

ST49C159-65

Frequency Generator/Buffer for

PC Motherboards

August 1996-4

Τ(¢)Μ

FEATURES

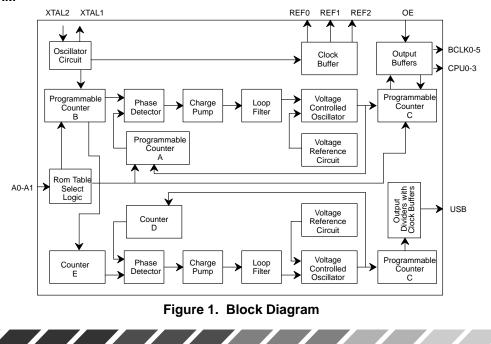
- Four Copies of CPU Clock (Selectable 50, 60 or 66 MHz)
- Six Copies of Bus Clock (Sync. CPU Clock/2)
- One USB Clock @ 48 MHz
- Three Copies of Reference Clock @ 14.31818 MHz
- Supports the Intel Triton PCI Chipset and Aladdin Platform

- Synchronous Clocks Skew Less Than \pm 250 ps
- Reference 14.31818 MHz Xtal Oscillator
- Glitch-free Clock Start/Stop
- 3V to 5.5V Power Supply Range
- 28 pin SOIC or SSOP Package
- Test Mode Supported

GENERAL DESCRIPTION

The ST49C159-65 is a frequency generator designed to satisfy the multiple frequency clock needs of PentiumTM and Pentium ProTM based motherboards. The ST49C159-65 is specifically configured according to INTEL specifications to be optimized for use with the next

generation Intel TritonTM and Mars PCI chipset with USB support. Intel PCI chipset. It also satisfies the clocking requirements of may popular RISC and CISC processor system configurations including 486, Power PCTM. EXAR has designed the ST49C159-65 to be easily customized for other customer system configurations.

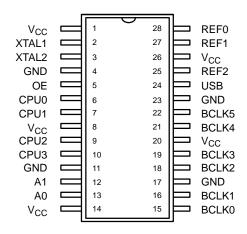

ORDERING INFORMATION

Part No.	Package	Operating Temperature Range
ST49C159CT28-65	28 Lead 5.3 mm SSOP	0°C to +70°C
ST49C159CF28-65	28 Lead 300 Mil Jedec SOIC	0°C to +70°C

BLOCK DIAGRAM

Rev. P1.00

©1996


EXAR Corporation, 48720 Kato Road, Fremont, CA 94538 ♦ (510) 668-7000 ♦ FAX (510) 668-7017

Preliminary

PIN CONFIGURATION

28 Lead SOIC, SSOP (Jedec, 0.300")

PIN DESCRIPTION

Symbol	Pin #	Туре	Description	
XTAL1	2	0	Crystal or external clock input.	
XTAL2	3	I	Crystal output pin.	
A0	13 ¹	I	CPU clock frequency select address 0.	
A1	12 ¹	I	CPU clock frequency select address 1.	
CPU0-3	6, 7, 9,10	Ο	Selectable CPU clock output.	
BCLK0-5	15,16,18, 19,21,22	0	Selectable Bus clock output.	
USB	24	0	USB clock, 48 MHz clock output.	
REF2	25	Ο	14.318 MHz reference clock output	
REF0	28	Ο	14.318 MHz reference clock output.	
REF1	27	Ο	14.318 MHz reference clock output.	
OE	5 ¹	I	Output enable (active high). Three states outputs when low.	
V _{CC}	8,20,26	I	Supply voltage. Single +3 to +5.5 volts.	
V _{CC}	1, 14	I	Supply voltage. Single +3 to +5.5 volts.	
GND	17, 23	0	Signal ground.	
GND	4,11	0	Signal ground.	

Notes

¹Has internal pull-up resistor.

DC ELECTRICAL CHARACTERISTICS

Test Conditions: T_{A} = 0 to 70°C, V_{CC} = 3.3 - 5.0V \pm 10% Unless Otherwise Specified

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
V _{IL}	Input Low Level			0.8	V	
V _{IH}	Input High Level	2.0			V	
V _{OL}	Output Low Level ¹			0.4	V	I _{OL} = 15 mA, CPU & BCLK
V _{OH}	Output High Level ¹	2.4			V	I _{OH} = -30 mA, CPU & BCLK
V _{OL2}	Output Low Level ¹			0.4	V	I _{OL} = 12.5 mA, Fix Clocks
V _{OH2}	Output High Level ¹	2.4			V	I _{OH} = -20 mA, Fix Clocks
۱ _{۱۲}	Input Low Current	-40			μA	Except Pin 2, V _{IN} = 0
I _{IH}	Input High Current			40	μA	Except Pin 2, V _{IN} = V _{CC}
I _{CC}	Operating Current		50	160	mA	No Load @ 66 MHz
R _{IN}	Internal Pull-up Resistance ¹	150	300	600	kΩ	

Notes

¹Parameters is guaranteed by design and characterization, Not 100% tested in production.

AC ELECTRICAL CHARACTERISTICS

Test Conditions: T_A = 0 to 70°C, V_{CC} = 3.3V \pm 10% Unless Otherwise Specified

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
	Output Rise Time ¹		0.8	1.7	ns	0.8V - 2.0V, 20pF, CPU & BCLK
	Output Fall Time ¹		0.7	1.6	ns	2.0V - 0.8V, 20pF, CPU & BCLK
	Duty Cycle ^{1, 2}	45	48/52	55	%	1.4V switch point, load = 20pF
	Output Rise Time		1.0	2.0	ns	0.8-2.0 V, 20 pF, REF0-2, USB
	Output Fall Time		0.9	1.9	ns	2.0-0.8 V, 20 pF, REF0-2, USB
	Jitter 1 Sigma ¹		±1	±3	%	REF0-2, BCLK, USB, load=20 pF
	Jitter Absolute ¹		±2	± 5	%	REF0-2, USB, load=20 pF
	Input Frequency ¹		14.318		MHz	
	Input Clock Rise Time ¹			20	ns	
	Jitter 1 Sigma ¹		50	150	ps	CPU, BCLK, load=20 pF F _{OUT} >20 MHz
	Jitter Absolute ¹	-250		+250	ps	CPU, BCLK, load= 20 pF F _{OUT} >20 MHz
	Clock Skew Between CPU Outputs ¹		100	±250	ps	1.4V switch point, load=20 pF
	Clock Skew Between BCLK Outputs ¹	-500		+500	ps	1.4V switch point, load=20 pF
	Clock Skew Between CPU and BCLK (CPU Ahead) ¹	1	2.5	5	ns	1.4V switch point, load=20 pF

Notes

¹ Parameters is guaranteed by design and characterization, Not 100% tested in production.

² Except reference clock which is 40%-60%.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	7 Volts
Voltage at Any Pin	GND-0.3V to V _{CC} +0.3V
Operating Temperature .	0°C to +70°C

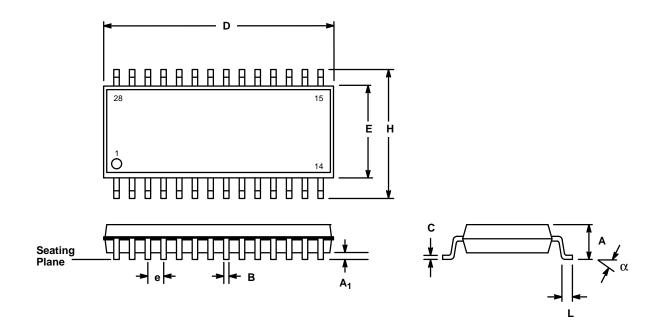
ST49C159-65 ACTUAL OUTPUT FREQUENCIES (Using 14.318 MHz Input. All Frequencies in MHz).

A1	A0	CPU 0-3	BCLK 0-5	REF 0-2	USB
0	0	50	25	14.3	48
0	1	66	33	14.3	48
1	0	60	30	14.3	48
1	1	Exclk/2	Exclk/4	Exclk	Exclk/2

Storage Temperature	 -40°C to +150°C
Package Dissipation .	 500 mW

FREQUENCY TRANSITIONS

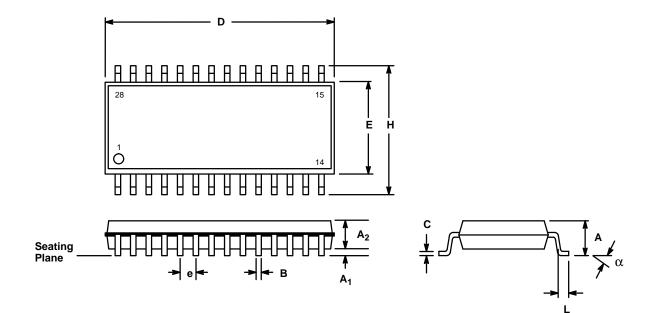
The ST49C159-65 is designed to provide smooth, glitch-free frequency transitions on the CPU and BCLK clocks when the frequency select pins are changed.


Notes

28 LEAD SMALL OUTLINE (300 MIL JEDEC SOIC)

Rev. 1.00

	INC	HES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	МАХ
А	0.093	0.104	2.35	2.65
A1	0.004	0.012	0.10	0.30
В	0.013	0.020	0.33	0.51
С	0.009	0.013	0.23	0.32
D	0.697	0.713	17.70	18.10
E	0.291	0.299	7.40	7.60
е	0.0	50 BSC	1.2	7 BSC
н	0.394	0.419	10.00	10.65
L	0.016	0.050	0.40	1.27
α	0°	8°	0°	8°


Note: The control dimension is the millimeter column

28 LEAD SHRINK SMALL OUTLINE PACKAGE (5.3 mm SSOP)

Rev. 1.00

	INC	HES	MILLIN	IETERS
SYMBOL	MIN	МАХ	MIN	MAX
А	0.066	0.084	1.67	2.13
A ₁	0.002	0.010	0.05	0.25
A ₂	0.064	0.074	1.62	1.88
В	0.009	0.015	0.22	0.38
С	0.004	0.008	0.09	0.20
D	0.390	0.414	9.90	10.50
E	0.197	0.221	5.00	5.60
е	0.02	56 BSC	0.6	5 BSC
н	0.292	0.323	7.40	8.20
L	0.025	0.041	0.63	1.03
α	0°	8°	0°	8°

Note: The control dimension is the millimeter column

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1996 EXAR Corporation Datasheet September 1996 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

