases
– BERR: Detection of a Stop or a Start condition

during a byte transfer. In this case, the EVF and
the BERR bits are set with an interrupt if the ITE
bit is set.

If it is a Stop then the interface discards the data,
released the lines and waits for another Start
condition.
If it is a Start then the interface discards the data
and waits for the next slave address on the bus.
– AF: Detection of a non-acknowledge bit. In this

case, the EVF and AF bits are set with an inter-
rupt if the ITE bit is set.

Note: In both cases, the SCL line is not held low;
however, SDA line can remain low due to possible
«0» bits transmitted last. At this point, both lines
must be released by software.

How to release the SDA / SCL lines
Set and subsequently clear the STOP bit while
BTF is set. The SDA/SCL lines are released after
the current byte is transferred.

14.4.2 Master Mode.

To switch from default Slave mode to Master mode
a Start condition generation is needed.

Start condition
Setting the START bit while the BUSY bit is
cleared causes the interface to switch to Master
mode (M/SL bit set) and generates a Start
condition.
Once the Start condition is sent:
– The EVF and SB bits are set by hardware with

an interrupt if the ITE bit is set.
Afterwards, the master waits for a read of the
I2C_SR1 register followed by a write in the
I2C_OUT register with the Slave address, holding
the SCL line low (see Figure 14.3 Transfer
sequencing EV5).

ST52F510/F513/F514

89/106

Slave address transmission
At this point, the slave address is sent to the SDA
line via the internal shift register.
In 7-bit addressing mode, one address byte is sent.
In 10-bit addressing mode, sending the first byte
including the header sequence causes the
following event:
– The EVF bit is set by hardware with interrupt

generation if the ITE bit is set.
Afterwards, the master waits for a read of the
I2C_SR1 register followed by a write in the
I2C_OUT register, holding the SCL line low (see
Figure 14.3 Transfer sequencing EV9).
The second address byte is sent by the interface.
After completion of this transfer (and acknowledge
from the slave if the ACK bit is set):
– The EVF bit is set by hardware with interrupt

generation if the ITE bit is set.
Afterwards, the master waits for a read of the
I2C_SR1 register followed by a write in the
I2C_CR register (for example set PE bit), holding
the SCL line low (see Figure 14.3 Transfer
sequencing EV6).
Next, the master must enter Receiver or
Transmitter mode.

Note: In 10-bit addressing mode, in order to switch
the master to Receiver mode, software must
generate a repeated Start condition and resend the
header sequence with the least significant bit set
(11110xx1).

Master Receiver
Following the address transmission and after
I2C_SR1 and I2C_CR registers have been
accessed, the master receives bytes from the SDA
line into the I2C_IN register via the internal shift
register. After each byte the interface generates in
sequence:
– Acknowledge pulse if the ACK bit is set
– EVFand BTF bits are set by hardware with an in-

terrupt if the ITE bit is set.
Afterwards, the interface waits for a read of the
I2C_SR1 register followed by a read of the I2C_IN
register, holding the SCL line low (see Figure
14.3 Transfer sequencing EV7).

In order to close the communication: before
reading the last byte from the I2C_IN register, set
the STOP bit to generate the Stop condition. The
interface automatically goes back to slave mode
(M/SL bit cleared).

Note: In order to generate the non-acknowledge
pulse after the last data byte received, the ACK bit
must be cleared just before reading the second last
data byte.

Master Transmitter
Following the address transmission and after the
I2C_SR1 register has been read, the master sends
bytes from the I2C_OUT register to the SDA line
via the internal shift register.
The master waits for a read of the I2C_SR1
register followed by a write in the I2C_OUT
register, holding the SCL line low (see Figure
14.3 Transfer sequencing EV8).
When the acknowledge bit is received, the
interface sets:
– EVF and BTF bits with an interrupt if the ITE bit

is set.
In order to close the communication: after writing
the last byte to the I2C_OUT register, set the
STOP bit to generate the Stop condition. The
interface automatically returns to slave mode (M/
SL bit cleared).

Error Cases
– BERR: Detection of a Stop or a Start condition

during a byte transfer. In this case, the EVF and
BERR bits are set by hardware with an interrupt
if ITE is set.

– AF: Detection of a non-acknowledge bit. In this
case, the EVF and AF bits are set by hardware
with an interrupt if the ITE bit is set. To resume,
set the START or STOP bit.

– ARLO: Detection of an arbitration lost condition.
In this case the ARLO bit is set by hardware
(with an interrupt if the ITE bit is set and the in-
terface automatically goes back to slave mode
(the M/SL bit is cleared).

Note: In all these cases, the SCL line is not held
low; however, the SDA line can remain low due to
possible «0» bits transmitted last. Both lines must
be released via software.

ST52F510/F513/F514

90/106

Figure 14.3 Tranfer Sequencing

7-bit Slave receiver:

7-bit Slave transmitter:

7-bit Master receiver:

7-bit Master transmitter:

10-bit Slave receiver:

10-bit Slave transmitter:

10-bit Master transmitter:

10-bit Master receiver:

Legend:
S=Start, P=Stop, A=Acknowledge, NA=Non-acknowledge

EVx=Event (with interrupt if ITE=1)

EV1: EVF=1, ADSL=1, cleared by reading I2C_SR1 register.

EV2: EVF=1, BTF=1, cleared by reading I2C_SR1 register followed by reading I2C_IN register.

EV3: EVF=1, BTF=1, cleared by reading I2C_SR1 register followed by writing I2C_OUT register.
EV3-1: EVF=1, AF=1, BTF=1, SCL=0; AF is cleared by reading I2C_SR2. BTF is cleared
by releasing the lines (STOP=1,STOP=0) or by readyng I2C_SR1 and writing I2C_OUT register
(I2C_OUT=FFh).Note: If lines are released by STOP=1, STOP=0, the subsequent EV4 is not seen

EV4: EVF=1, STOPF=1, cleared by reading I2C_SR2 register.

EV5: EVF=1, SB=1, cleared by reading I2C_SR1 register followed by writing I2C_OUT register.

EV6: EVF=1, cleared by reading I2C_SR1 register followed by writing I2C_CR (for example PE=1

EV7: EVF=1, BTF=1, cleared by reading I2C_SR1 register followed by reading I2C_IIN register.

EV8: EVF=1, BTF=1, cleared by reading I2C_SR1 register followed by writing I2C_OUT register.

EV9: EVF=1, ADD10=1, cleared by reading I2C_SR1 register followed by writing I2C_OUT registe

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3 EV3 EV3 EV3-1 EV4

S Address A Data1 A Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8 EV8 EV8 EV8

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

Sr Header A Data1 A
.....

DataN A P

EV1 EV3 EV3 EV3-1 EV4

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8 EV8 EV8

Sr Header A Data1 A
.....

DataN A P

EV5 EV6 EV7 EV7

ST52F510/F513/F514

91/106

Figure 14.4 Event Flags and Interrupt Generation

Note: The I2C interrupt events are connected to the same interrupt vector. They generate an interrupt if
the corresponding Enable Control Bit (ITE) is set and the Interrupt Mask bit (MSKI2C) in the INT_MASK
Configuration Register is unmasked (set to 1, see Interrupts Chapter).

ADD10
BTF

ADSL
SB
AF

STOPF EVF

INTERRUPT

ITE

*

* EVF can also be set by EV6 or an error from the I2C_SR2 register.

ARLO
BERR

Interrupt Event Event
Flag

Enable
Control

Bit

Exit
from
Wait

Exit
from
Halt

10-bit Address Sent Event (Master Mode) ADD10

ITE

Yes No

End of Byte Transfer Event BTF Yes No

Address Matched Event (Slave Mode) ADSEL Yes No

Start Bit Generation Event (Master Mode) SB Yes No

Acknowledge Failure Event AF Yes No

Stop Detection Event (Slave Mode) STOPF Yes No

Arbitration Lost Event (Multimaster configuration) ARLO Yes No

Bus Error Event BERR Yes No

ST52F510/F513/F514

92/106

14.5 Register Description
In the following sections describe the registers
used by the I2C Interface are described.

14.5.1 I2C Interface Configuration Registers.

I2C Control Register (I2C_CR)
Configuration Register 16 (010h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-6: Not Used. They must be held to 0.

Bit 5: PE Peripheral Enable.
This bit is set and cleared by software
0: peripheral disabled
1: peripheral enabled

Notes:
– When PE=0, all the bits of the I2C_CR register

and the SR register except the Stop bit are reset.
All outputs are released while PE=0

– When PE=1, the corresponding I/O pins are se-
lected by hardware as alternate functions.

– To enable the I2C interface, write the I2C_CR
register TWICE with PE=1 as the first write only
activates the interface (only PE is set).

Bit 4: ENGC Enable General Call
This bit is set and cleared by software. It is
also cleared by hardware when the interface
is disabled (PE=0).
0: General Call disabled
1: General Call enabled

Note: The 00h General Call address is
acknowledged (01h ignored).

Bit 3: START Generation of a Start Condition
This bit is set and cleared by software. It is
also cleared by hardware when the interface
is disabled (PE=0) or when the Start
condition is sent (with interrupt generation if
ITE=1).

– In Master Mode
0: No Start generation
1: Repeated Start generation

– In Slave Mode
0: No Start generation
1: Start generation when the bus is free

Bit 2: ACK Acknowledge enable
This bit is set and cleared by software. It is
also cleared by hardware when the interface
is disabled (PE=0).
0: No acknowledge returned
1: Acknowledge returned after an address

byte or a data byte is received

Bit 1: STOP Reset signal mode
This bit is set and cleared by software. It is
also cleared by hardware in master mode.
Note: This bit is not cleared when the
interface is disabled (PE=0).

– In Master Mode
0: No Stop generation
1: Stop generation after the current byte

transfer or after the current Start condition
is sent. The STOP bit is cleared by
hardware when the Stop condition is sent.

– In Slave Mode
0: No Start generation
1: Release the SCL and SDA lines after the

current byte transfer (BTF=1). In this
mode the STOP bit has to be cleared by
software.

Bit 0: ITE Interrupt Enable
0: Interrupt disabled
1: Interrupt enabled

I2C Clock Control Register (I2C_CCR)
Configuration Register 17 (011h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: FM/SM Fast/Standard I2C Mode.
This bit is set and cleared by software. It is
not cleared when the interface is disabled
(PE=0).

7 0

- - PE ENGC START ACK STOP ITE

7 0

FM/SM CC6 CC5 CC4 CC3 CC2 CC1 CC0

ST52F510/F513/F514

93/106

1: Standard I2C Mode (recommended up to
100 kHz)

0: Fast I2C Mode (recommended up to 400
kHz)

Bit 6-0: CC6-CC0 7-bit clock divider
These bits select the speed of the bus (FSCL)
depending on the I2C mode. They are not
cleared when the interface is disabled
(PE=0). The speed can be computed as
follows:

– Standard mode (FM/SM=1): FSCL <= 100kHz

FSCL = fCPU/(3x[CC6..CC0]+11)
– Fast mode (FM/SM=0): FSCL > 100kHz

FSCL = fCPU/(2x[CC6..CC0]+9)

Warning: For safety reason, CC6-CC0 bits must
be configured with a value >= 3 for the Standard
mode and >=2 for the Fast mode.

I2C Own Address Register 1 (I2C_OAR1)
Configuration Register 18 (012h) Read/Write
Reset Value: 0000 0000 (00h)

7-bit Addressing Mode
bit 7-1: ADD7-ADD1 Interface address.

These bits define the I2C bus address of the
interface. They are not cleared when the
interface is disabled (PE=0).

Bit 0: ADD0 Address direction bit.
This bit is “don’t care”, the interface
acknowledges either 0 or 1. It is not cleared
when the interface is disabled (PE=0).

Note: Address 01h is always ignored.

10-bit Addressing Mode
bit 7-0: ADD7-ADD0 Interface address.

These are the least significant bits of the I2C
bus address of the interface. They are not
cleared when the interface is disabled
(PE=0).

I2C Own Address Register 2 (I2C_OAR2)
Configuration Register 19 (013h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7-3: Not Used

bit 7-1: ADD8-ADD8 Interface address.
These are the most significant bits of th I2C
bus address of the interface (10-bit mode
only). They are not cleared when the
interface is disabled (PE=0).

Bit 0: Reserved

14.5.2 I2C Interface Input Registers.

I2C Data Input Register (I2C_IN)
Input Register 6 (06h) Read only
Reset Value: 0000 0000 (00h)

bit 7-0: I2CDI7-I2CDI0 Received data.

These bits contain the byte to be received from the
bus in Receiver mode: the first data byte is
received automatically in the I2C_IN register using
the least significant bit of the address.
Then, the next data bytes are received one by one
after reading the I2C_IN register.

I2C Status Register 1 (I2C_SR1)
Input Register 7 (07h) Read only
Reset Value: 0000 0000 (00h)

7 0

ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

7 2 0

- - - - - ADD9 ADD8 -

7 0

I2CDI7 I2CDI6 I2CDI5 I2CDI4 I2CDI3 I2CDI2 I2CDI1 I2CDI0

7 0

EVF ADD10 TRA BUSY BTF ADSL M/SL SB

ST52F510/F513/F514

94/106

Bit 7: EVF Event Flag
This bit is set by hardware as soon as an
event occurs. It is cleared by software
reading I2C_SR2 register in case of error
event or as described in Figure 14.3. It is also
cleared by hardware when the interface is
disabled (PE=0).
0: No event
1: One of the following events has occurred:

– BTF=1 (Byte received or transmitted)
– ADSL=1 (Address matched in Slave

mode while ACK=1)
– SB=1 (Start condition generated in Mas-

ter mode)
– AF=1 (No acknowledge received after

byte transmission)
– STOPF=1 (Stop condition detected in

Slave mode)
– ARLO=1 (Arbitration lost in Master

mode)
– BERR=1 (Bus error, misplaced Start or

Stop condition detected)
– Address byte successfully transmitted in

Master mode.

Bit 6: ADD10 10 bit addressing in Master Mode
This bit is set by hardware when the master
has sent the first byte in 10-bit address mode.
It is cleared by software reading I2C_SR2
register followed by a write in the I2C_OUT
register of the second address byte. It is also
cleared by hardware when the peripheral is
disabled (PE=0).
0: No ADD10 event occurred
1: The Master has sent the first address byte

Bit 5: TRA Transmitter/Receiver
When BTF is set, TRA=1 if a data byte has
been transmitted. It is cleared automatically
when BTF is cleared. It is also cleared by
hardware after detection of Stop condition
(STOPF=1), loss of bus arbitration (ARLO=1)
or when the interface is disabled (PE=0).
0: Data byte received (if BTF=1)
1: Data byte transmitted

Bit 4: BUSY Bus busy
This bit is set by hardware on detection of a
Start condition and cleared by hardware on
detection of a Stop condition. It indicates a
communication in progress on the bus. This
information is still updated when the interface
is disabled (PE=0).

0: No communication on the bus
1: Communication ongoing on the bus

Bit 3: BTF Byte transfer finished
This bit is set by hardware as soon as a byte
is correctly received or transmitted with
interrupt generation if ITE=1. It is cleared by
software reading I2C_SR1 register followed
by a read of I2C_IN or write of I2C_OUT
registers. It is also cleared by hardware when
the interface is disabled (PE=0).
– Following a byte transmission, this bit is

set after reception of the acknowledge
clock pulse. In case an address byte is
sent, this bit is set only after the EV6
event (see Figure 14.3). BTF is cleared
by reading I2C_SR1 register followed by
writing the next byte in I2C_OUT register.

– Following a byte reception, this bit is set
after transmission of the acknowledge
clock pulse if ACK=1. BTF is cleared by
reading I2C_SR1 register followed by
reading the byte from I2C_IN register.

The SCL line is held low while BTF=1.
0: Byte transfer not done
1: Byte transfer succeeded

Bit 2: ADSL Address matched (Slave Mode)
This bit is set by hardware as soon as the
slave address received matched with the
OAR register content or a general call is
recognized. An interrupt is generated if
ITE=1. It is cleared by software reading
I2C_SR1 register or by hardware when the
interface is disabled (PE=0).
The SCL line is held low while ADSL=1.
0: Address mismatched or not received
1: Received address matched

Bit 1: M/SL Master/Slave
This bit is set by hardware as soon as the
interface is in Master mode (writing
START=1). It is cleared by hardware after
detecting a Stop condition on the bus or a
loss of arbitration (ARLO=1). It is also
cleared when the interface is disabled
(PE=0).
0: Slave mode
1: Master mode

Bit 0: SB Start bit (Master Mode)
This bit is set by hardware as soon as the
Start condition is generated (following a write

ST52F510/F513/F514

95/106

START=1). An interrupt is generated if
ITE=1. It is cleared by software reading
I2C_SR1 register followed by writing the
address byte in I2C_OUT register. It is also
cleared by hardware when the interface is
disabled (PE=0).
0: No Start condition
1: Start condition generated

I2C Status Register 2 (I2C_SR2)
Input Register 8 (08h) Read only
Reset Value: 0000 0000 (00h)

Bit 7-5: Reserved.

Bit 4: AF Acknowledge failure.
This bit is set by hardware when an
acknowledge is returned. An interrupt is
generated if ITE=1. It is cleared by software
reading the I2C_SR2 register or by hardware
when the interface is disabled (PE=0).
The SCL line is not held low while AF=1.
0: No acknowledge failure
1: Acknowledge failure

Bit 3: STOPF Stop detection (Slave mode).
This bit is set by hardware when a Stop
condition is detected on the bus after an
acknowledge (if ACK=1). An interrupt is
generated if ITE=1. It is cleared by software
reading I2C_SR2 register or by hardware
when the interface is disabled (PE=0).
The SCL line is not held low while STOPF=1.
0: No Stop condition detected
1: Stop condition detected

Bit 2: ARLO Arbitration lost.
This bit is set by hardware when the interface
loses the arbitration of the bus to another
master. An interrupt is generated if ITE=1. It
is cleared by software reading I2C_SR2
register or by hardware when the interface is
disabled (PE=0).

After an ARLO event the interface switches
back automatically to Slave mode (M/SL=0).
The SCL line is not held low while ARLO=1.
0: No arbitration lost detected
1: Arbitration lost detected

Bit 1: BERR Bus error.
This bit is set by hardware when the interface
detects a misplaced Start or Stop condition.
An interrupt is generated if ITE=1. It is
cleared by software reading I2C_SR2
register or by hardware when the interface is
disabled (PE=0).
The SCL line is not held low while BERR=1.
0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

Bit 0: GCAL General Call (Slave mode).
This bit is set by hardware when a general
call address is detected on the bus while
ENGC=1. It is cleared by hardware detecting
a Stop condition (STOPF=1) or when the
interface is disabled (PE=0).
0: No general call address detected on bus
1: general call address detected on bus

14.5.3 I2C Interface Output Registers.

I2C Data Output Register (I2C_OUT)
Output Register 6 (06h) Read only
Reset Value: 0000 0000 (00h)

bit 7-0: I2CDO7-I2CDO0 Data to be transmitted.

These bits contain the byte to be transmitted in the
bus in Transmitter mode: Byte transmission start
automatically when the software writes in the
I2C_OUT register.

7 0

- - - AF STOPF ARLO BERR GCAL

7 0

I2CDO7 I2CDO6 I2CDO5 I2CDO4 I2CDO3 I2CDO2 I2CDO1 I2CDO0

ST52F510/F513/F514

96/106

15 SERIAL PERIPHERAL INTERFACE (SPI)

15.1 Introduction
The Serial Peripheral Interface (SPI) allows full-
duplex, synchronous, serial communication with
external devices. An SPI system may consist of a
master, one or more slaves, or a system, in which
devices may be either masters or slaves.
SPI is normally used for communication between
the ICU and external peripherals or another ICU.
Refer to the Pin Description section in this
datasheet for the device-specific pin-out.

15.2 Main Features
■ Full duplex, three-wire synchronous transfers

■ Master or slave operation

■ Four master mode frequencies

■ Maximum slave mode frequency = CKM/4.

■ Four programmable master bit rates

■ Programmable clock polarity and phase

■ End of transfer interrupt flag

■ Write collision flag protection

■ Master mode fault protection capability.

15.3 General description
SPI is connected to external devices through 4
alternate pins:
– MISO: Master In / Slave Out pin
– MOSI: Master Out / Slave In pin
– SCK: Serial Clock pin
– SS: Slave select pin (if not done through soft-

ware)

Figure 15.1 SPI Master Slave

A basic example of interconnections between a
single master and a single slave is illustrated in
Figure 15.1
The MOSI pins are connected together as the
MISO pins. In this manner, data is transferred
serially between master and slave (most significant
bit first).
When the master device transmits data to a slave
device via the MOSI pin, the slave device responds
by sending data to the master device via the MISO
pin. This implies full duplex transmission with both
data out and data in synchronized with the same
clock signal (which is provided by the master
device via the SCK pin).
The transmitted byte is replaced by the byte
received and eliminates the need for separate
transmit-empty and receiver-full bits. A status flag
is used to indicate that the I/O operation is
complete.
Four possible data/clock timing relationships may
be chosen (see Figure 15.4), but master and slave
must be programmed with the same timing mode.

15.4 Functional Description
Figure 15.2 shows the serial peripheral interface
(SPI) block diagram.
This interface contains 3 dedicated registers:
– A Control Register (SPI_CR)
– A Status Register (SPI_STATUS_CR)
– A Data Register for transmission (SPI_OUT)
– A Data Register for reception (SPI_IN)

15.4.1 Master Configuration.

In a master configuration, the serial clock is
generated on the SCK pin.

8-BIT SHIFT REGISTER

SPI
CLOCK

GENERATOR

8-BIT SHIFT REGISTER
MISO

MOSI MOSI

MISO

SCK SCK

SLAVEMASTER

SS SS+5V

MSBit LSBit MSBit LSBit

ST52F510/F513/F514

97/106

Figure 15.2 Serial Peripheral Interface Block Diagram

Procedure
– Select the SPR0, SPR1 and SPR2 bits to define

the serial clock baud rate (see SPI_CR register).
– Select the CPOL and CPHA bits to define one of

the four relationships between the data transfer
and the serial clock (see Figure 15.4).

– The SS pin must be connected to a high level
signal during the complete byte transmit se-
quence.

– The MSTR and SPE bits must be set (they re-
main set only if the SS pin is connected to a high
level signal).

In this configuration the MOSI pin is a data output
and to the MISO pin is a data input.

Transmit sequence
Transmit sequence begins when a byte is written in
the SPI_OUT register.

The data byte is loaded in parallel into the 8-bit shift
register (from the internal bus) during a write cycle
and then shifted out serially to the MOSI pin most
significant bit first.
When data transfer is complete:
– The SPIF bit is set by hardware
– An interrupt is generated if the SPIE bit is set.
During the last clock cycle the SPIF bit is set, a
copy of the data byte received in the shift register
is moved to a buffer. When the SPI_IN register is
read, the SPI peripheral returns this buffered
value. Clearing the SPIF bit is performed by the
following software sequence:
1. An access to the SPI_STATUS_CR register

while the SPIF bit is set
2. A read to the SPI_IN register.

Note: While the SPIF bit is set, all writes to the
SPI_OUT register are inhibited until the
SPI_STATUS_CR register is read.

SPI_IN

Read Buffer

8-Bit Shift Register

Write

Read

Internal Bus

SPI

SPIE SPE MSTR CPHA SPR0SPR1CPOL

SPIF WCOL MODF

SERIAL
CLOCK
GENERATOR

MOSI

MISO

SS
SCK

 CONTROL
STATE

SPI_CR

SPI_STATUS_CR

-

IT
request

MASTER
CONTROL

SPR2

OR SSISSMSOD
SPI_OUT

ST52F510/F513/F514

98/106

15.4.2 Slave Configuration.
In slave configuration, the serial clock is received
on the SCK pin from the master device.
The value of the SPR0, SPR1 and SPR2 bits is not
used for data transfer.

Procedure
– For correct data transfer, the slave device must

be in the same timing mode as the master de-
vice (CPOL and CPHA bits). See Figure 15.4.

– The SS pin must be connected to a low level sig-
nal during the complete byte transmit sequence.

– Clear the MSTR bit and set the SPE bit to assign
the pins to alternate function.

In this configuration the MOSI pin is a data input
and the MISO pin is a data output.

Transmit Sequence
The data byte is loaded into the 8-bit shift register
(from the internal bus) during a write cycle and
then shifted out serially to the MISO pin most
significant bit first.
The transmit sequence begins when the slave
device receives the clock signal and the most
significant bit of the data on its MOSI pin.
When data transfer is complete:
– The SPIF bit is set by hardware
– An interrupt is generated if SPIE bit is set.
During the last clock cycle the SPIF bit is set, a
copy of the data byte received in the shift register
is moved to a buffer. When the SPI_IN register is
read, the SPI peripheral returns the buffer value.
The SPIF bit is cleared by the following software
sequence:
1. An access to the SPI_STATUS_CR register

while the SPIF bit is set.
2. A read to the SPI_IN register.

Note: While the SPIF bit is set, all writes to the
SPI_OUT register are inhibited until the
SPI_STATUS_CR register is read.

The SPIF bit can be cleared during a second
transmission; however, it must be cleared before
the second SPIF bit in order to prevent an overrun
condition (see Section 15.4.6).
Depending on the CPHA bit, the SS pin has to be
set to write to the SPI_OUT register between each
data byte transfer to avoid a write collision (see
Section 15.4.4).

15.4.3 Data Transfer Format.

During an SPI transfer, data is simultaneously
transmitted (shifted out serially) and received

(shifted in serially). The serial clock is used to
synchronize data transfer during a sequence of
eight clock pulses.
The SS pin allows individual selection of a slave
device; the other slave devices that are not
selected do not interfere with SPI transfer.

Clock Phase and Clock Polarity
Four possible timing relationships may be chosen
by software, using the CPOL and CPHA bits.
The CPOL (clock polarity) bit controls the steady
state value of the clock when data isn’t being
transferred. This bit affects both master and slave
modes.
The combination between the CPOL and CPHA
(clock phase) bits select the data capture clock
edge.
Figure 15.4, shows an SPI transfer with the four
combinations of the CPHA and CPOL bits. The
diagram may be interpreted as a master or slave
timing diagram where the SCK pin, the MISO pin,
the MOSI pin are directly connected between the
master and the slave device.
The SS pin is the slave device select input and can
be driven by the master device.
The master device applies data to its MOSI pin-
clock edge before the capture clock edge.

CPHA bit is set
The second edge on the SCK pin (falling edge if
the CPOL bit is reset, rising edge if the CPOL bit is
set) is the MSBit capture strobe. Data is latched on
the occurrence of the second clock transition.
A write collision should not occur even if the SS pin
stays low during a transfer of several bytes (see
Figure 15.3).

CPHA bit is reset
The first edge on the SCK pin (falling edge if CPOL
bit is set, rising edge if CPOL bit is reset) is the
MSBit capture strobe. Data is latched on the
occurrence of the first clock transition.
The SS pin must be toggled high and low between
each byte transmitted (see Figure 15.3).
In order to protect the transmission from a write
collision a low value on the SS pin of a slave device
freezes the data in its SPI_OUT register and does
not allow it to be altered. Therefore, the SS pin
must be high to write a new data byte in the
SPI_OUT without producing a write collision.

15.4.4 Write Collision Error.

A write collision occurs when the software tries to
write to the SPI_OUT register while a data transfer

ST52F510/F513/F514

99/106

is taking place with an external device. When this
occurs, the transfer continues uninterrupted; and
the software writing will be unsuccessful.
Write collisions can occur both in master and slave
mode.

Note: a “read collision” will never occur since the
data byte received is placed in a buffer, in which
access is always synchronous with the ICU
operation.

In Slave mode
When the CPHA bit is set:
The slave device will receive a clock (SCK) edge
prior to the latch of the first data transfer. This first
clock edge will freeze the data in the slave device
SPI_OUT register and output the MSBit on to the
external MISO pin of the slave device.
The SS pin low state enables the slave device, but
the output of the MSBit onto the MISO pin does not
take place until the first data transfer clock edge
occurs.
When the CPHA bit is reset:
Data is latched on the occurrence of the first clock
transition. The slave device doesn’t have a way of
knowing when that transition will occur; therefore,
the slave device collision occurs when software
attempts to write the SPI_OUT register after its SS
pin has been pulled low.
For this reason, the SS pin must be high, between
each data byte transfer, in order to allow the CPU
to write in the SPI_OUT register without generating
a write collision.

In Master mode
Collision in the master device is defined as a write
of the SPI_OUT register, while the internal serial
clock (SCK) is in the process of transfer.
The SS pin signal must always be high on the
master device.

Figure 15.3 CHPA/SS Timing Diagram

WCOL bit
The WCOL bit in the SPI_STATUS_CR register is
set if a write collision occurs.
No SPI interrupt is generated when the WCOL bit
is set (the WCOL bit is a status flag only).
The WCOL bit is cleared by a software sequence
(see Section 15.5).

15.4.5 Master Mode Fault.

Master mode fault occurs when the master device
has its SS pin pulled low, then the MODF bit is set.
Master mode fault affects the SPI peripheral in the
following ways:
– The MODF bit is set and an SPI interrupt is
generated if the SPIE bit is set.
– The SPE bit is reset. This blocks all output from
the device and disables the SPI peripheral.
– The MSTR bit is reset, forcing the device into
slave mode.
Clearing the MODF bit is done through a software
sequence:
1. A read or write access to the SPI_STATUS_CR

register while the MODF bit is set.
2. A write to the SPI_CR register.

Note: To avoid any multiple slave conflicts in the
case of a system comprising several MCUs, the
SS pin must be pulled high during the clearing
sequence of the MODF bit. The SPE and MSTR
bits may be restored to their original state during or
after this clearing sequence.

Hardware does not allow the user to set the SPE
and MSTR bits, while the MODF bit is set (except
in the MODF bit clearing sequence).
In a slave device the MODF bit can’t be set, but in
a multi master configuration the device can be in
slave mode with this MODF bit set.
The MODF bit indicates that there might have been
a multi-master conflict for system control and
allows a proper exit from system operation to a
reset or default system state using an interrupt
routine.

MOSI/MISO

Master SS

Slave SS
(CPHA=0)

Slave SS
(CPHA=1)

Byte 1 Byte 2 Byte 3

ST52F510/F513/F514

100/106

Figure 15.4 Data Clock Timing Diagram

CPOL = 1

CPOL = 0

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO
(from master)

MOSI

(from slave)

SS

(to slave)

CAPTURE STROBE

CPHA =1

CPOL = 1

CPOL = 0

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit

MISO
(from master)

MOSI

SS
(to slave)

CAPTURE STROBE

CPHA =0

Note: This figure should not be used as a replacement for parametric information.
Refer to the Electrical Characteristics chapter.

(from slave)

ST52F510/F513/F514

101/106

Figure 15.5 Clearing the WCOL bit (Write Collision Flag) Software Sequence

15.4.6 Overrun Condition.
An overrun condition occurs when the master
device has sent several data bytes and the slave
device hasn’t cleared the SPIF bit issued from the
previous data byte transmitted.
In this case, the receiver buffer contains the byte
sent after the SPIF bit was last cleared. A read to
the SPI_IN register returns this byte. All other
bytes are lost.
This condition is not detected by the SPI
peripheral.

15.4.7 Single Master and Multimaster Configu-
rations.

There are two types of SPI systems:
– Single Master System
– Multimaster System

Single Master System
A typical single master system may be configured,
using an ICU as the master and four ICUs as
slaves (see Figure 15.6).
The master device selects the individual slave
devices by using four pins of a parallel port to
control the four SS pins of the slave devices.

The SS pins are pulled high during reset since the
master device ports will be forced to be inputs at
that time, thus disabling the slave devices.

Note: In order to prevent a bus conflict on the
MISO line the master allows only one active slave
device during a transmission.

For more security, the slave device may respond to
the master with the data byte received. Then the
master will receive the previous byte back from the
slave device if all MISO and MOSI pins are
connected and the slave has not written its
SPI_OUT register.
Other transmission security methods can use ports
for handshake lines or data bytes with command
fields.

Multi-master System
A multi-master system may also be configured by
the user. Transfer of master control could be
implemented using a handshake method through
the I/O ports or by an exchange of code messages
through the serial peripheral interface system.
The multi-master system is principally handled by
the MSTR bit in the SPI_CR register and the
MODF bit in the SPI_STATUS_CR register.

Clearing sequence after SPIF = 1 (end of a data byte transfer)

1st Step
Read SPI_STATUS_CR

Read SPI_IN Write SPI_IN2nd Step SPIF =0
WCOL=0

SPIF =0
WCOL=0 if no transfer has started
WCOL=1 if a transfer has started

Clearing sequence before SPIF = 1 (during a data byte transfer)

1st Step

2nd Step WCOL=0

before the 2nd step

Read SPI_STATUS_CR

Read SPI_IN
Note: Writing in SPI_OUT regis-
ter instead of reading in SPI_IN
do not reset WCOL bit

Read SPI_STATUS_CR
OR

THEN
THEN

THEN

ST52F510/F513/F514

102/106

Figure 15.6 Single Master Configuration

15.4.8 Interrupts

Note: The SPI interrupt events are connected to
the same interrupt vector (see Interrupts chapter).
They generate an interrupt if the corresponding
Enable Control Bit (SPIE) and the interrupt mask
bit (MSKSPI) in the INT_MASK Configuration
Register is set.

MISO

MOSI

MOSI

MOSI MOSI MOSIMISO MISO MISOMISO

SS

SS SS SS SS
SCK SCKSCKSCK

SCK

5V

P
or

ts

Slave
MCU

Slave
MCU

Slave
MCU

Slave
MCU

Master
MCU

Interrupt Event Event
Flag

Enable
Control

Bit

Exit
from
Wait

Exit
from
Halt

SPI End of Transfer Event SPIF
SPIE

Yes No

Master Mode Fault Event MODF Yes No

ST52F510/F513/F514

103/106

15.5 SPI Register Description
In the following sections describe the registers
used by the SPI.

15.5.1 SPI Configuration Registers.

SPI Control Register (SPI_CR)
Configuration Register 20 (014h) Read/Write
Reset Value: 0000 0000 (00h)

Bit 7: SPIE Serial peripheral interrupt enable.
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An SPI interrupt is generated whenever

SPIF=1 or MODF=1 in SPI_STATUS_CR

Bit 6: SPE Serial peripheral output enable.
This bit is set and cleared by software. It is
also cleared by hardware when, in master
mode, SS=0 (see Section 15.4.5 Master
Mode Fault).
0: I/O port connected to pins
1: SPI alternate functions connected to pins

Note: The SPE bit is cleared by reset, so the SPI
peripheral is not initially connected to the pins.

Bit 5: SPR2 Divider Enable.
This bit is set and cleared by software and it
is cleared by reset. It is used with the
SPR[1:0] bits to set the baud rate. Refer to
Table 15.1.
0: Divider by 2 enabled
1: Divider by 2 disabled

Note: This bit has no effect in slave mode.

Bit 4: MSTR Master/Slave mode select.
This bit is set and cleared by software. It is
also cleared by hardware when, in master
mode, SS=0 (see Section 15.4.5 Master
Mode Fault).
0: Slave mode is selected
1: Master mode is selected, the function of

the SCK pin changes from an input to an
output and the functions of the MISO and
MOSI pins are reversed.

Bit 3: CPOL Clock polarity.
This bit is set and cleared by software. This
bit determines the steady state of the serial
Clock. The CPOL bit affects both the master
and slave modes.
0: The steady state is a low value at the SCK

pin.
1: The steady state is a high value at the SCK

pin.

Note: SPI must be disabled by resetting the SPE
bit if CPOL is changed at the communication byte
boundaries.

Bit 2: CPHA Clock phase.
This bit is set and cleared by software.
0: The first clock transition is the first data

capture edge.
1: The second clock transition is the first

capture edge.

Bit 1-0: SPR1-SPR0 Serial peripheral rate.
These bits are set and cleared by software.
Used with the SPR2 bit, they select one of six
baud rates to be used as the serial clock
when the device is a master (see Table 15.1).
These 2 bits have no effect in slave mode.

Remark: It is recommended to write the SPI_CR
register after the SPI_STATUS_CR register when
working in master mode, vice versa when working
in slave mode.

SPI Control-Status Register (SPI_STATUS_CR)
Configuration Register 21 (015h) Read/Write
Reset Value: 0000 0000 (00h)

7 0

SPIE SPE SPR2 MSTR CPOL CPHA SPR1 SPR0

Table 15.1 Serial Peripheral Baud Rate

Serial Clock SPR2 SPR1 SPR0

fCKM/2 1 0 0

fCKM/4 0 0 0

fCKM/8 0 0 1

fCKM/16 1 1 0

fCKM/32 0 1 0

fCKM/64 0 1 1

7 0

SPIF WCOL OR MODF - SOD SSM SSI

ST52F510/F513/F514

104/106

Bit 7: SPIF Serial Peripheral data transfer flag.
(read only)

This bit is set by hardware when a transfer
has been completed. An interrupt is
generated if SPIE=1 in the SPI_CR register.
It is cleared by a software sequence (an
access to the SPI_STATUS_CR register
followed by a read or write to the SPI_IN/
SPI_OUT registers).
0: Data transfer is in progress or has been

approved by a clearing sequence.
1: Data transfer between the device and an

external device has been completed.

Note: While the SPIF bit is set, all writes to the
SPI_OUT register are inhibited.

Bit 6: WCOL Write Collision status (read only).
This bit is set by hardware when a write to the
SPI_OUT register is done during a transmit
sequence. It is cleared by a software
sequence (see Figure 15.5).
0: No write collision occurred
1: A write collision has been detected

Bit 5: OR SPI overrun error (read only).
This bit is set by hardware when the byte
currently being received in the shift register is
ready to be transferred into the SPI_IN
register while SPIF = 1 (See Section 15.4.6
Overrun Condition). It is cleared by a
software sequence (read of the
SPI_STATUS_CR register followed by a
read in SPI_IN or write of the SPI_OUT
register).
0: No overrun error.
1: Overrun error detected.

Bit 4: MODF Mode Fault flag (read only).
This bit is set by hardware when the SS pin is
pulled low in master mode (see Section
15.4.5 Master Mode Fault). An SPI interrupt
can be generated if SPIE=1 in the SPI_CR
register. This bit is cleared by a software
sequence (An access to the
SPI_STATUS_CR register while MODF=1
followed by a write to the SPI_CR register).
0: No master mode fault detected
1: A fault in master mode has been detected

Bit 3: Not used.

Bit 2: SOD SPI output disable
This bit is set and cleared by software. When
set, it disables the alternate function of the
SPI output (MOSI in master mode / MISO in
slave mode)
0: SPI output not disable
1: SPI output disable.

Bit 1: SSM SS mode selection
This bit is set and cleared by software. When
set, it disables the alternate function of the
SPI Slave Select pin and use the SSI bit
value instead of.
0: SS pin used by the SPI.
1: SS pin not used (I/O mode), SSI bit value

is used.

Bit 0: SSI SS internal mode
This bit is set and cleared by software. It
replaces pin SS of the SPI when bit SSM is
set to 1. SSI bit is active low slave select
signal when SSM is set to 1.
0 : Slave selected
1 : Slave not selected.

Remark: It is recommended to write the SPI_CR
register after the SPI_STATUS_CR register when
working in master mode, vice versa when working
in slave mode.

15.5.2 SPI Input Register.

SPI Data Input Register (SPI_IN)
Input Register 5 (05h) Read only
Reset Value: 0000 0000 (00h)

bit 7-0: SPIDI7-SPIDI0 Received data.

The SPI_IN register is used to receive data on the
serial bus.

Note: During the last clock cycle the SPIF bit is set,
a copy of the data byte received in the shift register
is moved to a buffer. When the user reads the
serial peripheral data I/O register, the buffer is
actually being read.

7 0

SPIDI7 SPIDI6 SPIDI5 SPIDI4 SPIDI3 SPIDI2 SPIDI1 SPIDI0

ST52F510/F513/F514

105/106

Warning: A read to the SPI_IN register returns the
value located in the buffer and not the contents of
the shift register (see Figure 15.2).

15.5.3 SPI Output Register.

SPI Data Output Register (SPI_OUT)
Output Register 5 (05h) Write only
Reset Value: 0000 0000 (00h)

bit 7-0: SPIDO7-SPIDO0 Data to be transmitted.

The SPI_OUT register is used to transmit data on
the serial bus. In the master device only a write to
this register will initiate transmission/reception of
another byte.

Warning: A write to the SPI_OUT register places
data directly into the shift register for transmission.

7 0

SPIDO7 SPIDO6 SPIDO5 SPIDO4 SPIDO3 SPIDO2 SPIDO1 SPIDO0

106/106

Full Product Information at http://mcu.st.com

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Canada - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta

 - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

	ST52F510/F513/F514
	TABLE OF CONTENTS
	1 GENERAL DESCRIPTION
	1.1 Introduction
	1.2 Functional Description
	1.2.1 Memory Programming Mode
	1.2.2 Working Mode

	1.3 Pin Description

	2 INTERNAL ARCHITECTURE
	2.1 Control Unit and Data Processing Unit
	2.1.1 Program Counter
	2.1.2 Flags

	2.2 Arithmetic Logic Unit
	2.3 Register Description

	3 ADDRESSING SPACES
	3.1 Memory Interface
	3.2 Register File
	3.3 Program/Data Memory
	3.4 System and User Stacks
	3.5 Input Registers
	3.6 Output registers
	3.7 Configuration Registers & Option Bytes

	4 MEMORY PROGRAMMING
	4.1 Program/Data Memory Organization
	4.2 Memory Programming
	4.2.1 Programming Mode start
	4.2.2 Fast Programming procedure
	4.2.3 Random data writing
	4.2.4 Option Bytes Programming

	4.3 Memory Verify
	4.3.1 Fast read procedure
	4.3.2 Random data reading

	4.4 Memory Lock
	4.5 ID Code
	4.6 Error cases
	4.7 In-Situ Programming (ISP)
	4.8 In-Application Programming (IAP)
	4.8.1 Single byte write
	4.8.2 Block write
	4.8.3 Memory Corruption Prevention
	4.8.4 Option Bytes
	4.8.5 Input Register

	5 INTERRUPTS
	5.1 Interrupt Processing
	5.2 Global Interrupt Request Enabling
	5.3 Interrupt Sources
	5.4 Interrupt Maskability and Priority Levels
	5.5 Interrupt RESET
	5.6 Register Description

	6 CLOCK, RESET & POWER SAVING MODES
	6.1 Clock
	6.2 Reset
	6.2.1 External Reset
	6.2.2 Reset Procedures

	6.3 Programmable Low Voltage Detector
	6.4 Power Saving modes
	6.4.1 Wait Mode
	6.4.2 Halt Mode

	6.5 Register Description
	6.5.1 Configuration Register
	6.5.2 Option Bytes

	7 I/O PORTS
	7.1 Introduction
	7.2 Input Mode
	7.3 Output Mode
	7.4 Interrupt Mode
	7.5 Alternate Functions
	7.6 Register Description
	7.6.1 Configuration Registers
	7.6.2 Input Registers
	7.6.3 Output Registers

	8 FUZZY COMPUTATION (DP)
	8.1 Fuzzy Inference
	8.2 Fuzzyfication Phase
	8.3 Inference Phase
	8.4 Defuzzyfication
	8.5 Input Membership Function
	8.6 Output Singleton
	8.7 Fuzzy Rules

	9 INSTRUCTION SET
	9.1 Addressing Modes
	9.2 Instruction Types

	10 10-bit A/D CONVERTER
	10.1 Introduction
	10.2 Functional Description
	10.3 Operating Modes
	10.3.1 One Channel Single Mode
	10.3.2 Multiple Channels Single Mode
	10.3.3 One Channel Continuous Mode
	10.3.4 Multiple Channels Continuous Mode

	10.4 Power Down Mode
	10.5 A/D Converter Register Description
	10.5.1 A/D Converter Configuration Registers
	10.5.2 Input Registers

	11 WATCHDOG TIMER
	11.1 Functional Description
	11.2 Register Description

	12 PWM/TIMERS
	12.1 Introduction
	12.2 Timer Mode
	12.3 PWM Mode
	12.3.1 Simultaneous Start

	12.4 Timer Interrupts
	12.5 PWM/Timer 0 Register Description
	12.5.1 PWM/Timer 0 Configuration Registers
	12.5.2 PWM/Timer 0 Input Registers
	12.5.3 PWM/Timer 0 Output Registers

	12.6 PWM/Timer 1 Register Description
	12.6.1 PWM/Timer 1 Configuration Registers
	12.6.2 PWM/Timer 1 Input Registers
	12.6.3 PWM/Timer 1 Output Registers

	13 SERIAL COMMUNICATION INTERFACE
	13.1 SCI Receiver block
	13.1.1 Recovery Buffer Block
	13.1.2 SCDR_RX Block

	13.2 SCI Transmitter Block
	13.3 Baud Rate Generator Block
	13.4 SCI Register Description
	13.4.1 SCI Configuration Registers
	13.4.2 SCI Input Registers
	13.4.3 SCI Output Register

	14 I2C BUS INTERFACE (I2C)
	14.1 Introduction
	14.2 Main Features
	14.3 General Description
	14.3.1 Mode Selection
	14.3.2 Communication Flow
	14.3.3 SDA/SCL Line Control

	14.4 Functional Description
	14.4.1 Slave Mode
	14.4.2 Master Mode

	14.5 Register Description
	14.5.1 I2C Interface Configuration Registers
	14.5.2 I2C Interface Input Registers
	14.5.3 I2C Interface Output Registers

	15 SERIAL PERIPHERAL INTERFACE (SPI)
	15.1 Introduction
	15.2 Main Features
	15.3 General description
	15.4 Functional Description
	15.4.1 Master Configuration
	15.4.2 Slave Configuration
	15.4.3 Data Transfer Format
	15.4.4 Write Collision Error
	15.4.5 Master Mode Fault
	15.4.6 Overrun Condition
	15.4.7 Single Master and Multimaster Configurations
	15.4.8 Interrupts

	15.5 SPI Register Description
	15.5.1 SPI Configuration Registers
	15.5.2 SPI Input Register
	15.5.3 SPI Output Register

