
ST10 FAMILY
PROGRAMMING

MANUAL

2nd EDITION
AUGUST 1997

1

2/185

Table of Contents

5

1 INTRODUCTION .6

 STANDARD INSTRUCTION SET

2 ADDRESSING MODES .7

2.1 Short addressing modes .7

2.2 Long addressing mode .9

2.3 Indirect addressing modes .11

2.4 Constants .12

2.5 Branch target addressing modes .13

3 INSTRUCTION EXECUTION TIMES .14

3.1 Definition of measurement units .14

3.2 Minimum state times .15

3.3 Additional state times .16

4 INSTRUCTION SET SUMMARY .19

4.1 X-ref tables of opcode by mnemonic .19

4.2 X-ref table of mnemonic, address mode & number of bytes20

4.3 Instruction set ordered by functional group .22

4.4 Instruction set ordered by opcodes .37

4.5 Instruction conventions .43

4.6 Notes on ATOMIC and EXTended instructions .48

5 INDIVIDUAL INSTRUCTION DESCRIPTIONS .48

ADD .49

ADDB .50

ADDC .51

ADDBC .52

AND .53

ANDB .54

ASHR .55

ATOMIC .56

BAND .57

BCLR .58

BCMP .59

BFLDH .60

BFLDL .61

BMOV .62

BMOVN .63

2

3/185

Table of Contents

BOR .64

BSET .65

BXOR .66

CALLA .67

CALLI .68

CALLR .69

CALLS .70

CMP .71

CMPB .72

CMPD1 .73

CMPD2 .74

CMPI1 .75

CMPI2 .76

CPL .77

CPLB .78

DISWDT .79

DIV .80

DIVL .81

DIVLU .82

DIVU .83

EINIT .84

EXTR .85

EXTP .86

EXTPR .87

EXTS .88

EXTSR .89

IDLE .90

JB .91

JBC .92

JMPA .93

JMPI .94

JMPR .95

JMPS .96

JNB .97

JNBS .98

4/185

Table of Contents

5

MOV .99

MOVB .100

MOVBS .101

MOVBZ .102

MUL .103

MULU .104

NEG .105

NEGB .106

NOP .107

OR .108

ORB .109

PCALL .110

POP .111

PRIOR .112

PUSH .113

PWRDN .114

RET .115

RETI .116

RETP .117

RETS .118

ROL .119

ROR .120

SCXT .121

SHL .122

SHR .123

SRST .124

SRVWDT .125

SUB .126

SUBB .127

SUBC .128

SUBCB .129

TRAP .130

XOR .131

XORB .132

5/185

Table of Contents

 MAC INSTRUCTION SET

6 MAC ADDRESSING MODES .133

7 MAC INSTRUCTION EXECUTION TIME .134

8 MAC INSTRUCTION SET SUMMARY .135

8.1 MAC instruction conventions .137

9 INDIVIDUAL INSTRUCTION DESCRIPTION .139

CoMUL(-) .140

CoMULu(-) .142

CoMULsu(-) .144

CoMULus(-) .146

CoMAC(R/-) .148

CoMAC(R)u(-) .151

CoMAC(R)su(-) .153

CoMAC(R)us(-) .155

CoMACM(R/-) .157

CoMACM(R)u(-) .160

CoMACM(R)su(-) .162

CoMACM(R)us(-) .164

CoADD(2) .166

CoSUB(2)(R) .168

CoNEG .170

CoABS .171

CoLOAD(2)(-) .172

CoNOP .174

CoSHL .175

CoSHR .176

CoASHR .177

CoRND .179

CoMAX .180

CoMIN .181

CoCMP .182

CoSTORE .183

CoMOV .184

6/185

Introduction

1 Introduction

This programming manual details the instruction set for the ST10 Family of products. The
manual is arranged in two sections. Section 1 details the standard instruction set and
includes all of the basic instructions. Section 2 details the extension to the instruction set
provided by the MAC co-processor. The MAC instructions are only available to devices
containing the MAC co-processor, refer to the datasheet for device specific information.

Section 1 of this manual describes the different addressing modes used by the instruction set
to access word, byte and bit data. Instruction execution times, minimum state times and the
causes of additional state times are defined. Cross reference tables of instruction
mnemonics, hexadecimal opcode, address modes and number of bytes, can be used as a
quick reference for the optimization of instruction sequences. Tables of the instruction set
ordered by functional group, defining the mnemonic, a brief instruction description and the
minimum state time for all configurations have been included. These can be used for quick
identification of the best instruction for a required function. A table of the instruction set
ordered by hexadecimal opcode can be used to identify specific instructions when reading
executable code i.e. during the de-bugging phase. Finally, each instruction is described indi-
vidually on a page of standard format and using the conventions defined in this manual. For
ease of use, the instructions are listed alphabetically.

The ATOMIC and EXTended instructions are not available to the ST10X166. This device is
one of the older members of the ST10 family and does not have the Extended Special
Function Register Area. This has been noted throughout the manual where applicable.

The MAC instruction set is divided into 5 functional groups: Multiply and Multiply-Accumulate
Instructions, 32-Bit Arithmetic Instructions, Shift Instructions, Compare Instructions and
Transfer Instructions. Two new addressing modes have been added to the MAC instruction
set, supplying the MAC with up to 2 new operands per instruction. These addressing mode
have been described in the MAC section. Cross reference tables of MAC instruction
mnemonics by address mode, and MAC instruction mnemonic by functional code have been
included for quick reference. As for the standard instruction set, each instruction has been
described individually in a standard format, according to the defined conventions. In the MAC
section the instructions are not described in alphabetical order, but by functional group.

3

7/185

Addressing Modes

SECTION 1: STANDARD INSTRUCTION SET

2 Addressing Modes

The ST10 family of devices use several powerful addressing modes for access to word, byte
and bit data. This section describes short, long and indirect address modes, constants and
branch target addressing modes.

2.1 Short addressing modes

Short addressing modes use an implicit base offset address to specify the physical address.
For the ST10X166, the physical address is 18-bit, and for all other devices it is 24-bit.

Short addressing modes give access to the GPR, SFR or bit-addressable memory space:

Physical Address = Base Address + ∆ * Short Address

Note: ∆ is 1 for byte GPRs, ∆ is 2 for word GPRs.

Note: * The Extended Special Function Register (ESFR) area is not available in ST10X166 devices.

Table 2.1 Short addressing mode summary

Mnemonic Physical Address Short Address Range Scope of Access

Rw (CP) + 2*Rw Rw = 0...15 GPRs (Word) 16 values

Rb (CP) + 1*Rb Rb = 0...15 GPRs (Byte) 16 values

reg 00’FE00h + 2*reg
00’F000h + 2*reg *)

(CP) + 2*(reg∧0Fh)
(CP) + 1*(reg∧0Fh)

reg = 00h...EFh
reg = 00h...EFh
reg = F0h...FFh
reg = F0h...FFh

SFRs (Word, Low byte)
ESFRs(Word, Low byte)*)

GPRs (Word) 16 values
GPRs (Bytes) 16 values

bitoff 00’FD00h + 2*bitoff
00’FF00h + 2*(bitoff∧FFh)
(CP) + 2*(bitoff∧0Fh)

bitoff = 00h...7Fh
bitoff = 80h...EFh
bitoff = F0h...FFh

RAM Bit word offset 128 values
SFR Bit word offset 128 values
GPR Bit word offset 16 values

bitaddr Word offset as with bitoff.
Immediate bit position.

bitoff = 00h...FFh
bitpos = 0...15

Any single bit

4

8/185

Addressing Modes

Rw, Rb: Specifies direct access to any GPR in the currently active context (register bank).
Both 'Rw' and 'Rb' require four bits in the instruction format. The base address of
the current register bank is determined by the content of register CP. 'Rw' specifies
a 4-bit word GPR address relative to the base address (CP), while 'Rb' specifies a
4 bit byte GPR address relative to the base address (CP).

reg: Specifies direct access to any (E)SFR or GPR in the currently active context
(register bank). 'reg' requires eight bits in the instruction format. Short 'reg'
addresses from 00h to EFh always specify (E)SFRs. In this case, the factor '∆'
equals 2 and the base address is 00’F000h for the standard SFR area, or
00’FE00h for the extended ESFR area. ‘reg’ accesses to the ESFR area require a
preceding EXT*R instruction to switch the base address (not available in the
ST10X166 devices). Depending on the opcode of an instruction, either the total
word (for word operations), or the low byte (for byte operations) of an SFR can be
addressed via 'reg'. Note that the high byte of an SFR cannot be accessed by the
'reg' addressing mode. Short 'reg' addresses from F0h to FFh always specify
GPRs. In this case, only the lower four bits of 'reg' are significant for physical
address generation, therefore it can be regarded as identical to the address gener-
ation described for the 'Rb' and 'Rw' addressing modes.

bitoff: Specifies direct access to any word in the bit-addressable memory space. 'bitoff'
requires eight bits in the instruction format. Depending on the specified 'bitoff'
range, different base addresses are used to generate physical addresses: Short
'bitoff' addresses from 00h to 7Fh use 00’FD00h as a base address, therefore they
specify the 128 highest internal RAM word locations (00’FD00h to 00’FDFEh).
Short 'bitoff' addresses from 80h to EFh use 00’FF00h as a base address to
specify the highest internal SFR word locations (00’FF00h to 00’FFDEh) or use
00’F100h as a base address to specify the highest internal ESFR word locations
(00’F100h to 00’F1DEh). ‘bitoff’ accesses to the ESFR area require a preceding
EXT*R instruction to switch the base address (not available in the ST10X166
devices). For short 'bitoff' addresses from F0h to FFh, only the lowest four bits and
the contents of the CP register are used to generate the physical address of the
selected word GPR.

bitaddr: Any bit address is specified by a word address within the bit-addressable memory
space (see 'bitoff'), and by a bit position ('bitpos') within that word. Thus, 'bitaddr'
requires twelve bits in the instruction format.

4

9/185

Addressing Modes

2.2 Long addressing mode

Long addressing mode uses one of the four DPP registers to specify a physical 18-bit or 24-
bit address. Any word or byte data within the entire address space can be accessed in this
mode. All devices except the ST10X166 support an override mechanism for the DPP
addressing scheme (see section 2.2.1).

Note: Word accesses on odd byte addresses are not executed, but rather trigger a hardware trap.
After reset, the DPP registers are initialized so that all long addresses are directly mapped
onto the identical physical addresses, within segment 0.

Long addresses (16-bit) are treated in two parts. Bits 13...0 specify a 14-bit data page offset,
and bits 15...14 specify the Data Page Pointer (1 of 4). The DPP is used to generate the
physical 18-bit or 24-bit address (see figure below).

Figure 2.1 Interpretation of a 16-bit long address

All ST10 devices (with the exception of the ST10X166) support an address space of up to 16
MByte, so only the lower ten bits (4 in the case of the ST10X166) of the selected DPP
register content are concatenated with the 14-bit data page offset to build the physical
address. The ST10X166 supports an address space of up to 256KBytes, so only the lower 4
bits of the selected DPP register content are concatenated with the 14-bit data page offset to
build the physical address.

The long addressing mode is referred to by the mnemonic ‘mem’.

Figure 2.2 Summary of long address modes

Mnemonic Physical Address Long Address Range Scope of Access

mem (DPP0) || mem∧3FFFh
(DPP1) || mem∧3FFFh
(DPP2) || mem∧3FFFh
(DPP3) || mem∧3FFFh

0000h...3FFFh
4000h...7FFFh
8000h...BFFFh
C000h...FFFFh

Any Word or Byte

mem pag || mem∧3FFFh 0000h...FFFFh (14-bit) Any Word or Byte

mem seg || mem 0000h...FFFFh (16-bit) Any Word or Byte

015 14 13
16-bit Long Address

DPP0
DPP1
DPP2
DPP3

14-bit page offset

18/24-bit Physical Address

4

10/185

Addressing Modes

2.2.1 DPP override mechanism (not available for ST10X166 devices)

The DPP override mechanism temporarily bypasses the DPP addressing scheme.

The EXTP(R) and EXTS(R) instructions override this addressing mechanism. Instruction
EXTP(R) replaces the content of the respective DPP register, while instruction EXTS(R)
concatenates the complete 16-bit long address with the specified segment base address.
The overriding page or segment may be specified directly as a constant (#pag, #seg) or by a
word GPR (Rw).

Figure 2.3 Overriding the DPP mechanism

015 14 13
16-bit Long Address

#pag 14-bit page offset

24-bit Physical Address

015
16-bit Long Address

#seg 16-bit segment offset

24-bit Physical Address

EXTP(R):

EXTS(R):

4

11/185

Addressing Modes

2.3 Indirect addressing modes

Indirect addressing modes can be considered as a combination of short and long addressing
modes. In this mode, long 16-bit addresses are specified indirectly by the contents of a word
GPR, which is specified directly by a short 4-bit address ('Rw'=0 to 15). Some indirect
addressing modes add a constant value to the GPR contents before the long 16-bit address
is calculated. Other indirect addressing modes allow decrementing or incrementing of the
indirect address pointers (GPR content) by 2 or 1 (referring to words or bytes).

In each case, one of the four DPP registers is used to specify the physical 18-bit or 24-bit
addresses. Any word or byte data within the entire memory space can be addressed indi-
rectly. Note that EXTP(R) and EXTS(R) instructions override the DPP mechanism.

Instructions using the lowest four word GPRs (R3...R0) as indirect address pointers are
specified by short 2-bit addresses.

Word accesses on odd byte addresses are not executed, but rather trigger a hardware trap.
After reset, the DPP registers are initialized in a way that all indirect long addresses are
directly mapped onto the identical physical addresses.

Physical addresses are generated from indirect address pointers by the following algorithm:

Step 1: Calculate the physical address of the word GPR which is used as indirect address
pointer, by using the specified short address ('Rw') and the current register bank
base address (CP).

GPR Address = (CP) + 2 * Short Address - ∆; [optional step!]

Step 2: Pre-decremented indirect address pointers (‘-Rw’) are decremented by a data-
type-dependent value (∆=1 for byte operations, ∆=2 for word operations), before
the long 16-bit address is generated:

(GPR Address) = (GPR Address) - ∆; [optional step!]

Step 3: Calculate the long 16-bit address by adding a constant value (if selected) to the
content of the indirect address pointer:

Long Address = (GPR Pointer) + Constant

Step 4: Calculate the physical 18-bit or 24-bit address using the resulting long address and
the corresponding DPP register content (see long 'mem' addressing modes).

Physical Address = (DPPi) + Page offset

Step 5: Post-Incremented indirect address pointers (‘Rw+’) are incremented by a data-
type-dependent value (∆=1 for byte operations, ∆=2 for word operations):

(GPR Pointer) = (GPR Pointer) + ∆; [optional step!]

The following indirect addressing modes are provided:

4

12/185

Addressing Modes

2.4 Constants

The ST10 Family instruction set supports the use of wordwide or bytewide immediate
constants. For optimum utilization of the available code storage, these constants are repre-
sented in the instruction formats by either 3, 4, 8 or 16 bits. Therefore, short constants are
always zero-extended while long constants are truncated if necessary to match the data
format required for the particular operation (see table below):

Note: Immediate constants are always signified by a leading number sign '#'.

Table 2.2 Table of indirect address modes

Mnemonic Notes

[Rw] Most instructions accept any GPR (R15...R0) as indirect address pointer.
Some instructions, however, only accept the lower four GPRs (R3...R0).

[Rw+] The specified indirect address pointer is automatically post-incremented by 2 or 1 (for
word or byte data operations) after the access.

[-Rw] The specified indirect address pointer is automatically pre-decremented by 2 or 1 (for
word or byte data operations) before the access.

[Rw+#data16] A

Table 2.3 Table of constants

Mnemonic Word Operation Byte Operation

#data3 0000h + data3 00h + data3

#data4 0000h + data4 00h + data4

#data8 0000h + data8 data8

#data16 data16 data16 ∧ FFh

#mask 0000h + mask mask

4

13/185

Addressing Modes

2.5 Branch target addressing modes

Jump and Call instructions use different addressing modes to specify the target address and
segment. Relative, absolute and indirect modes can be used to update the Instruction Pointer
register (IP), while the Code Segment Pointer register (CSP) can only be updated with an
absolute value. A special mode is provided to address the interrupt and trap jump vector table
situated in the lowest portion of code segment 0.

caddr: Specifies an absolute 16-bit code address within the current segment. Branches
MAY NOT be taken to odd code addresses. Therefore, the least significant bit of
'caddr' must always contain a '0', otherwise a hardware trap would occur.

rel: Represents an 8-bit signed word offset address relative to the current Instruction
Pointer contents which points to the instruction after the branch instruction.
Depending on the offset address range, either forward ('rel'= 00h to 7Fh) or
backward ('rel'= 80h to FFh) branches are possible. The branch instruction itself is
repeatedly executed, when 'rel' = '-1' (FFh) for a word-sized branch instruction, or
'rel' = '-2' (FEh) for a double-word-sized branch instruction.

[Rw]: The 16-bit branch target instruction address is determined indirectly by the content
of a word GPR. In contrast to indirect data addresses, indirectly specified code
addresses are NOT calculated by additional pointer registers (e.g. DPP registers).
Branches MAY NOT be taken to odd code addresses. Therefore, to prevent a
hardware trap, the least significant bit of the address pointer GPR must always
contain a '0.

seg: Specifies an absolute code segment number. All devices (except the ST10X166)
support 256 different code segments, so only the eight lower bits of the 'seg'
operand value are used for updating the CSP register. The ST10X166 supports 4
different code segments so only the two lower bits of the 'seg' operand value are
used for updating the CSP register

#trap7: Specifies a particular interrupt or trap number for branching to the corresponding
interrupt or trap service routine by a jump vector table. Trap numbers from 00h to
7Fh can be specified, which allows access to any double word code location within
the address range 00’0000h...00’01FCh in code segment 0 (i.e. the interrupt jump
vector table). For further information on the relation between trap numbers and
interrupt or trap sources, refer to the device user manual section on “Interrupt and
Trap Functions”.

Table 2.4 Branch target address summary
Mnemonic Target Address Target Segment Valid Address Range

caddr (IP) = caddr - caddr = 0000h...FFFEh

rel (IP) = (IP) + 2*rel
(IP) = (IP) + 2*(~rel+1)

-
-

rel = 00h...7Fh
rel = 80h...FFh

[Rw] (IP) = ((CP) + 2*Rw) - Rw = 0...15

seg - (CSP) = seg seg = 0...3

#trap7 (IP) = 0000h + 4*trap7 (CSP) = 0000h trap7 = 00h...7Fh

4

14/185

Instruction Execution Times

3 Instruction Execution Times

The instruction execution time depends on where the instruction is fetched from, and where
the operands are read from or written to. The fastest processing mode is to execute a
program fetched from the internal ROM. In this case most of the instructions can be
processed in just one machine cycle.

All external memory accesses are performed by the on-chip External Bus Controller (EBC)
which works in parallel with the CPU. Instructions from external memory cannot be
processed as fast as instructions from the internal ROM, because it is necessary to perform
data transfers sequentially via the external interface. In contrast to internal ROM program
execution, the time required to process an external program additionally depends on the
length of the instructions and operands, on the selected bus mode, and on the duration of an
external memory cycle.

Processing a program from the internal RAM space is not as fast as execution from the
internal ROM area, but it is flexible (i.e. for loading temporary programs into the internal RAM
via the chip's serial interface, or end-of-line programming via the bootstrap loader).

The following description evaluates the minimum and maximum program execution times.
which is sufficient for most requirements. For an exact determination of the instructions' state
times, the facilities provided by simulators or emulators should be used.

This section defines measurement units, summarizes the minimum (standard) state times of
the 16-bit microcontroller instructions, and describes the exceptions from the standard timing.

3.1 Definition of measurement units

The following measurement units are used to define instruction processing times:

[fCPU]: CPU operating frequency (may vary from 1 MHz to 20 MHz).

[State] : One state time is specified by one CPU clock period. Therefore, one State is used
as the basic time unit, because it represents the shortest period of time which has
to be considered for instruction timing evaluations.

1 [State] = 1/fCPU [s] ; for fCPU = variable

= 50 [ns] ; for fCPU = 20 MHz

[ACT]: This ALE (Address Latch Enable) Cycle Time specifies the time required to
perform one external memory access. One ALE Cycle Time consists of either two
(for demultiplexed external bus modes) or three (for multiplexed external bus
modes) state times plus a number of state times, which is determined by the
number of waitstates programmed in the MCTC (Memory Cycle Time Control) and
MTTC (Memory Tristate Time Control) bit fields of the SYSCON/BUSCONx regis-
ters.

4

15/185

Instruction Execution Times

For demultiplexed external bus modes:
1*ACT = (2 + (15 – MCTC) + (1 – MTTC)) * States

= 100 ns ... 900 ns ; for fCPU = 20 MHz

For multiplexed external bus modes:
1*ACT = 3 + (15 – MCTC) + (1 – MTTC) * States

= 150 ns ... 950 ns ; for fCPU = 20 MHz

Ttot The total time (Ttot) taken to process a particular part of a program can be calcu-

lated by the sum of the single instruction processing times (TIn) of the considered

instructions plus an offset value of 6 state times which takes into account the
solitary filling of the pipeline, as follows:

Ttot =TI1 + TI2 + ... + TIn + 6 * States

TIn The time (TIn) taken to process a single instruction, consists of a minimum number

(TImin) plus an additional number (TIadd) of instruction state times and/or ALE

Cycle Times, as follows:

TIn =TImin + TIadd

3.2 Minimum state times

The table below shows the minimum number of state times required to process an instruction
fetched from the internal ROM (TImin (ROM)). This table can also be used to calculate the

minimum number of state times for instructions fetched from the internal RAM (TImin (RAM)),

or ALE Cycle Times for instructions fetched from the external memory (TImin (ext)).

Most of the 16-bit microcontroller instructions (except some branch, multiplication, division
and a special move instructions) require a minimum of two state times. For internal ROM
program execution, execution time has no dependence on instruction length, except for some
special branch situations.

To evaluate the execution time for the injected target instruction of a cache jump instruction, it
can be considered as if it was executed from the internal ROM, regardless of which memory
area the rest of the current program is really fetched from.

For some of the branch instructions the table below represents both the standard number of
state times (i.e. the corresponding branch is taken) and an additional TImin value in paren-

theses, which refers to the case where, either the branch condition is not met, or a cache
jump is taken.

Instructions executed from the internal RAM require the same minimum time as they would if
they were fetched from the internal ROM, plus an instruction-length dependent number of
state times, as follows:

4

16/185

Instruction Execution Times

For 2-byte instructions:TImin(RAM) = TImin(ROM) + 4 * States

For 4-byte instructions:TImin(RAM) = TImin(ROM) + 6 * States

Unlike internal ROM program execution, the minimum time TImin(ext) to process an external

instruction also depends on instruction length. TImin(ext) is either 1 ALE Cycle Time for most

of the 2-byte instructions, or 2 ALE Cycle Times for most of the 4-byte instructions. The
following formula represents the minimum execution time of instructions fetched from an
external memory via a 16-bit wide data bus:

For 2-byte instructions:TImin(ext) = 1*ACT + (TImin(ROM) - 2) * States

For 4-byte instructions:TImin(ext) = 2*ACTs + (TImin(ROM) - 2) * States

Note: For instructions fetched from an external memory via an 8-bit wide data bus, the minimum
number of required ALE Cycle Times is twice the number for those of a 16-bit wide bus.

3.3 Additional state times

Some operand accesses can extend the execution time of an instruction TIn. Since the addi-

tional time TIadd is generally caused by internal instruction pipelining, it may be possible to

minimize the effect by rearranging the instruction sequences. Simulators and emulators offer
a high level of programmer support for program optimization.

The following operands require additional state times:

Internal ROM operand reads: TIadd = 2 * States

Both byte and word operand reads always require 2 additional state times.

Internal RAM operand reads via indirect addressing modes: TIadd = 0 or 1 * State

Reading a GPR or any other directly addressed operand within the internal RAM space does
NOT cause additional state times. However, reading an indirectly addressed internal RAM

Table 3.1 Minimum instruction state times [Unit = ns]

Instruction
TImin (ROM)

[States]
TImin (ROM)

(@ 20 MHz CPU clock)

CALLI, CALLA
CALLS, CALLR, PCALL
JB, JBC, JNB, JNBS
JMPS
JMPA, JMPI, JMPR
MUL, MULU
DIV, DIVL, DIVU, DIVLU
MOV[B] Rn, [Rm+#data16]
RET, RETI, RETP, RETS
TRAP
All other instructions

4
4
4
4
4

10
20
4
4
4
2

(2)

(2)

(2)

200
200
200
200
200
500

1000
200
200
200
100

(100)

(100)

(100)

4

17/185

Instruction Execution Times

operand will extend the processing time by 1 state time, if the preceding instruction auto-
increments or auto-decrements a GPR, as shown in the following example:

In : MOV R1, [R0+] ; auto-increment R0

In+1 : MOV [R3], [R2] ; if R2 points into the internal RAM space:
; TIadd = 1 * State

In this case, the additional time can be avoided by putting another suitable instruction before
the instruction In+1 indirectly reading the internal RAM.

Internal SFR operand reads: TIadd = 0, 1 * State or 2 * States

SFR read accesses do NOT usually require additional processing time. In some rare cases,
however, either one or two additional state times will be caused by particular SFR operations:

• Reading an SFR immediately after an instruction, which writes to the internal SFR
space, as shown in the following example:

In : MOV T0, #1000h ; write to Timer 0

In+1 : ADD R3, T1 ; read from Timer 1: TIadd = 1 * State

• Reading the PSW register immediately after an instruction which implicitly updates
the condition flags, as shown in the following example:

In : ADD R0, #1000h ; implicit modification of PSW flags

In+1 : BAND C, Z ; read from PSW: TIadd = 2 * States

• Implicitly incrementing or decrementing the SP register immediately after an
instruction which explicitly writes to the SP register, as shown in the following
example:

In : MOV SP, #0FB00h ; explicit update of the stack pointer

In+1 : SCX R1, #1000h ; implicit decrement of the stack pointer:

: TIadd = 2 * States

In each of these above cases, the extra state times can be avoided by putting other suitable
instructions before the instruction In+1 reading the SFR.

External operand reads: TIadd = 1 * ACT

Any external operand reading via a 16-bit wide data bus requires one additional ALE Cycle
Time. Reading word operands via an 8-bit wide data bus takes twice as much time (2 ALE
Cycle Times) as the reading of byte operands.

External operand writes: TIadd = 0 * State ... 1 * ACT

Writing an external operand via a 16-bit wide data bus takes one additional ALE Cycle Time.
For timing calculations of external program parts, this extra time must always be considered.
The value of TIadd which must be considered for timing evaluations of internal program parts,

may fluctuate between 0 state times and 1 ALE Cycle Time. This is because external writes

4

18/185

Instruction Execution Times

are normally performed in parallel to other CPU operations. Thus, TIadd could already have

been considered in the standard processing time of another instruction. Writing a word
operand via an 8-bit wide data bus requires twice as much time (2 ALE Cycle Times) as the
writing of a byte operand.

Jumps into the internal ROM space: TIadd = 0 or 2 * States

The minimum time of 4 state times for standard jumps into the internal ROM space will be
extended by 2 additional state times, if the branch target instruction is a double word instruc-
tion at a non-aligned double word location (xxx2h, xxx6h, xxxAh, xxxEh), as shown in the
following example:

label : ; any non-aligned double word instruction
: (e.g. at location 0FFEh)

.... :

In+1 : JMPA cc_UC, label ; if a standard branch is taken:
: TIadd = 2 * States (TIn = 6 * States)

A cache jump, which normally requires just 2 state times, will be extended by 2 additional
state times, if both the cached jump target instruction and the following instruction are non-
aligned double word instructions, as shown in the following example:

label : ; any non-aligned double word instruction
: (e.g. at location 12FAh)

It+1 : ; any non-aligned double word instruction
: (e.g. at location 12FEh)

In+1 :JMPR cc_UC, label ; provided that a cache jump is taken:
: TIadd = 2 * States (TIn = 4 * States)

If necessary, these extra state times can be avoided by allocating double word jump target
instructions to aligned double word addresses (xxx0h, xxx4h, xxx8h, xxxCh).

Testing Branch Conditions: TIadd = 0 or 1 * States
NO extra time is usually required for a conditional branch instructions to decide whether a
branch condition is met or not. However, an additional state time is required if the preceding
instruction writes to the PSW register, as shown in the following example:

In : BSET USR0 ; write to PSW

In+1 :JMPR cc_Z, label ;test condition flag in PSW: TIadd= 1 *

State

In this case, the extra state time can be intercepted by putting another suitable instruction
before the conditional branch instruction.

4

19/185

Instruction Set Summary

4 Instruction Set Summary

4.1 X-ref tables of opcode by mnemonic

Table 4.1 Hexadecimal opcode by mnemonic
0x 1x 2x 3x 4x 5x 6x 7x

x0 ADD ADDC SUB SUBC CMP XOR AND OR

x1 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x2 ADD ADDC SUB SUBC CMP XOR AND OR

x3 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x4 ADD ADDC SUB SUBC - XOR AND OR

x5 ADDB ADDCB SUBB SUBCB - XORB ANDB ORB

x6 ADD ADDC SUB SUBC CMP XOR AND OR

x7 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

x8 ADD ADDC SUB SUBC CMP XOR AND OR

x9 ADDB ADDCB SUBB SUBCB CMPB XORB ANDB ORB

xA BFLDL BFLDH BCMP BMOVN BMOV BOR BAND BXOR

xB MUL MULU PRIOR - DIV DIVU DIVL DIVLU

xC ROL ROL ROR ROR SHL SHL SHR SHR

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

Table 4.2 Hexadecimal opcode by mnemonic
8x 9x Ax Bx Cx Dx Ex Fx

x0 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS MOV MOV

x1 NEG CPL NEGB CPLB - AT/EXTR MOVB MOVB

x2 CMPI1 CMPI2 CMPD1 CMPD2 MOVBZ MOVBS PCALL MOV

x3 - - - - - - - MOVB

x4 MOV MOV MOVB MOVB MOV MOV MOVB MOVB

x5 - - DISWDT EINIT MOVBZ MOVBS - -

x6 CMPI1 CMPI2 CMPD1 CMPD2 SCXT SCXT MOV MOV

x7 IDLE PWRDN SRVWDT SRST - EXTP/S/R MOVB MOVB

x8 MOV MOV MOV MOV MOV MOV MOV -

x9 MOVB MOVB MOVB MOVB MOVB MOVB MOVB -

xA JB JNB JBC JNBS CALLA CALLS JMPA JMPS

xB - TRAP CALLI CALLR RET RETS RETP RETI

xC - JMPI ASHR ASHR NOP EXTP/S/R PUSH POP

xD JMPR JMPR JMPR JMPR JMPR JMPR JMPR JMPR

xE BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR

xF BSET BSET BSET BSET BSET BSET BSET BSET

4

20/185

Instruction Set Summary

4.2 X-ref table of mnemonic, address mode & number of bytes

Table 4.3 lists the instructions by their mnemonic and identifies the addressing modes that
may be used with a specific instruction and the instruction length, depending on the selected
addressing mode (in bytes).

Table 4.3 Instruction mnemonic by address modes and number of bytes

Mnemonic Addressing Modes Bytes Mnemonic Addressing Modes Bytes

ADD[B]
ADDC[B]
AND[B]
OR[B]
SUB[B]
SUBC[B]
XOR[B]

Rwn Rwm 1)

Rwn Rwi] 1)

Rwn Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem
mem reg

2
2
2
2
4
4
4

CPL[B]
NEG[B]

Rwn 1) 2

DIV
DIVL
DIVLU
DIVU

Rwn 2

MUL
MULU

RwnRwm 2

ASHR
ROL / ROR
SHL / SHR

Rwn Rwm
Rwn #data4

2
2

CMPD1/2
CMPI1/2

Rwn #data4
Rwn #data16
Rwn mem

2
4
4

BAND
BCMP
BMOV
BMOVN
BOR /
BXOR

bitaddrZ.z bitaddrQ.q 4 CMP[B] Rwn Rwm 1)

Rwn [Rwi] 1)

Rwn [Rwi+] 1)

Rwn #data3 1)

reg #data16 2)

reg mem

2
2
2
2
4
4

BCLR
BSET

bitaddrQ.q 2 CALLA
JMPA

cc caddr 4

BFLDH
BFLDL

bitoffQ #mask8#data8 2 CALLI
JMPI

cc [Rwn] 2

4

21/185

Instruction Set Summary

Notes 1: Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rwn]!).

2: Byte oriented instructions (suffix ‘B’) use #data8 instead of #data16.

3: The ATOMIC and EXTended instructions are not available in the ST10X166 devices.

MOV[B] Rwn Rwm 1)

Rwn #data4 1)

Rwn Rwm] 1)

Rwn Rwm+] 1)

[Rwm Rwn 1)

[-Rwm] Rwn 1)

[Rwn] [Rwm]
[Rwn+] [Rwm]
[Rwn] [Rwm+]

reg #data16 2)

Rwn [Rwm+#d16]1)

[Rwm+#d16] Rwn 1)

[Rwn] mem
mem [Rwn]
reg mem
mem reg

2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4

CALLS
JMPS

segcaddr 4

CALLR rel 2

JMPR cc rel 2

JB
JBC
JNB
JNBS

bitaddrQ.q rel 4

PCALL reg caddr 4

POP
PUSH
RETP

reg 2

SCXT reg #data16
reg mem

4
4

PRIOR Rwn Rwm 2

MOVBS
MOVBZ

Rwn Rbm
reg mem
mem reg

2
4
4

TRAP #trap7 2

ATOMIC
EXTR

#data2 3) 2

EXTS
EXTSR

Rwm #data23)

#seg #data2
2
4

EXTP
EXTPR

Rwm #data23)

#pag #data2
2
4

NOP
RET
RETI
RETS

- 2 SRST/IDLE
PWRDN
SRVWDT
DISWDT
EINIT

- 4

Table 4.3 Instruction mnemonic by address modes and number of bytes (cont’d)

Mnemonic Addressing Modes Bytes Mnemonic Addressing Modes Bytes

4

22/185

Instruction Set Summary

4.3 Instruction set ordered by functional group

The following tables list the instruction set by functional group. Within each table the instruc-
tions are listed alphabetically:

Table 4.4 Arithmetic instructions

Table 4.5 Logical instructions

Table 4.6 Boolean bit map instructions

Table 4.7 Compare and loop instructions

Table 4.8 Prioritize instructions

Table 4.9 Shift and rotate instructions

Table 4.10 Data movement instructions

Table 4.11 Jump and Call Instructions

Table 4.12 System Stack Instructions

Table 4.13 Return Instructions

Table 4.14 System Control Instructions

Table 4.15 Miscellaneous instructions

The minimum number of state times required for instruction execution are given for the
following configurations: internal ROM, internal RAM, external memory with a 16-bit demulti-
plexed and multiplexed bus or an 8-bit demultiplexed and multiplexed bus. These state time
figures do not take into account possible wait states on external busses or possible additional
state times induced by operand fetches. The following notes apply to this summary:

Data addressing modes

Rw: Word GPR (R0, R1, … , R15)

Rb: Byte GPR (RL0, RH0, …, RL7, RH7)

reg: SFR or GPR (in case of a byte operation on an SFR, only the low byte can be
accessed via ‘reg’)

mem: Direct word or byte memory location

[…]: Indirect word or byte memory location
(Any word GPR can be used as indirect address pointer, except for the arithmetic,
logical and compare instructions, where only R0 to R3 are allowed)

bitaddr: Direct bit in the bit-addressable memory area

bitoff: Direct word in the bit-addressable memory area

#data: Immediate constant (The number of significant bits which can be specified by the
user is represented by the respective appendix ’x’)

#mask8: Immediate 8-bit mask used for bit-field modifications

4

23/185

Instruction Set Summary

Multiply and divide operations

The MDL and MDH registers are implicit source and/or destination operands of the multiply
and divide instructions.

Branch target addressing modes

caddr: Direct 16-bit jump target address (Updates the Instruction Pointer)

seg: Direct 2-bit segment address (Updates the Code Segment Pointer)

rel: Signed 8-bit jump target word offset address relative to the Instruction Pointer of
the following instruction

#trap7: Immediate 7-bit trap or interrupt number.

Extension operations

The EXT* instructions override the standard DPP addressing scheme:

#pag10: Immediate 10-bit page address.

#seg8: Immediate 8-bit segment address.

Note: The EXTended instructions are not available in the ST10X166 devices.

Branch condition codes

cc: Symbolically specifiable condition codes

cc_UC Unconditional
cc_Z Zero
cc_NZ Not Zero
cc_V Overflow
cc_NV No Overflow
cc_N Negative
cc_NN Not Negative
cc_C Carry
cc_NC No Carry
cc_EQ Equal
cc_NE Not Equal
cc_ULT Unsigned Less Than
cc_ULE Unsigned Less Than or Equal
cc_UGE Unsigned Greater Than or Equal
cc_UGT Unsigned Greater Than
cc_SLE Signed Less Than or Equal
cc_SGE Signed Greater Than or Equal
cc_SGT Signed Greater Than
cc_NET Not Equal and Not End-of-Table

I*

Note:) The EXTended instructions are not available in the ST10X166 devices.

4

24/185

Instruction Set Summary

Table 4.4 Arithmetic instructions

Mnemonic Description

In
t.R

O
M

In
t.R

A
M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

tN
on

-M
ux

8-
bi

t M
ux

B
yt

es

ADD Rw, Rw Add direct word GPR to direct GPR 2 6 2 3 4 6 2

ADD Rw, [Rw] Add indirect word memory to direct GPR 2 6 2 3 4 6 2

ADD Rw, [Rw +] Add indirect word memory to direct GPR
and post- increment source pointer by 2

2 6 2 3 4 6 2

ADD Rw, #data3 Add immediate word data to direct GPR 2 6 2 3 4 6 2

ADD reg, #data16 Add immediate word data to direct register 2 8 4 6 8 12 4

ADD reg, mem Add direct word memory to direct register 2 8 4 6 8 12 4

ADD mem, reg Add direct word register to direct memory 2 8 4 6 8 12 4

ADDB Rb, Rb Add direct byte GPR to direct GPR 2 6 2 3 4 6 2

ADDB Rb, [Rw] Add indirect byte memory to direct GPR 2 6 2 3 4 6 2

ADDB Rb, [Rw +] Add indirect byte memory to direct GPR
and post-increment source pointer by 1

2 6 2 3 4 6 2

ADDB Rb, #data3 Add immediate byte data to direct GPR 2 6 2 3 4 6 2

ADDB reg, #data16 Add immediate byte data to direct register 2 8 4 6 8 12 4

ADDB reg, mem Add direct byte memory to direct register 2 8 4 6 8 12 4

ADDB mem, reg Add direct byte register to direct memory 2 8 4 6 8 12 4

ADDCRw, Rw Add direct word GPR to direct GPR with
Carry

2 6 2 3 4 6 2

ADDCRw, [Rw] Add indirect word memory to direct GPR
with Carry

2 6 2 3 4 6 2

ADDCRw, [Rw +] Add indirect word memory to direct GPR
with Carry and post-increment source
pointer by 2

2 6 2 3 4 6 2

ADDCRw, #data3 Add immediate word data to direct GPR
with Carry

2 6 2 3 4 6 2

ADDCreg, #data16 Add immediate word data to direct register
with Carry

2 8 4 6 8 12 4

ADDCreg, mem Add direct word memory to direct register
with Carry

2 8 4 6 8 12 4

ADDCmem, reg Add direct word register to direct memory
with Carry

2 8 4 6 8 12 4

ADDCBRb, Rb Add direct byte GPR to direct GPR with
Carry

2 6 2 3 4 6 2

ADDCBRb, [Rw] Add indirect byte memory to direct GPR
with Carry

2 6 2 3 4 6 2

ADDCBRb, [Rw +] Add indirect byte memory to direct GPR
with Carry and post-increment source
pointer by 1

2 6 2 3 4 6 2

4

25/185

Instruction Set Summary

ADDCBRb, #data3 Add immediate byte data to direct GPR
with Carry

2 6 2 3 4 6 2

ADDCBreg, #data16 Add immediate byte data to direct register
with Carry

2 8 4 6 8 12 4

ADDCBreg, mem Add direct byte memory to direct register
with Carry

2 8 4 6 8 12 4

ADDCBmem, reg Add direct byte register to direct memory
with Carry

2 8 4 6 8 12 4

CPL Rw Complement direct word GPR 2 6 2 3 4 6 2

CPLB Rb Complement direct byte GPR 2 6 2 3 4 6 2

DIV Rw Signed divide register MDL by direct GPR
(16-/16-bit)

20 24 20 21 22 24 2

DIVL Rw Signed long divide register MD by direct
GPR (32-/16-bit)

20 24 20 21 22 24 2

DIVLURw Unsigned long divide register MD by direct
GPR (32-/16-bit)

20 24 20 21 22 24 2

DIVU Rw Unsigned divide register MDL by direct
GPR (16-/16-bit)

20 24 20 21 22 24 2

MUL Rw, Rw Signed multiply direct GPR by direct GPR
(16-16-bit)

10 14 10 11 12 14 2

MULURw, Rw Unsigned multiply direct GPR by direct
GPR (16-16-bit)

10 14 10 11 12 14 2

NEG Rw Negate direct word GPR 2 6 2 3 4 6 2

NEGBRb Negate direct byte GPR 2 6 2 3 4 6 2

SUB Rw, Rw Subtract direct word GPR from direct GPR 2 6 2 3 4 6 2

SUB Rw, [Rw] Subtract indirect word memory from direct
GPR

2 6 2 3 4 6 2

SUB Rw, [Rw +] Subtract indirect word memory from direct
GPR & post-increment source pointer by 2

2 6 2 3 4 6 2

SUB Rw, #data3 Subtract immediate word data from direct
GPR

2 6 2 3 4 6 2

SUB reg, #data16 Subtract immediate word data from direct
register

2 8 4 6 8 12 4

SUB reg, mem Subtract direct word memory from direct
register

2 8 4 6 8 12 4

SUB mem, reg Subtract direct word register from direct
memory

2 8 4 6 8 12 4

SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2 6 2 3 4 6 2

Table 4.4 Arithmetic instructions (cont’d)

Mnemonic Description

In
t.R

O
M

In
t.R

A
M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

tN
on

-M
ux

8-
bi

t M
ux

B
yt

es

4

26/185

Instruction Set Summary

SUBB Rb, [Rw] Subtract indirect byte memory from direct
GPR

2 6 2 3 4 6 2

SUBB Rb, [Rw +] Subtract indirect byte memory from direct
GPR & post-increment source pointer by 1

2 6 2 3 4 6 2

SUBB Rb, #data3 Subtract immediate byte data from direct
GPR

2 6 2 3 4 6 2

SUBB reg, #data16 Subtract immediate byte data from direct
register

2 8 4 6 8 12 4

SUBB reg, mem Subtract direct byte memory from direct
register

2 8 4 6 8 12 4

SUBB mem, reg Subtract direct byte register from direct
memory

2 8 4 6 8 12 4

SUBC Rw, Rw Subtract direct word GPR from direct GPR
with Carry

2 6 2 3 4 6 2

SUBC Rw, [Rw] Subtract indirect word memory from direct
GPR with Carry

2 6 2 3 4 6 2

SUBC Rw, [Rw +] Subtract indirect word memory from direct
GPR with Carry and post-increment source
pointer by 2

2 6 2 3 4 6 2

SUBC Rw, #data3 Subtract immediate word data from direct
GPR with Carry

2 6 2 3 4 6 2

SUBC reg, #data16 Subtract immediate word data from direct
register with Carry

2 8 4 6 8 12 4

SUBC reg, mem Subtract direct word memory from direct
register with Carry

2 8 4 6 8 12 4

SUBC mem, reg Subtract direct word register from direct
memory with Carry

2 8 4 6 8 12 4

SUBCBRb, Rb Subtract direct byte GPR from direct GPR
with Carry

2 6 2 3 4 6 2

SUBCBRb, [Rw] Subtract indirect byte memory from direct
GPR with Carry

2 6 2 3 4 6 2

SUBCBRb, [Rw +] Subtract indirect byte memory from direct
GPR with Carry and post-increment source
pointer by 1

2 6 2 3 4 6 2

SUBCBRb, #data3 Subtract immediate byte data from direct
GPR with Carry

2 6 2 3 4 6 2

SUBCBreg, #data16 Subtract immediate byte data from direct
register with Carry

2 8 4 6 8 12 4

Table 4.4 Arithmetic instructions (cont’d)

Mnemonic Description

In
t.R

O
M

In
t.R

A
M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

tN
on

-M
ux

8-
bi

t M
ux

B
yt

es

4

27/185

Instruction Set Summary

SUBCBreg, mem Subtract direct byte memory from direct
register with Carry

2 8 4 6 8 12 4

SUBCBmem, reg Subtract direct byte register from direct
memory with Carry

2 8 4 6 8 12 4

Table 4.5 Logical instructions

Mnemonic Description

In
t R

O
M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

AND Rw, Rw Bitwise AND direct word GPR with direct
GPR

2 6 2 3 4 6 2

AND Rw, [Rw] Bitwise AND indirect word memory with
direct GPR

2 6 2 3 4 6 2

AND Rw, [Rw +] Bitwise AND indirect word memory with
direct GPR and post-increment source
pointer by 2

2 6 2 3 4 6 2

AND Rw, #data3 Bitwise AND immediate word data with
direct GPR

2 6 2 3 4 6 2

AND reg, #data16 Bitwise AND immediate word data with
direct register

2 8 4 6 8 12 4

AND reg, mem Bitwise AND direct word memory with di-
rect register

2 8 4 6 8 12 4

AND mem, reg Bitwise AND direct word register with di-
rect memory

2 8 4 6 8 12 4

ANDB Rb, Rb Bitwise AND direct byte GPR with direct
GPR

2 6 2 3 4 6 2

ANDB Rb, [Rw] Bitwise AND indirect byte memory with
direct GPR

2 6 2 3 4 6 2

ANDB Rb, [Rw +] Bitwise AND indirect byte memory with
direct GPR and post-increment source
pointer by 1

2 6 2 3 4 6 2

ANDB Rb, #data3 Bitwise AND immediate byte data with
direct GPR

2 6 2 3 4 6 2

ANDB reg, #data16 Bitwise AND immediate byte data with
direct register

2 8 4 6 8 12 4

ANDB reg, mem Bitwise AND direct byte memory with di-
rect register

2 8 4 6 8 12 4

ANDB mem, reg Bitwise AND direct byte register with di-
rect memory

2 8 4 6 8 12 4

Table 4.4 Arithmetic instructions (cont’d)

Mnemonic Description

In
t.R

O
M

In
t.R

A
M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

tN
on

-M
ux

8-
bi

t M
ux

B
yt

es

4

28/185

Instruction Set Summary

OR Rw, Rw Bitwise OR direct word GPR with direct
GPR

2 6 2 3 4 6 2

OR Rw, [Rw] Bitwise OR indirect word memory with
direct GPR

2 6 2 3 4 6 2

OR Rw, [Rw +] Bitwise OR indirect word memory with
direct GPR and post-increment source
pointer by 2

2 6 2 3 4 6 2

OR Rw, #data3 Bitwise OR immediate word data with di-
rect GPR

2 6 2 3 4 6 2

OR reg, #data16 Bitwise OR immediate word data with di-
rect register

2 8 4 6 8 12 4

OR reg, mem Bitwise OR direct word memory with di-
rect register

2 8 4 6 8 12 4

OR mem, reg Bitwise OR direct word register with di-
rect memory

2 8 4 6 8 12 4

ORB Rb, Rb Bitwise OR direct byte GPR with direct
GPR

2 6 2 3 4 6 2

ORB Rb, [Rw] Bitwise OR indirect byte memory with di-
rect GPR

2 6 2 3 4 6 2

ORB Rb, [Rw +] Bitwise OR indirect byte memory with di-
rect GPR andpost-increment source
pointer by 1

2 6 2 3 4 6 2

ORB Rb, #data3 Bitwise OR immediate byte data with di-
rect GPR

2 6 2 3 4 6 2

ORB reg, #data16 Bitwise OR immediate byte data with di-
rect register

2 8 4 6 8 12 4

ORB reg, mem Bitwise OR direct byte memory with di-
rect register

2 8 4 6 8 12 4

ORB mem, reg Bitwise OR direct byte register with di-
rect memory

2 8 4 6 8 12 4

XOR Rw, Rw Bitwise XOR direct word GPR with direct
GPR

2 6 2 3 4 6 2

XOR Rw, [Rw] Bitwise XOR indirect word memory with
direct GPR

2 6 2 3 4 6 2

XOR Rw, [Rw +] Bitwise XOR indirect word memory with
direct GPR and post-increment source
pointer by 2

2 6 2 3 4 6 2

XOR Rw, #data3 Bitwise XOR immediate word data with
direct GPR

2 6 2 3 4 6 2

Table 4.5 Logical instructions (cont’d)

Mnemonic Description

In
t R

O
M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

4

29/185

Instruction Set Summary

XOR reg, #data16 Bitwise XOR immediate word data with
direct register

2 8 4 6 8 12 4

XOR reg, mem Bitwise XOR direct word memory with
direct register

2 8 4 6 8 12 4

XOR mem, reg Bitwise XOR direct word register with di-
rect memory

2 8 4 6 8 12 4

XORBRb, Rb Bitwise XOR direct byte GPR with direct
GPR

2 6 2 3 4 6 2

XORBRb, [Rw] Bitwise XOR indirect byte memory with
direct GPR

2 6 2 3 4 6 2

XORBRb, [Rw +] Bitwise XOR indirect byte memory with
direct GPR and post-increment source
pointer by 1

2 6 2 3 4 6 2

XORBRb, #data3 Bitwise XOR immediate byte data with
direct GPR

2 6 2 3 4 6 2

XORBreg, #data16 Bitwise XOR immediate byte data with
direct register

2 8 4 6 8 12 4

XORBreg, mem Bitwise XOR direct byte memory with di-
rect register

2 8 4 6 8 12 4

XORBmem, reg Bitwise XOR direct byte register with di-
rect memory

2 8 4 6 8 12 4

Table 4.6 Boolean bit map instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

BAND
bitaddr, bitaddr

AND direct bit with direct bit 2 8 4 6 8 12 4

BCLR bitaddr Clear direct bit 2 6 2 3 4 6 2

BCMP
bitaddr, bitaddr

Compare direct bit to direct bit 2 8 4 6 8 12 4

BFLDH
bitoff, #mask8,#data8

Bitwise modify masked high byte of bit-
addressable direct word memory with
immediate data

2 8 4 6 8 12 4

BFLDL
bitoff, #mask8, #data8

Bitwise modify masked low byte of bit-
addressable direct word memory with
immediate data

2 8 4 6 8 12 4

BMOV
bitaddr, bitaddr

Move direct bit to direct bit 2 8 4 6 8 12 4

Table 4.5 Logical instructions (cont’d)

Mnemonic Description

In
t R

O
M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

4

30/185

Instruction Set Summary

BMOVN
bitaddr, bitaddr

Move negated direct bit to direct bit 2 8 4 6 8 12 4

BOR
bitaddr, bitaddr

OR direct bit with direct bit 2 8 4 6 8 12 4

BSET bitaddr Set direct bit 2 6 2 3 4 6 2

BXOR
bitaddr, bitaddr

XOR direct bit with direct bit 2 8 4 6 8 12 4

CMP Rw, Rw Compare direct word GPR to direct GPR 2 6 2 3 4 6 2

CMP Rw, [Rw] Compare indirect word memory to direct
GPR

2 6 2 3 4 6 2

CMP Rw, [Rw +] Compare indirect word memory to direct
GPR and post-increment source pointer
by 2

2 6 2 3 4 6 2

CMP Rw, #data3 Compare immediate word data to direct
GPR

2 6 2 3 4 6 2

CMP reg, #data16 Compare immediate word data to direct
register

2 8 4 6 8 12 4

CMP reg, mem Compare direct word memory to direct
register

2 8 4 6 8 12 4

CMPBRb, Rb Compare direct byte GPR to direct GPR 2 6 2 3 4 6 2

CMPBRb, [Rw] Compare indirect byte memory to direct
GPR

2 6 2 3 4 6 2

CMPBRb, [Rw +] Compare indirect byte memory to direct
GPR and post-increment source pointer
by 1

2 6 2 3 4 6 2

CMPBRb, #data3 Compare immediate byte data to direct
GPR

2 6 2 3 4 6 2

CMPBreg, #data16 Compare immediate byte data to direct
register

2 8 4 6 8 12 4

CMPBreg, mem Compare direct byte memory to direct
register

2 8 4 6 8 12 4

Table 4.6 Boolean bit map instructions (cont’d)

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

4

31/185

Instruction Set Summary

Table 4.7 Compare and loop instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

CMPD1Rw, #data4 Compare immediate word data to direct
GPR and decrement GPR by 1

2 6 2 3 4 6 2

CMPD1Rw, #data16 Compare immediate word data to direct
GPR and decrement GPR by 1

2 8 4 6 8 12 4

CMPD1Rw, mem Compare direct word memory to direct
GPR and decrement GPR by 1

2 8 4 6 8 12 4

CMPD2
Rw, #data4

Compare immediate word data to direct
GPR and decrement GPR by 2

2 6 2 3 4 6 2

CMPD2
Rw, #data16

Compare immediate word data to direct
GPR and decrement GPR by 2

2 8 4 6 8 12 4

CMPD2Rw, mem Compare direct word memory to direct
GPR and decrement GPR by 2

2 8 4 6 8 12 4

CMPI1Rw, #data4 Compare immediate word data to direct
GPR and increment GPR by 1

2 6 2 3 4 6 2

CMPI1Rw, #data16 Compare immediate word data to direct
GPR and increment GPR by 1

2 8 4 6 8 12 4

CMPI1Rw, mem Compare direct word memory to direct
GPR and increment GPR by 1

2 8 4 6 8 12 4

CMPI2Rw, #data4 Compare immediate word data to direct
GPR and increment GPR by 2

2 6 2 3 4 6 2

CMPI2Rw, #data16 Compare immediate word data to direct
GPR and increment GPR by 2

2 8 4 6 8 12 4

CMPI2Rw, mem Compare direct word memory to direct
GPR and increment GPR by 2

2 8 4 6 8 12 4

Table 4.8 Prioritize instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

PRIORRw, Rw Determine number of shift cycles to nor-
malize direct word GPR and store result
in direct word GPR

2 6 2 3 4 6 2

4

32/185

Instruction Set Summary

Table 4.9 Shift and rotate instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

ASHR Rw, Rw Arithmetic (sign bit) shift right direct word
GPR; number of shift cycles specified by
direct GPR

2 6 2 3 4 6 2

ASHR Rw, #data4 Arithmetic (sign bit) shift right direct word
GPR; number of shift cycles specified by
immediate data

2 6 2 3 4 6 2

ROL Rw, Rw Rotate left direct word GPR; number of
shift cycles specified by direct GPR

2 6 2 3 4 6 2

ROL Rw, #data4 Rotate left direct word GPR; number of
shift cycles specified by immediate data

2 6 2 3 4 6 2

ROR Rw, Rw Rotate right direct word GPR; number of
shift cycles specified by direct GPR

2 6 2 3 4 6 2

ROR Rw, #data4 Rotate right direct word GPR; number of
shift cycles specified by immediate data

2 6 2 3 4 6 2

SHL Rw, Rw Shift left direct word GPR; number of
shift cycles specified by direct GPR

2 6 2 3 4 6 2

SHL Rw, #data4 Shift left direct word GPR; number of
shift cycles specified by immediate data

2 6 2 3 4 6 2

SHR Rw, Rw Shift right direct word GPR; number of
shift cycles specified by direct GPR

2 6 2 3 4 6 2

SHR Rw, #data4 Shift right direct word GPR; number of
shift cycles specified by immediate data

2 6 2 3 4 6 2

Table 4.10 Data movement instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

MOV Rw, Rw Move direct word GPR to direct GPR 2 6 2 3 4 6 2

MOV Rw, #data4 Move immediate word data to direct GPR 2 6 2 3 4 6 2

MOV reg, #data16 Move immediate word data to direct register 2 8 4 6 8 12 4

MOV Rw, [Rw] Move indirect word memory to direct GPR 2 6 2 3 4 6 2

MOV Rw, [Rw +] Move indirect word memory to direct GPR and
post-increment source pointer by 2

2 6 2 3 4 6 2

MOV [Rw], Rw Move direct word GPR to indirect memory 2 6 2 3 4 6 2

MOV [-RW], Rw Pre-decrement destination pointer by 2 and
move direct word GPR to indirect memory

2 6 2 3 4 6 2

MOV [RW], [RW] Move indirect word memory to indirect memo-
ry

2 6 2 3 4 6 2

4

33/185

Instruction Set Summary

MOV [Rw +], [Rw] Move indirect word memory to indirect memo-
ry and post-increment destination pointer by 2

2 6 2 3 4 6 2

MOV [Rw], [Rw +] Move indirect word memory to indirect memo-
ry and post-increment source pointer by 2

2 6 2 3 4 6 2

MOV
Rw, [Rw + #data16]

Move indirect word memory by base plus con-
stant to direct GPR

4 10 6 8 10 14 4

MOV
[Rw+#data16], Rw

Move direct word GPR to indirect memory by
base plus constant

2 8 4 6 8 12 4

MOV [Rw], mem Move direct word memory to indirect memory 2 8 4 6 8 12 4

MOV mem, [Rw] Move indirect word memory to direct memory 2 8 4 6 8 12 4

MOV reg, mem Move direct word memory to direct register 2 8 4 6 8 12 4

MOV mem, reg Move direct word register to direct memory 2 8 4 6 8 12 4

MOVBRb, Rb Move direct byte GPR to direct GPR 2 6 2 3 4 6 2

MOVBRb, #data4 Move immediate byte data to direct GPR 2 6 2 3 4 6 2

MOVBreg, #data16 Move immediate byte data to direct register 2 8 4 6 8 12 4

MOVBRb, [Rw] Move indirect byte memory to direct GPR 2 6 2 3 4 6 2

MOVBRb, [Rw +] Move indirect byte memory to direct GPR and
post-increment source pointer by 1

2 6 2 3 4 6 2

MOVB[Rw], Rb Move direct byte GPR to indirect memory 2 6 2 3 4 6 2

MOVB[-Rw], Rb Pre-decrement destination pointer by 1 and
move direct byte GPR to indirect memory

2 6 2 3 4 6 2

MOVB[Rw], [Rw] Move indirect byte memory to indirect memory 2 6 2 3 4 6 2

MOVB[Rw +], [Rw] Move indirect byte memory to indirect memory
and post-increment destination pointer by 1

2 6 2 3 4 6 2

MOVB[Rw], [Rw +] Move indirect byte memory to indirect memory
and post-increment source pointer by 1

2 6 2 3 4 6 2

MOVB
Rb, [Rw + #data16]

Move indirect byte memory by base plus con-
stant to direct GPR

4 10 6 8 10 14 4

MOVB
[Rw + #data16], Rb

Move direct byte GPR to indirect memory by
base plus constant

2 8 4 6 8 12 4

MOVB[Rw], mem Move direct byte memory to indirect memory 2 8 4 6 8 12 4

MOVBmem, [Rw] Move indirect byte memory to direct memory 2 8 4 6 8 12 4

MOVBreg, mem Move direct byte memory to direct register 2 8 4 6 8 12 4

MOVBmem, reg Move direct byte register to direct memory 2 8 4 6 8 12 4

MOVBSRw, Rb Move direct byte GPR with sign extension to
direct word GPR

2 6 2 3 4 6 2

MOVBSreg, mem Move direct byte memory with sign extension
to direct word register

2 8 4 6 8 12 4

Table 4.10 Data movement instructions (cont’d)

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

4

34/185

Instruction Set Summary

MOVBSmem, reg Move direct byte register with sign extension
to direct word memory

2 8 4 6 8 12 4

MOVBZRw, Rb Move direct byte GPR with zero extension to
direct word GPR

2 6 2 3 4 6 2

MOVBZreg, mem Move direct byte memory with zero extension
to direct word register

2 8 4 6 8 12 4

MOVBZmem, reg Move direct byte register with zero extension
to direct word memory

2 8 4 6 8 12 4

Table 4.11 Jump and Call Instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

CALLAcc, caddr Call absolute subroutine if condition is met 4/2 10/
8

6/4 8/6 10/
8

14/
12

4

CALLI cc, [Rw] Call indirect subroutine if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

CALLRrel Call relative subroutine 4 8 4 5 6 8 2

CALLSseg, caddr Call absolute subroutine in any code seg-
ment

4 10 6 8 10 14 4

JB bitaddr, rel Jump relative if direct bit is set 4 10 6 8 10 14 4

JBC bitaddr, rel Jump relative and clear bit if direct bit is set 4 10 6 8 10 14 4

JMPA cc, caddr Jump absolute if condition is met 4/2 10/
8

6/4 8/6 10/
8

14/
12

4

JMPI cc, [Rw] Jump indirect if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

JMPR cc, rel Jump relative if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

JMPS seg, caddr Jump absolute to a code segment 4 10 6 8 10 14 4

JNB bitaddr, rel Jump relative if direct bit is not set 4 10 6 8 10 14 4

JNBS bitaddr, rel Jump relative and set bit if direct bit is not
set

4 10 6 8 10 14 4

PCALLreg, caddr Push direct word register onto system
stack and call absolute subroutine

4 10 6 8 10 14 4

TRAP #trap7 Call interrupt service routine via immediate
trap number

4 8 4 5 6 8 2

Table 4.10 Data movement instructions (cont’d)

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

4

35/185

Instruction Set Summary

Table 4.12 System Stack Instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

POP reg Pop direct word register from system
stack

2 6 2 3 4 6 2

PUSH reg Push direct word register onto system
stack

2 6 2 3 4 6 2

SCXT reg, #data16 Push direct word register onto system
stack and update register with immedi-
ate data

2 8 4 6 8 12 4

SCXT reg, mem Push direct word register onto system
stack and update register with direct
memory

2 8 4 6 8 12 4

Table 4.13 Return Instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

RET Return from intra-segment subroutine 4 8 4 5 6 8 2

RETI Return from interrupt service subroutine 4 8 4 5 6 8 2

RETP reg Return from intra-segment subroutine
and pop direct word register from sys-
tem stack

4 8 4 5 6 8 2

RETS Return from inter-segment subroutine 4 8 4 5 6 8 2

Table 4.14 System Control Instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

ATOMIC#data2 Begin ATOMIC sequence *) 2 6 2 3 4 6 2

DISWDT Disable Watchdog Timer 2 8 4 6 8 12 4

EINIT Signify End-of-Initialization on
RSTOUT-pin

2 8 4 6 8 12 4

EXTR #data2 Begin EXTended Register sequence *) 2 6 2 3 4 6 2

EXTP Rw, #data2 Begin EXTended Page sequence*) 2 6 2 3 4 6 2

EXTP
#pag10, #data2

Begin EXTended Page sequence*) 2 8 4 6 8 12 4

EXTPRRw, #data2 Begin EXTended Page and Register se-
quence *)

2 6 2 3 4 6 2

EXTPR
#pag10, #data2

Begin EXTended Page and Register se-
quence *)

2 8 4 6 8 12 4

EXTS Rw, #data2 Begin EXTended Segment sequence*) 2 6 2 3 4 6 2

4

36/185

Instruction Set Summary

EXTS
#seg8, #data2

Begin EXTended Segment sequence*) 2 8 4 6 8 12 4

EXTSR
Rw, #data2

Begin EXTended Segment and Register
sequence *)

2 6 2 3 4 6 2

EXTSR
#seg8, #data2

Begin EXTended Segment and Register
sequence *)

2 8 4 6 8 12 4

IDLE Enter Idle Mode 2 8 4 6 8 12 4

PWRDN Enter Power Down Mode (supposes
NMI-pin being low)

2 8 4 6 8 12 4

SRST Software Reset 2 8 4 6 8 12 4

SRVWDT Service Watchdog Timer 2 8 4 6 8 12 4

Table 4.15 Miscellaneous instructions

Mnemonic Description
In

t.
R

O
M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

NOP Null operation 2 6 2 3 4 6 2

Table 4.14 System Control Instructions (cont’d)

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
N

on
-M

ux

16
-b

it
M

ux

8-
bi

t
N

on
-M

ux

8-
bi

t
M

ux

B
yt

es

4

37/185

Instruction Set Summary

4.4 Instruction set ordered by opcodes

The following pages list the instruction set ordered by their hexadecimal opcodes. This is
used to identify specific instructions when reading executable code, i.e. during the debugging
phase.

Notes for Opcode Lists

1) These instructions are encoded by means of additional bits in the operand field of
the instruction

x0h – x7h : Rw, #data3 or Rb, #data3
x8h – xBh: Rw, [Rw] or Rb, [Rw]
xCh – xFh Rw, [Rw +] or Rb, [Rw +]

For these instructions only the lowest four GPRs, R0 to R3, can be used as
indirect address pointers.

2) These instructions are encoded by means of additional bits in the operand field of
the instruction

00xx.xxxx: EXTS or ATOMIC
01xx.xxxx: EXTP
10xx.xxxx: EXTSR or EXTR
11xx.xxxx: EXTPR

The ATOMIC and EXTended instructions are not available in the ST10X166
devices.

Notes on the JMPR instructions

The condition code to be tested for the JMPR instructions is specified by the opcode. Two
mnemonic representation alternatives exist for some of the condition codes.

Notes on the BCLR and BSET instructions

The position of the bit to be set or to be cleared is specified by the opcode. The operand ‘bitoff.n’ (n = 0 to
15) refers to a particular bit within a bit-addressable word.

Notes on the undefined opcodes

A hardware trap occurs when one of the undefined opcodes signified by ‘----’ is decoded by
The CPU.

4

38/185

Instruction Set Summary

Table 4.16 Instruction set ordered by Hex code

Hex- code Number of Bytes Mnemonic Operand

00 2 ADD Rw, Rw

01 2 ADDB Rb, Rb

02 4 ADD reg, mem

03 4 ADDB reg, mem

04 4 ADD mem, reg

05 4 ADDB mem, reg

06 4 ADD reg, #data16

07 4 ADDB reg, #data8

08 2 ADD Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

09 2 ADDB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

0A 4 BFLDL bitoff, #mask8, #data8

0B 2 MUL Rw, Rw

0C 2 ROL Rw, Rw

0D 2 JMPR cc_UC, rel

0E 2 BCLR bitoff.0

0F 2 BSET bitoff.0

10 2 ADDC Rw, Rw

11 2 ADDCB Rb, Rb

12 4 ADDC reg, mem

13 4 ADDCB reg, mem

14 4 ADDC mem, reg

15 4 ADDCB mem, reg

16 4 ADDC reg, #data16

17 4 ADDCB reg, #data8

18 2 ADDC Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

19 2 ADDCB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

1A 4 BFLDH bitoff, #mask8, #data8

1B 2 MULU Rw, Rw

1C 2 ROL Rw, #data4

1D 2 JMPR cc_NET, rel

1E 2 BCLR bitoff.1

1F 2 BSET bitoff.1

20 2 SUB Rw, Rw

21 2 SUBB Rb, Rb

22 4 SUB reg, mem

23 4 SUBB reg, mem

24 4 SUB mem, reg

25 4 SUBB mem, reg

4

39/185

Instruction Set Summary

26 4 SUB reg, #data16

27 4 SUBB reg, #data8

28 2 SUB Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

29 2 SUBB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

2A 4 BCMP bitaddr, bitaddr

2B 2 PRIOR Rw, Rw

2C 2 ROR Rw, Rw

2D 2 JMPR cc_EQ, rel or cc_Z, rel

2E 2 BCLR bitoff.2

2F 2 BSET bitoff.2

30 2 SUBC Rw, Rw

31 2 SUBCB Rb, Rb

32 4 SUBC reg, mem

33 4 SUBCB reg, mem

34 4 SUBC mem, reg

35 4 SUBCB mem, reg

36 4 SUBC reg, #data16

37 4 SUBCB reg, #data8

38 2 SUBC Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

39 2 SUBCB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

3A 4 BMOVN bitaddr, bitaddr

3B - - -

3C 2 ROR Rw, #data4

3D 2 JMPR cc_NE, rel or cc_NZ, rel

3E 2 BCLR bitoff.3

3F 2 BSET bitoff.3

40 2 CMP Rw, Rw

41 2 CMPB Rb, Rb

42 4 CMP reg, mem

43 4 CMPB reg, mem

44 - - -

45 - - -

46 4 CMP reg, #data16

47 4 CMPB reg, #data8

48 2 CMP Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

49 2 CMPB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

4A 4 BMOV bitaddr, bitaddr

4B 2 DIV Rw

4C 2 SHL Rw, Rw

Table 4.16 Instruction set ordered by Hex code (cont’d)

Hex- code Number of Bytes Mnemonic Operand

4

40/185

Instruction Set Summary

4D 2 JMPR cc_V, rel

4E 2 BCLR bitoff.4

4F 2 BSET bitoff.4

50 2 XOR Rw, Rw

51 2 XORB Rb, Rb

52 4 XOR reg, mem

53 4 XORB reg, mem

54 4 XOR mem, reg

55 4 XORB mem, reg

56 4 XOR reg, #data16

57 4 XORB reg, #data8

58 2 XOR Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

59 2 XORB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

5A 4 BOR bitaddr, bitaddr

5B 2 DIVU Rw

5C 2 SHL Rw, #data4

5D 2 JMPR cc_NV, rel

5E 2 BCLR bitoff.5

5F 2 BSET bitoff.5

60 2 AND Rw, Rw

61 2 ANDB Rb, Rb

62 4 AND reg, mem

63 4 ANDB reg, mem

64 4 AND mem, reg

65 4 ANDB mem, reg

66 4 AND reg, #data16

67 4 ANDB reg, #data8

68 2 AND Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

69 2 ANDB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

6A 4 BAND bitaddr, bitaddr

6B 2 DIVL Rw

6C 2 SHR Rw, Rw

6D 2 JMPR cc_N, rel

6E 2 BCLR bitoff.6

6F 2 BSET bitoff.6

70 2 OR Rw, Rw

71 2 ORB Rb, Rb

72 4 OR reg, mem

73 4 ORB reg, mem

Table 4.16 Instruction set ordered by Hex code (cont’d)

Hex- code Number of Bytes Mnemonic Operand

4

41/185

Instruction Set Summary

74 4 OR mem, reg

75 4 ORB mem, reg

76 4 OR reg, #data16

77 4 ORB reg, #data8

78 2 OR Rw, [Rw +] or Rw, [Rw] or Rw, #data3 1)

79 2 ORB Rb, [Rw +] or Rb, [Rw] or Rb, #data3 1)

7A 4 BXOR bitaddr, bitaddr

7B 2 DIVLU Rw

7C 2 SHR Rw, #data4

7D 2 JMPR cc_NN, rel

7E 2 BCLR bitoff.7

7F 2 BSET bitoff.7

80 2 CMPI1 Rw, #data4

81 2 NEG Rw

82 4 CMPI1 Rw, mem

83 - - -

84 4 MOV [Rw], mem

85 - - -

86 4 CMPI1 Rw, #data16

87 4 IDLE

88 2 MOV [-Rw], Rw

89 2 MOVB [-Rw], Rb

8A 4 JB bitaddr, rel

8B - - -

8C - - -

8D 2 JMPR cc_C, rel or cc_ULT, rel

8E 2 BCLR bitoff.8

8F 2 BSET bitoff.8

90 2 CMPI2 Rw, #data4

91 2 CPL Rw

92 4 CMPI2 Rw, mem

93 - - -

94 4 MOV mem, [Rw]

95 - - -

96 4 CMPI2 Rw, #data16

97 4 PWRDN

98 2 MOV Rw, [Rw+]

99 2 MOVB Rb, [Rw+]

9A 4 JNB bitaddr, rel

Table 4.16 Instruction set ordered by Hex code (cont’d)

Hex- code Number of Bytes Mnemonic Operand

4

42/185

Instruction Set Summary

9B 2 TRAP #trap7

9C 2 JMPI cc, [Rw]

9D 2 JMPR cc_NC, rel or cc_UGE, rel

9E 2 BCLR bitoff.9

9F 2 BSET bitoff.9

A0 2 CMPD1 Rw, #data4

A1 2 NEGB Rb

A2 4 CMPD1 Rw, mem

A3 - - -

A4 4 MOVB [Rw], mem

A5 4 DISWDT

A6 4 CMPD1 Rw, #data16

A7 4 SRVWDT

A8 2 MOV Rw, [Rw]

A9 2 MOVB Rb, [Rw]

AA 4 JBC bitaddr, rel

AB 2 CALLI cc, [Rw]

AC 2 ASHR Rw, Rw

AD 2 JMPR cc_SGT, rel

AE 2 BCLR bitoff.10

AF 2 BSET bitoff.10

B0 2 CMPD2 Rw, #data4

B1 2 CPLB Rb

B2 4 CMPD2 Rw, mem

B3 - - -

B4 4 MOVB mem, [Rw]

B5 4 EINIT

B6 4 CMPD2 Rw, #data16

B7 4 SRST

B8 2 MOV [Rw], Rw

B9 2 MOVB [Rw], Rb

BA 4 JNBS bitaddr, rel

BB 2 CALLR rel

BC 2 ASHR Rw, #data4

BD 2 JMPR cc_SLE, rel

BE 2 BCLR bitoff.11

BF 2 BSET bitoff.11

Table 4.16 Instruction set ordered by Hex code (cont’d)

Hex- code Number of Bytes Mnemonic Operand

4

43/185

Instruction Set Summary

4.5 Instruction conventions

This section details the conventions used in the individual instruction descriptions. Each indi-
vidual instruction description is described in a standard format in separate sections under the
following headings:

4.5.1 Instruction name

Specifies the mnemonic opcode of the instruction.

4.5.2 Syntax

Specifies the mnemonic opcode and the required formal operands of the instruction. Instruc-
tions can have either none, one, two or three operands which are separated from each other
by commas:

MNEMONIC {op1 {,op2 {,op3 } } }

The syntax for the operands of an instruction depend on the selected addressing mode. All of
the available addressing modes are summarized at the end of each single instruction
description.

4.5.3 Operation

Describes the instruction operation in symbolic formula or a high level language construct.
The following symbols are used to represent data movement, arithmetic or logical operators.

Diadic operations (opX) operator (opY)

← (opY) is MOVED into (opX)

+ (opX) is ADDED to (opY)

− (opY) is SUBTRACTED from (opX)

∗ (opX) is MULTIPLIED by (opY)

/ (opX) is DIVIDED by (opY)

∧ (opX) is logically ANDed with (opY)

∨ (opX) is logically ORed with (opY)

⊕ (opX) is logically EXCLUSIVELY ORed with (opY)

⇔ (opX) is COMPARED against (opY)

mod (opX) is divided MODULO (opY)

Monadic operations (opY) operator (opX)

¬ (opX) is logically COMPLEMENTED

4

44/185

Instruction Set Summary

Missing or existing parentheses signifies that the operand specifies an immediate constant
value, an address, or a pointer to an address as follows:

opX Specifies the immediate constant value of opX
(opX) Specifies the contents of opX
(opXn) Specifies the contents of bit n of opX

((opX)) Specifies the contents of the contents of opX (i.e. opX is used as pointer to the
actual operand)

The following abbreviations are used to describe operands:

CP Context Pointer register
CSP Code Segment Pointer register
IP Instruction Pointer
MD Multiply/Divide register (32 bits wide, consists of MDH and MDL)
MDL, MDH Multiply/Divide Low and High registers (each 16 bit wide)
PSW Program Status Word register
SP System Stack Pointer register
SYSCON System Configuration register
C Carry condition flag in the PSW register
V Overflow condition flag in the PSW register
SGTDIS Segmentation Disable bit in the SYSCON register
count Temporary variable for an intermediate storage of the number of shift or rotate

cycles which remain to complete the shift or rotate operation
tmp Temporary variable for an intermediate result
0, 1, 2,... Constant values due to the data format of the specified operation

4.5.4 Data types

Specifies the particular data type according to the instruction. Basically, the following data
types are used:

BIT, BYTE, WORD, DOUBLEWORD

Except for those instructions which extend byte data to word data, all instructions have only
one particular data type. Note that the data types mentioned here do not take into account
accesses to indirect address pointers or to the system stack which are always performed with
word data. Moreover, no data type is specified for System Control Instructions and for those
of the branch instructions which do not access any explicitly addressed data.

4.5.5 Description

This section describes the operation of the instruction

45/185

Instruction Set Summary

4.5.6 Condition code

The following table summarizes the 16 possible condition codes that can be used within Call
and Branch instructions and shows the mnemonic abbreviations, the test executed for a
specific condition and the 4-bit condition code number.

Table 4.17 Condition codes

Condition Code
Mnemonic cc

Test Description
Condition Code

Number c

cc_UC 1 = 1 Unconditional 0h

cc_Z Z = 1 Zero 2h

cc_NZ Z = 0 Not zero 3h

cc_V V = 1 Overflow 4h

cc_NV V = 0 No overflow 5h

cc_N N = 1 Negative 6h

cc_NN N = 1 Not negative 7h

cc_C C = 1 Carry 8h

cc_NC C = 0 No carry 9h

cc_EQ Z = 1 Equal 2h

cc_NE Z = 0 Not equal 3h

cc_ULT C = 1 Unsigned less than 8h

cc_ULE (Z∨C) = 1 Unsigned less than or equal Fh

cc_UGE C = 0 Unsigned greater than or equal 9h

cc_UGT (Z∨C) = 0 Unsigned greater than Eh

cc_SLT (N⊕V) = 1 Signed less than Ch

cc_SLE (Z∨(N⊕V)) = 1 Signed less than or equal Bh

cc_SGE (N⊕V) = 0 Signed greater than or equal Dh

cc_SGT (Z∨(N⊕V)) = 0 Signed greater than Ah

cc_NET (Z∨E) = 0 Not equal AND not end of table 1h

46/185

Instruction Set Summary

4.5.7 Condition flags

This section shows the state of the N, C, V, Z and E flags in the PSW register. The resulting
state of the flags is represented by the following symbols

Note: If the PSW register was specified as the destination operand of an instruction, the condition
flags can not be interpreted as described, because the PSW register is modified according to
the data format of the instruction as follows:
For word operations, the PSW register is overwritten with the word result.
For byte operations, the non-addressed byte is cleared and the addressed byte is overwritten.
For bit or bit-field operations on the PSW register, only the specified bits are modified.
If the condition flags are not selected as destination bits, they stay unchanged i.e. they main-
tain the state existing after the previous instruction.
In any case, if the PSW was the destination operand of an instruction, the PSW flags do NOT
represent the condition flags of this instruction as usual.

Table 4.18 List of condition flags

Symbol Description

* The flag is set according to the following standard rules

N = 1 : MSB of the result is set

N = 0 : MSB of the result is not set

C = 1 : Carry occurred during operation

C = 0 : No Carry occurred during operation

V = 1 : Arithmetic Overflow occurred during operation

V = 0 : No Arithmetic Overflow occurred during operation

Z = 1 : Result equals zero

Z = 0 : Result does not equal zero

E = 1 : Source operand represents the lowest negative number, either 8000h for word
data or 80h for byte data.

E = 0 : Source operand does not represent the lowest negative number for the specified
data type

'S' The flag is set according to non-standard rules. Individual instruction pages or the ALU sta-
tus flags description.

'-' The flag is not affected by the operation

'0' The flag is cleared by the operation.

'NOR' The flag contains the logical NORing of the two specified bit operands.

'AND' The flag contains the logical ANDing of the two specified bit operands.

'OR' The flag contains the logical ORing of the two specified bit operands.

'XOR' The flag contains the logical XORing of the two specified bit operands.

'B' The flag contains the original value of the specified bit operand.

'B' The flag contains the complemented value of the specified bit operand

47/185

Instruction Set Summary

4.5.8 Addressing modes

Specifies available combinations of addressing modes. The selected addressing mode
combination is generally specified by the opcode of the corresponding instruction. However,
there are some arithmetic and logical instructions where the addressing mode combination is
not specified by the (identical) opcodes but by particular bits within the operand field.

In the individual instruction description, the addressing mode is described in terms of
mnemonic, format and number of bytes.

• Mnemonic gives an example of which operands the instruction will accept.

• Format specifies the format of the instruction as used in the assembler listing.
Figure 4.1 shows the reference between the instruction format representation of
the assembler and the corresponding internal organization of the instruction
format (N = nibble = 4 bits). The following symbols are used to describe the
instruction formats:

• Number of bytes Specifies the size of an instruction in bytes. All ST10 instruc-
tions are either 2 or 4 bytes.Instructions are classified as either single word or
double word instructions.

Table 4.19 Instruction format symbols

00h through FF h Instruction Opcodes

0, 1 Constant Values

:.... Each of the 4 characters immediately following a colon represents a single bit

:..ii 2-bit short GPR address (Rwi)

ss 8-bit code segment number (seg).

 :..## 2-bit immediate constant (#data2)

:.### 3-bit immediate constant (#data3)

c 4-bit condition code specification (cc)

n 4-bit short GPR address (Rwn or Rbn)

m 4-bit short GPR address (Rwm or Rbm)

q 4-bit position of the source bit within the word specified by QQ

z 4-bit position of the destination bit within the word specified by ZZ

4-bit immediate constant (#data4)

QQ 8-bit word address of the source bit (bitoff)

rr 8-bit relative target address word offset (rel)

RR 8-bit word address reg

ZZ 8-bit word address of the destination bit (bitoff)

8-bit immediate constant (#data8)

@@ 8-bit immediate constant (#mask8)

pp 0:00pp 10-bit page address (#pag10)

MM MM 16-bit address (mem or caddr; low byte, high byte)

16-bit immediate constant (#data16; low byte, high byte)

48/185

Individual Instruction Descriptions

Figure 4.1 Instruction format representation

4.6 Notes on ATOMIC and EXTended instructions

ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR instructions disable standard and PEC inter-
rupts and class A traps during a sequence of the following 1...4 instructions. The length of the
sequence is determined by an operand (op1 or op2, depending on the instruction). The
EXTended instructions also change the addressing mechanism during this sequence (see
detailed instruction description).
The ATOMIC and EXTended instructions become active immediately, so no additional NOPs
are required. All instructions requiring multiple cycles or hold states to be executed are
regarded as one instruction in this sense. Any instruction type can be used with the ATOMIC
and EXTended instructions.

CAUTION: When a Class B trap interrupts an ATOMIC or EXTended sequence, this
sequence is terminated, the interrupt lock is removed and the standard condition is restored,
before the trap routine is executed! The remaining instructions of the terminated sequence
that are executed after returning from the trap routine, will run under standard conditions!

CAUTION: Be careful, when using the ATOMIC and EXTended instructions with other system
control or branch instructions.

CAUTION: Be careful, when using nested ATOMIC and EXTended instructions. There is
ONE counter to control the length of this sort of sequence, i.e. issuing an ATOMIC or
EXTended instruction within a sequence will reload the counter with value of the new instruc-
tion.

The ATOMIC and EXTended instructions are not available in the ST10X166 devices.

5 Individual Instruction Descriptions

The following pages of this section contain a detailed description of each instruction listed in
alphabetical order.

Bits in ascending order LSBMS
B

Representation in the
Assembler Listing:

N2N
1

N4N
3

N6N
5

N8N
7

High Byte 2nd word

Low Byte 2nd word

High Byte 1st word

Low Byte 1st word

Internal Organization:

N8 N7 N6 N5 N4 N3 N2 N1

49/185

ADD

ADD Integer Addition

Syntax ADD op1, op2

Operation (op1) ← (op1) + (op2)

Data Types WORD

Description Performs a 2's complement binary addition of the source
operand specified by op2 and the destination operand
specified by op1. The sum is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest
possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the
result cannot be represented in the specified data
type. Cleared otherwise.

C Set if a carry is generated from the most signifi-
cant bit of the specified data type. Cleared other-
wise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes

ADD Rwn, Rwm 00 nm 2
ADD Rwn, [Rwi] 08 n:10ii 2
ADD Rwn, [Rwi+] 08 n:11ii 2
ADD Rwn, #data3 08 n:0### 2
ADD reg, #data16 06 RR ## ## 4
ADD reg, mem 02 RR MM MM 4
ADD mem, reg 04 RR MM MM 4

E Z V C N

* * * * *

5

50/185

ADDB

ADDB Integer Addition

Syntax ADDB op1, op2

Operation (op1) ← (op1) + (op2)

Data Types BYTE

Description Performs a 2's complement binary addition of the source
operand specified by op2 and the destination operand
specified by op1. The sum is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest
possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the
result cannot be represented in the specified data
type. Cleared otherwise.

C Set if a carry is generated from the most signifi-
cant bit of the specified data type. Cleared other-
wise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ADDB Rbn, Rbm 01 nm 2
ADDB Rbn, [Rwi] 09 n:10ii 2
ADDB Rbn, [Rwi+] 09 n:11ii 2
ADDB Rbn, #data3 09 n:0### 2
ADDB reg, #data16 07 RR ## ## 4
ADDB reg, mem 03 RR MM MM 4
ADDB mem, reg 05 RR MM MM 4

E Z V C N

* * * * *

5

51/185

ADDC

ADDC Integer Addition with Carry

Syntax ADDC op1, op2

Operation (op1) ← (op1) + (op2) + (C)

Data Types WORD

Description Performs a 2's complement binary addition of the source
operand specified by op2, the destination operand specified by
op1 and the previously generated carry bit. The sum is then
stored in op1. This instruction can be used to perform multiple
precision arithmetic.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero and previous Z flag was set.
Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a carry is generated from the most significant
bit of the specified data type. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ADDC Rwn, Rwm 10 nm 2
ADDC Rwn, [Rwi] 18 n:10ii 2
ADDC Rwn, [Rwi+] 18 n:11ii 2
ADDC Rwn, #data3 18 n:0### 2
ADDC reg, #data16 16 RR ## ## 4
ADDC reg, mem 12 RR MM MM 4
ADDC mem, reg 14 RR MM MM 4

E Z V C N

* S * * *

5

52/185

ADDBC

ADDBC Integer Addition with Carry

Syntax ADDBC op1, op2

Operation (op1) ← (op1) + (op2) + (C)

Data Types BYTE

Description Performs a 2's complement binary addition of the source
operand specified by op2, the destination operand specified by
op1 and the previously generated carry bit. The sum is then
stored in op1. This instruction can be used to perform multiple
precision arithmetic.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero and previous Z flag was set.
Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a carry is generated from the most significant
bit of the specified data type. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ADDCB Rbn, Rbm 11 nm 2
ADDCB Rbn, [Rwi] 19 n:10ii 2
ADDCB Rbn, [Rwi+] 19 n:11ii 2
ADDCB Rbn, #data3 19 n:0### 2
ADDCB reg, #data16 17 RR ## ## 4
ADDCB reg, mem 13 RR MM MM 4
ADDCB mem, reg 15 RR MM MM 4

E Z V C N

* S * * *

5

53/185

AND

AND Logical AND

Syntax AND op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types WORD

Description Performs a bitwise logical AND of the source operand specified
by op2 and the destination operand specified by op1. The result
is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
AND Rwn, Rwm 60 nm 2
AND Rwn, [Rwi] 68 n:10ii 2
AND Rwn, [Rwi+] 68 n:11ii 2
AND Rwn, #data3 68 n:0### 2
AND reg, #data16 66 RR ## ## 4
AND reg, mem 62 RR MM MM 4
AND mem, reg 64 RR MM MM 4

E Z V C N

* * 0 0 *

5

54/185

ANDB

ANDB Logical AND

Syntax ANDB op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types BYTE

Description Performs a bitwise logical AND of the source operand specified
by op2 and the destination operand specified by op1. The result
is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ANDB Rbn, Rbm 61 nm 2
ANDB Rbn, [Rwi] 69 n:10ii 2
ANDB Rbn, [Rwi+] 69 n:11ii 2
ANDB Rbn, #data3 69 n:0### 2
ANDB reg, #data16 67 RR ## ## 4
ANDB reg, mem 63 RR MM MM 4
ANDB mem, reg 65 RR MM MM 4

E Z V C N

* * 0 0 *

5

55/185

ASHR

ASHR Arithmetic Shift Right

Syntax ASHR op1, op2

Operation (count) ← (op1) ∧ (op2)
(V) ← 0
(C) ← 0
DO WHILE (count) ≠ 0
 (V) ← (C) ∨ (V)
 (C) ← (op10)
 (op1n) ← (op1n+1) [n=0...14]
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Arithmetically shifts the destination word operand op1 right by
as many times as specified in the source operand op2. To
preserve the sign of the original operand op1, the most signifi-
cant bits of the result are filled with zeros if the original MSB
was a 0 or with ones if the original MSB was a 1. The Overflow
flag is used as a Rounding flag. The LSB is shifted into the
Carry. Only shift values between 0 and 15 are allowed. When
using a GPR as the count control, only the least significant 4
bits are used.

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a 1 is shifted
out of the carry flag. Cleared for a shift count of zero.

C The carry flag is set according to the last LSB shifted
out of op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ASHR Rwn, Rwm AC nm 2
ASHR Rwn, #data4 BC #n 2

E Z V C N

0 * S S *

5

56/185

ATOMIC

ATOMIC Begin ATOMIC Sequence

Syntax ATOMIC op1

Operation (count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Enable interrupts and traps

Description Causes standard and PEC interrupts and class A hardware
traps to be disabled for a specified number of instructions. The
ATOMIC instruction becomes immediately active so that no
additional NOPs are required.
Depending on the value of op1, the period of validity of the
ATOMIC sequence extends over the sequence of the next 1 to
4 instructions being executed after the ATOMIC instruction. All
instructions requiring multiple cycles or hold states to be
executed are regarded as one instruction in this sense. Any
instruction type can be used with the ATOMIC instruction.

Note The ATOMIC instruction must be used carefully (see Section
4.6 “Notes on ATOMIC and EXTended instructions”).
The ATOMIC instruction is not available for ST10X166 devices.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
ATOMIC #data2 D1 :00##-0 2

E Z V C N

- - - - -

5

57/185

BAND

BAND Bit Logical AND

Syntax BAND op1, op2

Operation (op1) ← (op1) ∧ (op2)

Data Types BIT

Description Performs a single bit logical AND of the source bit specified by
op2 and the destination bit specified by op1. The result is then
stored in op1.

Condition Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes
BAND bitaddrZ.z, bitaddrQ.q 6A QQ ZZ qz 4

E Z V C N

0 NOR OR AND XOR

5

58/185

BCLR

BCLR Bit Clear

Syntax BCLR op1

Operation (op1) ← 0

Data Types BIT

Description CLears the bit specified by op1. This instruction is primarily
used for peripheral and system control.

Condition Flags

E Always cleared.

Z Contains the logical negation of the previous state of
the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes
BCLR bitaddrQ. qE QQ 2

E Z V C N

0 B 0 0 B

5

59/185

BCMP

BCMP Bit to Bit Compare

Syntax BCMP op1, op2

Operation (op1) ⇔ (op2)

Data Types BIT

Description Performs a single bit comparison of the source bit specified by
operand op1 to the source bit specified by operand op2. No
result is written by this instruction. Only the condition codes are
updated.

Condition Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes
BCMP bitaddrZ.z, bitaddrQ.q 2A QQ ZZ qz 4

E Z V C N

0 NOR OR AND XOR

5

60/185

BFLDH

BFLDH Bit Field High Byte

Syntax BFLDH op1, op2, op3

Operation (tmp) ← (op1)
(high byte (tmp)) ← ((high byte (tmp) ∧ ¬op2) ∨ op3)
(op1) ← (tmp)

Data Types WORD

Description Replaces those bits in the high byte of the destination word
operand op1 which are selected by an '1' in the AND mask op2
with the bits at the corresponding positions in the OR mask
specified by op3.

Note Bits which are masked off by a '0' in the AND mask op2 may be
unintentionally altered if the corresponding bit in the OR mask
op3 contains a '1'.

Condition Flags

E Always cleared.

Z Set if the word result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the word result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
BFLDH bitoffQ, #mask8, #data8 1A QQ ## @@ 4

E Z V C N

0 * 0 0 *

5

61/185

BFLDL

BFLDL Bit Field Low Byte

Syntax BFLDL op1, op2, op3

Operation (tmp) ← (op1)
(low byte (tmp)) ← ((low byte (tmp) ∧ ¬op2) ∨ op3)
(op1) ← (tmp)

Data Types WORD

Description Replaces those bits in the low byte of the destination word
operand op1 which are selected by an '1' in the AND mask op2
with the bits at the corresponding positions in the OR mask
specified by op3.

Note Bits which are masked off by a '0' in the AND mask op2 may be
unintentionally altered if the corresponding bit in the OR mask
op3 contains a '1'.

Condition Flags

E Always cleared.

Z Set if the word result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the word result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
BFLDL bitoffQ, #mask8, #data8 0A QQ @@## 4

E Z V C N

0 * 0 0 *

5

62/185

BMOV

BMOV Bit to Bit Move

Syntax BMOV op1, op2

Operation (op1) ← (op2)

Data Types BIT

Description Moves a single bit from the source operand specified by op2
into the destination operand specified by op1. The source bit is
examined and the flags are updated accordingly.

Condition Flags

E Always cleared.

Z Contains the logical negation of the previous state of
the source bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the source bit.

Addressing Modes Mnemonic Format Bytes
BMOV bitaddrZ.z, bitaddrQ.q 4A QQ ZZ qz 4

Condition Flags E Z V C N

0 B 0 0 B

5

63/185

BMOVN

BMOVN Bit to Bit Move and Negate

Syntax BMOVN op1, op2

Operation (op1) ← ¬(op2)

Data Types BIT

Description Moves the complement of a single bit from the source operand
specified by op2 into the destination operand specified by op1.
The source bit is examined and the flags are updated accord-
ingly.

Condition Flags

E Always cleared.

Z Contains the logical negation of the previous state of
the source bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the source bit.

Addressing Modes Mnemonic Format Bytes
BMOVN bitaddrZ.z, bitaddrQ.q 3A QQ ZZ qz 4

E Z V C N

0 B 0 0 B

5

64/185

BOR

BOR Bit Logical OR

Syntax BOR op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types BIT

Description Performs a single bit logical OR of the source bit specified by
operand op2 with the destination bit specified by operand op1.
The ORed result is then stored in op1.

Condition Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes
BOR bitaddrZ.z, bitaddrQ.q 5A QQ ZZ qz 4

E Z V C N

0 NOR OR AND XOR

5

65/185

BSET

BSET Bit Set

Syntax BSET op1

Operation (op1) ← 1

Data Types BIT

Description Sets the bit specified by op1. This instruction is primarily used
for peripheral and system control.

Condition Flags

E Always cleared.

Z Contains the logical negation of the previous state of
the specified bit.

V Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes
BSET bitaddrQ.q qF QQ 2

E Z V C N

0 B 0 0 B

5

66/185

BXOR

BXOR Bit Logical XOR

Syntax BXOR op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types BIT

Description Performs a single bit logical EXCLUSIVE OR of the source bit
specified by operand op2 with the destination bit specified by
operand op1. The XORed result is then stored in op1.

Condition Flags

E Always cleared.

Z Contains the logical NOR of the two specified bits.

V Contains the logical OR of the two specified bits.

C Contains the logical AND of the two specified bits.

N Contains the logical XOR of the two specified bits.

Addressing Modes Mnemonic Format Bytes
BXOR bitaddrZ.z, bitaddrQ.q 7A QQ ZZ qz 4

E Z V C N

0 NOR OR AND XOR

5

67/185

CALLA

CALLA Call Subroutine Absolute

Syntax CALLA op1, op2

Operation IF (op1) THEN
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← op2
ELSE
next instruction
END IF

Description If the condition specified by op1 is met, a branch to the absolute
memory location specified by the second operand op2 is taken.
The value of the instruction pointer, IP, is placed onto the
system stack. Because the IP always points to the instruction
following the branch instruction, the value stored on the system
stack represents the return address of the calling routine. If the
condition is not met, no action is taken and the next instruction
is executed normally.

Condition Codes See condition code Table 4.17 on page 45.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
CALLA cc, caddr CA c0 MM MM 4

E Z V C N

- - - - -

5

68/185

CALLI

CALLI Call Subroutine Indirect

Syntax CALLI op1, op2

Operation IF (op1) THEN
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← (op2)
ELSE
next instruction
END IF

Description If the condition specified by op1 is met, a branch to the location
specified indirectly by the second operand op2 is taken. The
value of the instruction pointer, IP, is placed onto the system
stack. Because the IP always points to the instruction following
the branch instruction, the value stored on the system stack
represents the return address of the calling routine. If the
condition is not met, no action is taken and the next instruction
is executed normally.

Condition Codes See condition code Table 4.17 on page 45.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
CALLI cc, [Rwn] AB cn2

E Z V C N

- - - - -

5

69/185

CALLR

CALLR Call Subroutine Relative

Syntax CALLR op1

Operation (SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← (IP) + sign_extend (op1)

Description A branch is taken to the location specified by the instruction
pointer, IP, plus the relative displacement, op1. The displace-
ment is a two's complement number which is sign extended
and counts the relative distance in words. The value of the
instruction pointer (IP) is placed onto the system stack.
Because the IP always points to the instruction following the
branch instruction, the value stored on the system stack repre-
sents the return address of the calling routine. The value of the
IP used in the target address calculation is the address of the
instruction following the CALLR instruction.

Condition Codes See condition code Table 4.17 on page 45.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
CALLR rel BB rr 2

E Z V C N

- - - - -

5

70/185

CALLS

CALLS Call Inter-Segment Subroutine

Syntax CALLS op1, op2

Operation (SP) ← (SP) - 2
((SP)) ← (CSP)
(SP) ← (SP) - 2
((SP)) ← (IP)
(CSP) ← op1
(IP) ← op2

Description A branch is taken to the absolute location specified by op2
within the segment specified by op1. The value of the instruc-
tion pointer (IP) is placed onto the system stack. Because the
IP always points to the instruction following the branch instruc-
tion, the value stored on the system stack represents the return
address to the calling routine. The previous value of the CSP is
also placed on the system stack to insure correct return to the
calling segment.

Condition Codes See condition code Table 4.17 on page 45.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
CALLS seg, caddr DA ss MM MM 4

E Z V C N

- - - - -

5

71/185

CMP

CMP Integer Compare

Syntax CMP op1, op2

Operation (op1) ⇔ (op2)

Data Types WORD

Description The source operand specified by op1 is compared to the
source operand specified by op2 by performing a 2's comple-
ment binary subtraction of op2 from op1. The flags are set
according to the rules of subtraction. The operands remain
unchanged.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CMP Rwn, Rwm 40 nm 2
CMP Rwn, [Rwi] 48 n:10ii 2
CMP Rwn, [Rwi+] 48 n:11ii 2
CMP Rwn, #data3 48 n:0### 2
CMP reg, #data16 46 RR ## ## 4
CMP reg, mem 42 RR MM MM 4

E Z V C N

* * * S *

5

72/185

CMPB

CMPB Integer Compare

Syntax CMPB op1, op2

Operation (op1) ⇔ (op2)

Data Types BYTE

Description The source operand specified by op1 is compared to the
source operand specified by op2 by performing a 2's comple-
ment binary subtraction of op2 from op1. The flags are set
according to the rules of subtraction. The operands remain
unchanged

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CMPB Rbn, Rbm 41 nm 2
CMPB Rbn, [Rwi] 49 n:10ii 2
CMPB Rbn, [Rwi+] 49 n:11ii 2
CMPB Rbn, #data3 49 n:0### 2
CMPB reg, #data16 47 RR ## ## 4
CMPB reg, mem 43 RR MM MM 4

E Z V C N

* * * S *

5

73/185

CMPD1

CMPD1 Integer Compare and Decrement by 1

Syntax CMPD1 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) - 1

Data Types WORD

Description This instruction is used to enhance the performance and flexi-
bility of loops. The source operand specified by op1 is
compared to the source operand specified by op2 by
performing a 2's complement binary subtraction of op2 from
op1. Operand op1 may specify ONLY GPR registers. Once the
subtraction has completed, the operand op1 is decremented by
one. Using the set flags, a branch instruction can then be used
in conjunction with this instruction to form common high level
language FOR loops of any range.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CMPD1 Rwn, #data4 A0 #n 2
CMPD1 Rwn, #data16 A6 Fn ## ## 4
CMPD1 Rwn, mem A2 Fn MM MM 4

E Z V C N

* * * S *

5

74/185

CMPD2

CMPD2 Integer Compare and Decrement by 2

Syntax CMPD2 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) - 2

Data Types WORD

Description This instruction is used to enhance the performance and flexi-
bility of loops. The source operand specified by op1 is
compared to the source operand specified by op2 by
performing a 2's complement binary subtraction of op2 from
op1. Operand op1 may specify ONLY GPR registers. Once the
subtraction has completed, the operand op1 is decremented by
two. Using the set flags, a branch instruction can then be used
in conjunction with this instruction to form common high level
language FOR loops of any range.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CMPD2 Rwn, #data4 B0 #n 2
CMPD2 Rwn, #data16 B6 Fn ## ## 4
CMPD2 Rwn, mem B2 Fn MM MM 4

E Z V C N

* * * S *

5

75/185

CMPI1

CMPI1 Integer Compare and Increment by 1

Syntax CMPI1 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) + 1

Data Types WORD

Description This instruction is used to enhance the performance and flexi-
bility of loops. The source operand specified by op1 is
compared to the source operand specified by op2 by
performing a 2's complement binary subtraction of op2 from
op1. Operand op1 may specify ONLY GPR registers. Once the
subtraction has completed, the operand op1 is incremented by
one. Using the set flags, a branch instruction can then be used
in conjunction with this instruction to form common high level
language FOR loops of any range.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CMPI1 Rwn, #data4 80 #n 2
CMPI1 Rwn, #data16 86 Fn ## ## 4
CMPI1 Rwn, mem 82 Fn MM MM 4

E Z V C N

* * * S *

5

76/185

CMPI2

CMPI2 Integer Compare and Increment by 2

Syntax CMPI2 op1, op2

Operation (op1) ⇔ (op2)
(op1) ← (op1) + 2

Data Types WORD

Description This instruction is used to enhance the performance and flexi-
bility of loops. The source operand specified by op1 is
compared to the source operand specified by op2 by
performing a 2's complement binary subtraction of op2 from
op1. Operand op1 may specify ONLY GPR registers. Once the
subtraction has completed, the operand op1 is incremented by
two. Using the set flags, a branch instruction can then be used
in conjunction with this instruction to form common high level
language FOR loops of any range.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CMPI2 Rwn, #data4 90 #n 2
CMPI2 Rwn, #data16 96 Fn ## ## 4
CMPI2 Rwn, mem 92 Fn MM MM 4

E Z V C N

* * * S *

5

77/185

CPL

CPL Integer One’s Complement

Syntax CPL op1

Operation (op1) ← ¬(op1)

Data Types WORD

Description Performs a 1's complement of the source operand specified by
op1. The result is stored back into op1.

Condition Flags

E Set if the value of op1 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CPL Rwn 91 n0 2

E Z V C N

* * 0 0 *

5

78/185

CPLB

CPLB Integer One’s Complement

Syntax CPL op1

Operation (op1) ← ¬(op1)

Data Types BYTE

Description Performs a 1's complement of the source operand specified by
op1. The result is stored back into op1.

Condition Flags

E Set if the value of op1 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CPLB Rbn B1 n0 2

E Z V C N

* * 0 0 *

5

79/185

DISWDT

DISWDT Disable Watchdog Timer

Syntax DISWDT

Operation Disable the watchdog timer

Description This instruction disables the watchdog timer. The watchdog
timer is enabled by a reset. The DISWDT instruction allows the
watchdog timer to be disabled for applications which do not
require a watchdog function. Following a reset, this instruction
can be executed at any time until either a Service Watchdog
Timer instruction (SRVWDT) or an End of Initialization instruc-
tion (EINIT) are executed. Once one of these instructions has
been executed, the DISWDT instruction will have no effect. To
insure that this instruction is not accidentally executed, it is
implemented as a protected instruction.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
DISWDT A5 5A A5 A5 4

E Z V C N

- - - - -

5

80/185

DIV

DIV 16-by-16 Signed Division

Syntax DIV op1

Operation (MDL) ← (MDL) / (op1)
(MDH) ← (MDL) mod (op1)

Data Types WORD

Description Performs a signed 16-bit by 16-bit division of the low order word
stored in the MD register by the source word operand op1. The
signed quotient is then stored in the low order word of the MD
register (MDL) and the remainder is stored in the high order
word of the MD register (MDH).

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result
cannot be represented in a word data type, or if the
divisor (op1) was zero. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
DIV Rwn 4B nn 2

E Z V C N

0 * S 0 *

5

81/185

DIVL

DIVL 32-by-16 Signed Division

Syntax DIVL op1

Operation (MDL) ← (MD) / (op1)
(MDH) ← (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description Performs an extended signed 32-bit by 16-bit division of the two
words stored in the MD register by the source word operand
op1. The signed quotient is then stored in the low order word of
the MD register (MDL) and the remainder is stored in the high
order word of the MD register (MDH).

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result
cannot be represented in a word data type, or if the
divisor (op1) was zero. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
DIVL Rwn 6B nn 2

E Z V C N

0 * S 0 *

5

82/185

DIVLU

DIVLU 32-by-16 Unsigned Division

Syntax DIVLU op1

Operation (MDL) ← (MD) / (op1)
(MDH) ← (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description Performs an extended unsigned 32-bit by 16-bit division of the
two words stored in the MD register by the source word
operand op1. The unsigned quotient is then stored in the low
order word of the MD register (MDL) and the remainder is
stored in the high order word of the MD register (MDH).

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result
cannot be represented in a word data type, or if the
divisor (op1) was zero. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
DIVLU Rwn 7B nn 2

Condition Flags E Z V C N

0 * S 0 *

5

83/185

DIVU

DIVU 16-by-16 Unsigned Division

Syntax DIVU op1

Operation (MDL) ← (MDL) / (op1)
(MDH) ← (MDL) mod (op1)

Data Types WORD

Description Performs an unsigned 16-bit by 16-bit division of the low order
word stored in the MD register by the source word operand
op1. The signed quotient is then stored in the low order word of
the MD register (MDL) and the remainder is stored in the high
order word of the MD register (MDH).

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic overflow occurred, i.e. the result
cannot be represented in a word data type, or if the
divisor (op1) was zero. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
DIVU Rwn 5B nn 2

E Z V C N

0 * S 0 *

5

84/185

EINIT

EINIT End of Initialization

Syntax EINIT

Operation End of Initialization

Description This instruction is used to signal the end of the initialization
portion of a program. After a reset, the reset output pin
RSTOUT is pulled low. It remains low until the EINIT instruction
has been executed at which time it goes high. This enables the
program to signal the external circuitry that it has successfully
initialized the microcontroller. After the EINIT instruction has
been executed, execution of the Disable Watchdog Timer
instruction (DISWDT) has no effect. To insure that this instruc-
tion is not accidentally executed, it is implemented as a
protected instruction.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
EINIT B5 4A B5 B5 4

E Z V C N

- - - - -

5

85/185

EXTR

EXTR Begin EXTended Register Sequence

Syntax EXTR op1

Operation (count) ← (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
SFR_range = Standard
Enable interrupts and traps

Description Causes all SFR or SFR bit accesses via the 'reg', 'bitoff' or
'bitaddr' addressing modes being made to the Extended SFR
space for a specified number of instructions. During their
execution, both standard and PEC interrupts and class A
hardware traps are locked.
The value of op1 defines the length of the effected instruction
sequence.

Note The EXTR instruction must be used carefully (see Section 4.6
“Notes on ATOMIC and EXTended instructions”).
The EXTR instruction is not available for ST10X166 devices.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
EXTR #data2 D1 :10##-0 2

E Z V C N

- - - - -

5

86/185

EXTP

EXTP Begin EXTended Page Sequence

Syntax EXTP op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long
and indirect addressing modes for a specified number of
instructions. During their execution, both standard and PEC
interrupts and class A hardware traps are locked. The EXTP
instruction becomes immediately active such that no additional
NOPs are required.
For any long ('mem') or indirect ([...]) address in the EXTP
instruction sequence, the 10-bit page number (address bits
A23-A14) is not determined by the contents of a DPP register
but by the value of op1 itself. The 14-bit page offset (address
bits A13-A0) is derived from the long or indirect address as
usual.The value of op2 defines the length of the effected
instruction sequence.

Note The EXTP instruction must be used carefully (seeSection 4.6
“Notes on ATOMIC and EXTended instructions”).
The EXTP instruction is not available for ST10X166 devices.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
EXTP Rwm, #data2 DC :01##-m 2
EXTP #pag, #data2 D7 :01##-0 pp 0:00pp 4

E Z V C N

- - - - -

5

87/185

EXTPR

EXTPR Begin EXTended Page and Register Sequence

Syntax EXTPR op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long
and indirect addressing modes and causes all SFR or SFR bit
accesses via the 'reg', 'bitoff' or 'bitaddr' addressing modes
being made to the Extended SFR space for a specified number
of instructions. During their execution, both standard and PEC
interrupts and class A hardware traps are locked. For any long
('mem') or indirect ([...]) address in the EXTP instruction
sequence, the 10-bit page number (address bits A23-A14) is
not determined by the contents of a DPP register but by the
value of op1 itself. The 14-bit page offset (address bits A13-A0)
is derived from the long or indirect address as usual. The value
of op2 defines the length of the effected instruction sequence.

Note The EXTPR instruction must be used carefully (see Section 4.6
“Notes on ATOMIC and EXTended instructions”).
The EXTPR instruction is not available for ST10X166 devices.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
EXTPR Rwm, #data2 DC :11##-m 2
EXTPR #pag, #data2 D7 :11##-0 pp 0:00pp 4

E Z V C N

- - - - -

5

88/185

EXTS

EXTS Begin EXTended Segment Sequence

Syntax EXTS op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long
and indirect addressing modes for a specified number of
instructions. During their execution, both standard and PEC
interrupts and class A hardware traps are locked. The EXTS
instruction becomes immediately active such that no additional
NOPs are required.
For any long ('mem') or indirect ([...]) address in an EXTS
instruction sequence, the value of op1 determines the 8-bit
segment (address bits A23-A16) valid for the corresponding
data access. The long or indirect address itself represents the
16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the effected instruction
sequence.

Note The EXTS instruction must be used carefully (see Section 4.6
“Notes on ATOMIC and EXTended instructions”).
The EXTS instruction is not available for ST10X166 devices.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
EXTS Rwm, #data2 DC :00##-m 2
EXTS #seg, #data2 D7 :00##-0 ss 00 4

E Z V C N

- - - - -

5

89/185

EXTSR

EXTSR Begin EXTended Segment and Register Sequence

Syntax EXTSR op1, op2

Operation (count) ← (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
 Next Instruction
 (count) ← (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description Overrides the standard DPP addressing scheme of the long
and indirect addressing modes and causes all SFR or SFR bit
accesses via the 'reg', 'bitoff' or 'bitaddr' addressing modes
being made to the Extended SFR space for a specified number
of instructions. During their execution, both standard and PEC
interrupts and class A hardware traps are locked. The EXTSR
instruction becomes immediately active such that no additional
NOPs are required. For any long ('mem') or indirect ([...])
address in an EXTSR instruction sequence, the value of op1
determines the 8-bit segment (address bits A23-A16) valid for
the corresponding data access. The long or indirect address
itself represents the 16-bit segment offset (address bits A15-
A0). The value of op2 defines the length of the effected instruc-
tion sequence.

Note The EXTSR instruction must be used carefully (see Section
4.6 “Notes on ATOMIC and EXTended instructions”).
The EXTSR instruction is not available for ST10X166 devices.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.
N Not affected.

Addressing Modes Mnemonic Format Bytes
EXTSR Rwm, #data2 DC :10##-m 2
EXTSR #seg, #data2 D7 :10##-0 ss 00 4

E Z V C N

- - - - -

5

90/185

IDLE

IDLE Enter Idle Mode

Syntax IDLE

Operation Enter Idle Mode

Description This instruction causes the part to enter the idle mode. In this
mode, the CPU is powered down while the peripherals remain
running. It remains powered down until a peripheral interrupt or
external interrupt occurs. To insure that this instruction is not
accidentally executed, it is implemented as a protected instruc-
tion.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
IDLE 87 78 87 87 4

E Z V C N

- - - - -

5

91/185

JB

JB Relative Jump if Bit Set

Syntax JB op1, op2

Operation IF (op1) = 1 THEN
 (IP) ← (IP) + sign_extend (op2)
ELSE
 Next Instruction
END IF

Data Types BIT

Description If the bit specified by op1 is set, program execution continues at
the location of the instruction pointer, IP, plus the specified
displacement, op2. The displacement is a two's complement
number which is sign extended and counts the relative distance
in words. The value of the IP used in the target address calcula-
tion is the address of the instruction following the JB instruction.
If the specified bit is clear, the instruction following the JB
instruction is executed.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
JB bitaddrQ.q, rel 8A QQ rr q0 4

E Z V C N

- - - - -

5

92/185

JBC

JBC Relative Jump if Bit Set and Clear Bit

Syntax JBC op1, op2

Operation IF (op1) = 1 THEN
 (op1) = 0
 (IP) ← (IP) + sign_extend (op2)
ELSE
 Next Instruction
END IF

Data Types BIT

Description If the bit specified by op1 is set, program execution continues at
the location of the instruction pointer, IP, plus the specified
displacement, op2. The bit specified by op1 is cleared, allowing
implementation of semaphore operations. The displacement is
a two's complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the
target address calculation is the address of the instruction
following the JBC instruction. If the specified bit was clear, the
instruction following the JBC instruction is executed.

Condition Flags

E Not affected.

Z Contains logical negation of the previous state of the
specified bit.

V Not affected.

C Not affected.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes
JBC bitaddrQ.q, rel AA QQ rr q0 4

E Z V C N

- B - - B

5

93/185

JMPA

JMPA Absolute Conditional Jump

Syntax JMPA op1, op2

Operation IF (op1) = 1 THEN
 (IP) ← op2
w
 Next Instruction
END IF

Description If the condition specified by op1 is met, a branch to the absolute
address specified by op2 is taken. If the condition is not met, no
action is taken, and the instruction following the JMPA instruc-
tion is executed normally.

Condition Codes See condition code Table 4.17 on page 45.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
JMPA cc, caddr EA c0 MM MM 4

E Z V C N

- - - - -

5

94/185

JMPI

JMPI Indirect Conditional Jump

Syntax JMPI op1, op2

Operation IF (op1) = 1 THEN
 (IP) ← (op2)
ELSE
 Next Instruction
END IF

Description If the condition specified by op1 is met, a branch to the absolute
address specified by op2 is taken. If the condition is not met, no
action is taken, and the instruction following the JMPI instruc-
tion is executed normally.

Condition Codes See condition code Table 4.17 on page 45.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
JMPI cc, [Rwn] 9C cn 2

E Z V C N

- - - - -

5

95/185

JMPR

JMPR Relative Conditional Jump

Syntax JMPR op1, op2

Operation IF (op1) = 1 THEN
 (IP) ← (IP) + sign_extend (op2)
ELSE
 Next Instruction
END IF

Description If the condition specified by op1 is met, program execution
continues at the location of the instruction pointer, IP, plus the
specified displacement, op2. The displacement is a two's
complement number which is sign extended and counts the
relative distance in words. The value of the IP used in the target
address calculation is the address of the instruction following
the JMPR instruction. If the specified condition is not met,
program execution continues normally with the instruction
following the JMPR instruction.

Condition Codes See condition code Table 4.17 on page 45.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
JMPR cc, rel cD rr 2

E Z V C N

- - - - -

5

96/185

JMPS

JMPS Absolute Inter-Segment Jump

Syntax JMPS op1, op2

Operation (CSP) ← op1
(IP) ← op2

Description Branches unconditionally to the absolute address specified by
op2 within the segment specified by op1.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes

JMPS seg, caddr FA ss MM MM 4

E Z V C N

- - - - -

5

97/185

JNB

JNB Relative Jump if Bit Clear

Syntax JNB op1, op2

Operation IF (op1) = 0 THEN
 (IP) ← (IP) + sign_extend (op2)
ELSE
 Next Instruction
END IF

Data Types BIT

Description If the bit specified by op1 is clear, program execution continues
at the location of the instruction pointer, IP, plus the specified
displacement, op2. The displacement is a two's complement
number which is sign extended and counts the relative distance
in words. The value of the IP used in the target address calcula-
tion is the address of the instruction following the JNB instruc-
tion. If the specified bit is set, the instruction following the JNB
instruction is executed.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
JNB bitaddrQ.q, rel 9A QQ rr q0 4

E Z V C N

- - - - -

5

98/185

JNBS

JNBS Relative Jump if Bit Clear and Set Bit

Syntax JNBS op1, op2

Operation IF (op1) = 0 THEN
 (op1) = 1
 (IP) ← (IP) + sign_extend (op2)
ELSE
 Next Instruction
END IF

Data Types BIT

Description If the bit specified by op1 is clear, program execution continues
at the location of the instruction pointer, IP, plus the specified
displacement, op2. The bit specified by op1 is set, allowing
implementation of semaphore operations. The displacement is
a two's complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the
target address calculation is the address of the instruction
following the JNBS instruction. If the specified bit was set, the
instruction following the JNBS instruction is executed.

Condition Flags

E Not affected.

Z Contains logical negation of the previous state of the
specified bit.

V Not affected.

C Not affected.

N Contains the previous state of the specified bit.

Addressing Modes Mnemonic Format Bytes
JNBS bitaddrQ.q, rel BA QQ rr q0 4

E Z V C N

- B - - B

5

99/185

MOV

MOV Move Data

Syntax MOV op1, op2

Operation (op1) ← (op2)

Data Types WORD

Description Moves the contents of the source operand specified by op2 to
the location specified by the destination operand op1. The
contents of the moved data is examined, and the condition
codes are updated accordingly.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if the value of the source operand op2 equals
zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand
op2 is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
MOV Rwn, Rwm F0 nm 2
MOV Rwn, #data4 E0 #n 2
MOV reg, #data16 E6 RR ## ## 4
MOV Rwn, [Rwm] A8 nm 2
MOV Rwn, [Rwm+] 98 nm 2
MOV [Rwm], Rwn B8 nm 2
MOV [-Rwm], Rwn 88 nm 2
MOV [Rwn], [Rwm] C8 nm 2
MOV [Rwn+], [Rwm] D8 nm 2
MOV [Rwn], [Rwm+] E8 nm 2
MOV Rwn, [Rwm+#data16] D4 nm ## ## 4
MOV [Rwm+#data16], Rwn C4 nm ## ## 4
MOV [Rwn], mem 84 0n MM MM 4
MOV mem, [Rwn] 94 0n MM MM 4
MOV reg, mem F2 RR MM MM 4
MOV mem, reg F6 RR MM MM 4

E Z V C N

* * - - *

5

100/185

MOVB

MOVB Move Data

Syntax MOVB op1, op2

Operation (op1) ← (op2)

Data Types BYTE

Description Moves the contents of the source operand specified by op2 to
the location specified by the destination operand op1. The
contents of the moved data is examined, and the condition
codes are updated accordingly.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if the value of the source operand op2 equals
zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand
op2 is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
MOVB Rbn, Rbm F1 nm 2
MOVB Rbn, #data4 E1 #n 2
MOVB reg, #data16 E7 RR ## ## 4
MOVB Rbn, [Rwm] A9 nm 2
MOVB Rbn, [Rwm+] 99 nm 2
MOVB [Rwm], Rbn B9 nm 2
MOVB [-Rwm], Rbn 89 nm 2
MOVB [Rwn], [Rwm] C9 nm 2
MOVB [Rwn+], [Rwm] D9 nm 2
MOVB [Rwn], [Rwm+] E9 nm 2
MOVB Rbn, [Rwm+#data16] F4 nm ## ## 4
MOVB [Rwm+#data16], Rbn E4 nm ## ## 4
MOVB [Rwn], mem A4 0n MM MM 4
MOVB mem, [Rwn] B4 0n MM MM 4
MOVB reg, mem F3 RR MM MM 4
MOVB mem, reg F7 RR MM MM 4

E Z V C N

* * - - *

5

101/185

MOVBS

MOVBS Move Byte Sign Extend

Syntax MOVBS op1, op2

Operation (low byte op1) ← (op2)
IF (op27) = 1 THEN
 (high byte op1) ← FFH
ELSE
 (high byte op1) ← 00H
END IF

Data Types WORD, BYTE

Description Moves and sign extends the contents of the source byte
specified by op2 to the word location specified by the destina-
tion operand op1. The contents of the moved data is examined,
and the condition codes are updated accordingly.

Condition Flags

E Always cleared.

Z Set if the value of the source operand op2 equals
zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand
op2 is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
MOVBS Rwn, Rbm D0 mn 2
MOVBS reg, mem D2 RR MM MM 4
MOVBS mem, reg D5 RR MM MM 4

E Z V C N

0 * - - *

5

102/185

MOVBZ

MOVBZ Move Byte Zero Extend

Syntax MOVBZ op1, op2

Operation (low byte op1) ← (op2)
(high byte op1) ← 00H

Data Types WORD, BYTE

Description Moves and zero extends the contents of the source byte
specified by op2 to the word location specified by the destina-
tion operand op1. The contents of the moved data is examined,
and the condition codes are updated accordingly.

Condition Flags

E Always cleared.

Z Set if the value of the source operand op2 equals
zero. Cleared otherwise.

V Not affected.

C Not affected.

N Always cleared.

Addressing Modes Mnemonic Format Bytes
MOVBZ Rwn, Rbm C0 mn 2
MOVBZ reg, mem C2 RR MM MM 4
MOVBZ mem, reg C5 RR MM MM 4

E Z V C N

0 * - - 0

5

103/185

MUL

MUL Signed Multiplication

Syntax MUL op1, op2

Operation (MD) ← (op1) * (op2)

Data Types WORD

Description Performs a 16-bit by 16-bit signed multiplication using the two
words specified by operands op1 and op2 respectively. The
signed 32-bit result is placed in the MD register.

Condition Flags

E Always cleared.

Z Set if the result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a
word data type. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
MUL Rwn, Rwm 0B nm 2

E Z V C N

0 * S 0 0

5

104/185

MULU

MULU Unsigned Multiplication

Syntax MULU op1, op2

Operation (MD) ← (op1) * (op2)

Data Types WORD

Description Performs a 16-bit by 16-bit unsigned multiplication using the
two words specified by operands op1 and op2 respectively. The
unsigned 32-bit result is placed in the MD register.

Condition Flags

E Always cleared.

Z Set if the result equals zero. Cleared otherwise.

V This bit is set if the result cannot be represented in a
word data type. Cleared otherwise.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
MULU Rwn, Rwm 1foB nm 2

E Z V C N

0 * S 0 0

5

105/185

NEG

NEG Integer Two’s Complement

Syntax NEG op1

Operation (op1) ← 0 - (op1)

Data Types WORD

Description Performs a binary 2's complement of the source operand
specified by op1. The result is then stored in op1.

Condition Flags

E Set if the value of op1 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
NEG Rwn 81 n0 2

E Z V C N

* * * S *

5

106/185

NEGB

NEGB Integer Two’s Complement

Syntax NEGB op1

Operation (op1) ← 0 - (op1)

Data Types BYTE

Description Performs a binary 2's complement of the source operand
specified by op1. The result is then stored in op1.

Condition Flags

E Set if the value of op1 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
NEGB Rbn A1 n0 2

E Z V C N

* * * S *

5

107/185

NOP

NOP No Operation

Syntax NOP

Operation No Operation

Description This instruction causes a null operation to be performed. A null
operation causes no change in the status of the flags.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
NOP CC 00 2

E Z V C N

- - - - -

5

108/185

OR

OR Logical OR

Syntax OR op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types WORD

Description Performs a bitwise logical OR of the source operand specified
by op2 and the destination operand specified by op1. The result
is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
OR Rwn, Rwm 70 nm 2
OR Rwn, [Rwi] 78 n:10ii 2
OR Rwn, [Rwi+] 78 n:11ii 2
OR Rwn, #data3 78 n:0### 2
OR reg, #data16 76 RR ## ## 4
OR reg, mem 72 RR MM MM 4
OR mem, reg 74 RR MM MM 4

E Z V C N

* * 0 0 *

5

109/185

ORB

ORB Logical OR

Syntax ORB op1, op2

Operation (op1) ← (op1) ∨ (op2)

Data Types BYTE

Description Performs a bitwise logical OR of the source operand specified
by op2 and the destination operand specified by op1. The result
is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ORB Rbn, Rbm 71 nm 2
ORB Rbn, [Rwi] 79 n:10ii 2
ORB Rbn, [Rwi+] 79 n:11ii 2
ORB Rbn, #data3 79 n:0### 2
ORB reg, #data16 77 RR ## ## 4
ORB reg, mem 73 RR MM MM 4
ORB mem, reg 75 RR MM MM 4

E Z V C N

* * 0 0 *

5

110/185

PCALL

PCALL Push Word and Call Subroutine Absolute

Syntax PCALL op1, op2

Operation (tmp) ← (op1)
(SP) ← (SP) - 2
((SP)) ← (tmp)
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← op2

Data Types WORD

Description Pushes the word specified by operand op1 and the value of the
instruction pointer, IP, onto the system stack, and branches to
the absolute memory location specified by the second operand
op2. Because IP always points to the instruction following the
branch instruction, the value stored on the system stack repre-
sents the return address of the calling routine.

Condition Flags

E Set if the value of the pushed operand op1 repre-
sents the lowest possible negative number. Cleared
otherwise. Used to signal the end of a table.

Z Set if the value of the pushed operand op1 equals
zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed operand
op1 is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
CALL reg, caddr E2 RR MM MM 4

E Z V C N

* * - - *

5

111/185

POP

POP Pop Word from System Stack

Syntax POP op1

Operation (tmp) ← ((SP))
(SP) ← (SP) + 2
(op1) ← (tmp)

Data Types WORD

Description Pops one word from the system stack specified by the Stack
Pointer into the operand specified by op1. The Stack Pointer is
then incremented by two.

Condition Flags

E Set if the value of the popped word represents the
lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if the value of the popped word equals zero.
Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the popped word is
set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
POP reg FC RR 2

E Z V C N

* * - - *

5

112/185

PRIOR

PRIOR Prioritize Register

Syntax PRIOR op1, op2

Operation (tmp) ← (op2)
(count) ← 0
DO WHILE (tmp15) ≠ 1 AND (count) ≠ 15 AND (op2) ≠ 0
 (tmpn) ← (tmpn-1)
 (count) ← (count) - 1
END WHILE
(op1) ← (count)

Data Types WORD

Description This instruction stores a count value in the word operand
specified by op1 indicating the number of single bit shifts
required to normalize the operand op2 so that its MSB is equal
to one. If the source operand op2 equals zero, a zero is written
to operand op1 and the zero flag is set. Otherwise the zero flag
is cleared.

Condition Flags

E Always cleared.

Z Set if the source operand op2 equals zero. Cleared
otherwise.

V Always cleared.

C Always cleared.

N Always cleared.

Addressing Modes Mnemonic Format Bytes
PRIOR Rwn, Rwm 2B nm 2

E Z V C N

0 * 0 0 0

5

113/185

PUSH

PUSH Push Word on System Stack

Syntax PUSH op1

Operation (tmp) ← (op1)
(SP) ← (SP) - 2
((SP)) ← (tmp)

Data Types WORD

Description Moves the word specified by operand op1 to the location in the
internal system stack specified by the Stack Pointer, after the
Stack Pointer has been decremented by two.

Condition Flags

E Set if the value of the pushed word represents the
lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if the value of the pushed word equals zero.
Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the pushed word is
set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
PUSH reg EC RR 2

E Z V C N

* * - - *

5

114/185

PWRDN

PWRDN Enter Power Down Mode

Syntax PWRDN

Operation Enter Power Down Mode

Description This instruction causes the part to enter the power down mode.
In this mode, all peripherals and the CPU are powered down
until the part is externally reset. To insure that this instruction is
not accidentally executed, it is implemented as a protected
instruction. To further control the action of this instruction, the
PWRDN instruction is only enabled when the non-maskable
interrupt pin (NMI) is in the low state. Otherwise, this instruction
has no effect.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
PWRDN 97 68 97 97 4

E Z V C N

- - - - -

5

115/185

RET

RET Return from Subroutine

Syntax RET

Operation (IP) ← ((SP))
(SP) ← (SP) + 2

Description Returns from a subroutine. The IP is popped from the system
stack. Execution resumes at the instruction following the CALL
instruction in the calling routine.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
RET CB 00 2

E Z V C N

- - - - -

5

116/185

RETI

RETI Return from Interrupt Routine

Syntax RETI

Operation (IP) ← ((SP))
(SP) ← (SP) + 2
IF (SYSCON.SGTDIS=0) THEN
 (CSP) ← ((SP))
 (SP) ← (SP) + 2
END IF
(PSW) ← ((SP))
(SP) ← (SP) + 2

Description Returns from an interrupt routine. The PSW, IP, and CSP are
popped off the system stack. Execution resumes at the instruc-
tion which had been interrupted. The previous system state is
restored after the PSW has been popped. The CSP is only
popped if segmentation is enabled. This is indicated by the
SGTDIS bit in the SYSCON register.

Condition Flags

E Restored from the PSW popped from stack.

Z Restored from the PSW popped from stack.

V Restored from the PSW popped from stack.

C Restored from the PSW popped from stack.

N Restored from the PSW popped from stack.

Addressing Modes Mnemonic Format Bytes
RETI FB 88 2

E Z V C N

S S S S S

5

117/185

RETP

RETP Return from Subroutine and Pop Word

Syntax RETP op1

Operation (IP) ← ((SP))
(SP) ← (SP) + 2
(tmp) ← ((SP))
(SP) ← (SP) + 2
(op1) ← (tmp)

Data Types WORD

Description Returns from a subroutine. The IP is first popped from the
system stack and then the next word is popped from the system
stack into the operand specified by op1. Execution resumes at
the instruction following the CALL instruction in the calling
routine.

Condition Flags

E Set if the value of the word popped into operand op1
represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the word popped into operand op1
equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the word popped into
operand op1 is set. Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
RETP reg EB RR 2

E Z V C N

* * - - *

5

118/185

RETS

RETS Return from Inter-Segment Subroutine

Syntax RETS

Operation (IP) ← ((SP))
(SP) ← (SP) + 2
(CSP) ← ((SP))
(SP) ← (SP) + 2

Description Returns from an inter-segment subroutine. The IP and CSP are
popped from the system stack. Execution resumes at the
instruction following the CALLS instruction in the calling routine.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Mode Mnemonic Format Bytes
RETS DB 00 2

E Z V C N

- - - - -

5

119/185

ROL

ROL Rotate Left

Syntax ROL op1, op2

Operation (count) ← (op2)
(C) ← 0
DO WHILE (count) ≠ 0
 (C) ← (op115)
 (op1n) ← (op1n-1) [n=1...15]
 (op10) ← (C)
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Rotates the destination word operand op1 left by as many times
as specified by the source operand op2. Bit 15 is rotated into
Bit 0 and into the Carry. Only shift values between 0 and 15 are
allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last MSB
shifted out of op1. Cleared for a rotate count of zero.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ROL Rwn, Rwm 0C nm 2
ROL Rwn, #data4 1C #n 2

E Z V C N

0 * 0 S *

5

120/185

ROR

ROR Rotate Right

Syntax ROR op1, op2

Operation (count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE (count) ≠ 0
 (V) ← (V) ∨ (C)
 (C) ← (op10)
 (op1n) ← (op1n+1) [n=0...14]
 (op115) ← (C)
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Rotates the destination word operand op1 right by as many
times as specified by the source operand op2. Bit 0 is rotated
into Bit 15 and into the Carry. Only shift values between 0 and
15 are allowed. When using a GPR as the count control, only
the least significant 4 bits are used.

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the rotate operation a ‘1’ is
shifted out of the carry flag. Cleared for a rotate
count of zero.

C The carry flag is set according to the last LSB shifted
out of op1. Cleared for a rotate count of zero.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
ROR Rwn, Rwm 2C nm 2
ROR Rwn, #data4 3C #n 2

E Z V C N

0 * S S *

5

121/185

SCXT

SCXT Switch Context

Syntax SCXT op1, op2

Operation (tmp1) ← (op1)
(tmp2) ← (op2)
(SP) ← (SP) - 2
((SP)) ← (tmp1)
(op1) ← (tmp2)

Description Used to switch contexts for any register. Switching context is a
push and load operation. The contents of the register specified
by the first operand, op1, are pushed onto the stack. That
register is then loaded with the value specified by the second
operand, op2.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
SCXT reg, #data16 C6 RR ## ## 4
SCXT reg, mem D6 RR MM MM 4

E Z V C N

- - - - -

5

122/185

SHL

SHL Shift Left

Syntax SHL op1, op2

Operation (count) ← (op2)
(C) ← 0
DO WHILE (count) ≠ 0
 (C) ← (op115)
 (op1n) ← (op1n-1) [n=1...15]
 (op10) ← 0
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Shifts the destination word operand op1 left by as many times
as specified by the source operand op2. The least significant
bits of the result are filled with zeros accordingly. The MSB is
shifted into the Carry. Only shift values between 0 and 15 are
allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C The carry flag is set according to the last MSB
shifted out of op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
SHL Rwn, Rwm 4C nm 2
SHL Rwn, #data4 5C #n 2

E Z V C N

0 * 0 S *

5

123/185

SHR

SHR Shift Right

Syntax SHR op1, op2

Operation (count) ← (op2)
(C) ← 0
(V) ← 0
DO WHILE (count) ≠ 0
 (V) ← (C) ∨ (V)
 (C) ← (op10)
 (op1n) ← (op1n+1) [n=0...14]
 (op115) ← 0
 (count) ← (count) - 1
END WHILE

Data Types WORD

Description Shifts the destination word operand op1 right by as many times
as specified by the source operand op2. The most significant
bits of the result are filled with zeros accordingly. Since the bits
shifted out effectively represent the remainder, the Overflow
flag is used instead as a Rounding flag. This flag together with
the Carry flag helps the user to determine whether the
remainder bits lost were greater than, less than or equal to one
half an LSB. Only shift values between 0 and 15 are allowed.
When using a GPR as the count control, only the least signifi-
cant 4 bits are used.

Condition Flags

E Always cleared.

Z Set if result equals zero. Cleared otherwise.

V Set if in any cycle of the shift operation a ‘1’ is shifted
out of the carry flag. Cleared for a shift count of zero.

C The carry flag is set according to the last LSB shifted
out of op1. Cleared for a shift count of zero.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
SHR Rwn, Rwm 6C nm 2
SHR Rwn, #data4 7C #n 2

E Z V C N

0 * S S *

5

124/185

SRST

SRST Software Reset

Syntax SRST

Operation Software Reset

Description This instruction is used to perform a software reset. A software
reset has the same effect on the microcontroller as an exter-
nally applied hardware reset. To insure that this instruction is
not accidentally executed, it is implemented as a protected
instruction.

Condition Flags

E Always cleared.

Z Always cleared.

V Always cleared.

C Always cleared.

N Always cleared.

Addressing Modes Mnemonic Format Bytes
SRST B7 48 B7 B7 4

E Z V C N

0 0 0 0 0

5

125/185

SRVWDT

SRVWDT Service Watchdog Timer

Syntax SRVWDT

Operation Service Watchdog Timer

Description This instruction services the Watchdog Timer. It reloads the
high order byte of the Watchdog Timer with a preset value and
clears the low byte on every occurrence. Once this instruction
has been executed, the watchdog timer cannot be disabled. To
insure that this instruction is not accidentally executed, it is
implemented as a protected instruction.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
SRVWDT A7 58 A7 A7 4

E Z V C N

- - - - -

5

126/185

SUB

SUB Integer Subtraction

Syntax SUB op1, op2

Operation (op1) ← (op1) - (op2)

Data Types WORD

Description Performs a 2's complement binary subtraction of the source
operand specified by op2 from the destination operand
specified by op1. The result is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
SUB Rwn, Rwm 20 nm 2
SUB Rwn, [Rwi] 28 n:10ii 2
SUB Rwn, [Rwi+] 28 n:11ii 2
SUB Rwn, #data3 28 n:0### 2
SUB reg, #data16 26 RR ## ## 4
SUB reg, mem 22 RR MM MM 4
SUB mem, reg 24 RR MM MM 4

E Z V C N

* * * S *

5

127/185

SUBB

SUBB Integer Subtraction

Syntax SUBB op1, op2

Operation (op1) ← (op1) - (op2)

Data Types BYTE

Description Performs a 2's complement binary subtraction of the source
operand specified by op2 from the destination operand
specified by op1. The result is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, ie. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
SUBB Rbn, Rbm 21 nm 2
SUBB Rbn, [Rwi] 29 n:10ii 2
SUBB Rbn, [Rwi+] 29 n:11ii 2
SUBB Rbn, #data3 29 n:0### 2
SUBB reg, #data16 27 RR ## ## 4
SUBB reg, mem 23 RR MM MM 4
SUBB mem, reg 25 RR MM MM 4

Condition Flags E Z V C N

* * * S *

5

128/185

SUBC

SUBC Integer Subtraction with Carry

Synta SUBC op1, op2

Operation (op1) ← (op1) - (op2) - (C)

Data Types WORD

Description Performs a 2's complement binary subtraction of the source
operand specified by op2 and the previously generated carry bit
from the destination operand specified by op1. The result is
then stored in op1. This instruction can be used to perform
multiple precision arithmetic.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero and the previous Z flag was
set. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
SUBC Rwn, Rwm 30 nm 2
SUBC Rwn, [Rwi] 38 n:10ii 2
SUBC Rwn, [Rwi+] 38 n:11ii 2
SUBC Rwn, #data3 38 n:0### 2
SUBC reg, #data16 36 RR ## ## 4
SUBC reg, mem 32 RR MM MM 4
SUBC mem, reg 34 RR MM MM 4

Condition Flags E Z V C N

* S * S *

5

129/185

SUBCB

SUBCB Integer Subtraction with Carry

Syntax SUBCB op1, op2

Operation (op1) ← (op1) - (op2) - (C)

Data Types BYTE

Description Performs a 2's complement binary subtraction of the source
operand specified by op2 and the previously generated carry bit
from the destination operand specified by op1. The result is
then stored in op1. This instruction can be used to perform
multiple precision arithmetic.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Set if an arithmetic underflow occurred, i.e. the result
cannot be represented in the specified data type.
Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
SUBCB Rbn, Rbm 31 nm 2
SUBCB Rbn, [Rwi] 39 n:10ii 2
SUBCB Rbn, [Rwi+] 39 n:11ii 2
SUBCB Rbn, #data3 39 n:0### 2
SUBCB reg, #data16 37 RR ## ## 4
SUBCB reg, mem 33 RR MM MM 4
SUBCB mem, reg 35 RR MM MM 4

E Z V C N

* * * S *

130/185

TRAP

TRAP Software Trap

Syntax TRAP op1

Operation (SP) ← (SP) - 2
((SP)) ← (PSW)
IF (SYSCON.SGTDIS=0) THEN
 (SP) ← (SP) - 2
 ((SP)) ← (CSP)
 (CSP) ← 0
END IF
(SP) ← (SP) - 2
((SP)) ← (IP)
(IP) ← zero_extend (op1*4)

Description Invokes a trap or interrupt routine based on the specified
operand, op1. The invoked routine is determined by branching
to the specified vector table entry point. This routine has no
indication of whether it was called by software or hardware.
System state is preserved identically to hardware interrupt
entry except that the CPU priority level is not affected. The
RETI, return from interrupt, instruction is used to resume
execution after the trap or interrupt routine has completed. The
CSP is pushed if segmentation is enabled. This is indicated by
the SGTDIS bit in the SYSCON register.

Condition Flags

E Not affected.

Z Not affected.

V Not affected.

C Not affected.

N Not affected.

Addressing Modes Mnemonic Format Bytes
TRAP #trap7 9B t:ttt0 2

E Z V C N

- - - - -

131/185

XOR

XOR Logical Exclusive OR

Syntax XOR op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types WORD

Description Performs a bitwise logical EXCLUSIVE OR of the source
operand specified by op2 and the destination operand specified
by op1. The result is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
XOR Rwn, Rwm 50 nm 2
XOR Rwn, [Rwi] 58 n:10ii 2
XOR Rwn, [Rwi+] 58 n:11ii 2
XOR Rwn, #data3 58 n:0### 2
XOR reg, #data16 56 RR ## ## 4
XOR reg, mem 52 RR MM MM 4
XOR mem, reg 54 RR MM MM 4

Condition Flags E Z V C N

* * 0 0 *

132/185

XORB

XORB Logical Exclusive OR

Syntax XORB op1, op2

Operation (op1) ← (op1) ⊕ (op2)

Data Types BYTE

Description Performs a bitwise logical EXCLUSIVE OR of the source
operand specified by op2 and the destination operand specified
by op1. The result is then stored in op1.

Condition Flags

E Set if the value of op2 represents the lowest possible
negative number. Cleared otherwise. Used to signal
the end of a table.

Z Set if result equals zero. Cleared otherwise.

V Always cleared.

C Always cleared.

N Set if the most significant bit of the result is set.
Cleared otherwise.

Addressing Modes Mnemonic Format Bytes
XORB Rbn, Rbm 51 nm 2
XORB Rbn, [Rwi] 59 n:10ii 2
XORB Rbn, [Rwi+] 59 n:11ii 2
XORB Rbn, #data3 59 n:0### 2
XORB reg, #data16 57 RR ## ## 4
XORB reg, mem 53 RR MM MM 4
XORB mem, reg 55 RR MM MM 4

E Z V C N

* * 0 0 *

133/185

MAC Addressing Modes

SECTION 2: MAC INSTRUCTION SET

This section describes the instruction set for the MAC co-processor. Refer to device
datasheets for information about which ST10 devices include the MAC co-processor.

6 MAC Addressing Modes

MAC instructions use some standard ST10 addressing modes such as GPR direct or #data4
for immediate shift value. In order to supply the MAC with up to 2 new operands per instruc-
tion cycle, new MAC instruction addressing modes have been added. These allow indirect
addressing with address pointer post-modification. Double indirect addressing requires 2
pointers, one of which can be supplied by any GPR, the other is provided by one of two new
specific SFRs IDX0 and IDX1. Two pairs of offset registers QR0/QR1 and QX0/QX1 are
associated with each pointers (GPR or IDXi). The GPR pointer allows access to the entire
memory space, whereas IDXi are limited to the internal Dual-Port RAM, except for the
CoMOV instruction.

The following table shows the various combinations of pointer post-modification for each of
these 2 new addressing modes.

In this document the symbols “[Rwn⊗]” and “[IDXi⊗]” are used to refer to these addressing
modes.

Table 6.1 Pointer post-modification for [Rwn ⊗]” and “[IDXi ⊗] addressing modes

Symbol Mnemonic Address Pointer Operation
“[IDXi⊗]” stands for [IDXi] (IDXi) ← (IDXi) (no-op)

[IDXi+] (IDXi) ← (IDXi) +2 (i=0,1)
[IDXi -] (IDXi) ← (IDXi) -2 (i=0,1)
[IDXi + QXj] (IDXi) ← (IDXi) + (QXj) (i, j =0,1)
[IDXi - QXj] (IDXi) ← (IDXi) - (QXj) (i, j =0,1)

“[Rwn⊗]” stands for [Rwn] (Rwn) ← (Rwn) (no-op)
[Rwn+] (Rwn) ← (Rwn) +2 (n=0-15)
[Rwn-] (Rwn) ← (Rwn) -2 (k=0-15)
[Rwn + QRj] (Rwn) ← (Rwn) + (QRj) (n=0-15;j =0,1)
[Rwn - QRj] (Rwn) ← (Rwn) - (QRj) (n=0-15; j =0,1)

6

134/185

MAC Instruction Execution Time

A new instruction CoSTORE transfers a value from a MAC register to any location in memory.
This instruction uses a specific addressing mode for the MAC registers, called CoReg . The
following table gives the 5-bit addresses of the MAC registers corresponding to this CoReg
addressing mode. Unused addresses are reserved for future revisions.

7 MAC Instruction Execution Time

The instruction execution time for MAC instructions is calculated in the same way as that of
the standard instruction set. To calculate the execution time for MAC instructions, refer to
“Instruction Execution Times” on page 14, considering MAC instructions to be 4-byte instruc-
tions with a minimum state time number of 2.

Table 6.2 MAC register addresses for CoReg

Registers Description Address
MSW MAC-Unit Status Word 00000
MAH MAC-Unit Accumulator High 00001
MAS “limited” MAH 00010
MAL MAC-Unit Accumulator Low 00100
MCW MAC-Unit Control Word 00101
MRW MAC-Unit Repeat Word 00110

6

135/185

MAC Instruction Set Summary

8 MAC Instruction Set Summary

Table 8.1 MAC instruction mnemonics by addressing mode and repeatability

Mnemonic Addressing Modes Rep Mnemonic Addressing Modes Rep
CoMUL Rwn, Rwm No CoMACM [IDXi⊗], [Rwm⊗] Yes
CoMULu [IDXi⊗], [Rwm⊗] No CoMACMu
CoMULus Rwn, [Rwm⊗] No CoMACMus
CoMULsu CoMACMsu
CoMUL- CoMACM-
CoMULu- CoMACMu-
CoMULus- CoMACMus-
CoMULsu- CoMACMsu-
CoMUL + rnd CoMACM + rnd
CoMULu + rnd CoMACMu + rnd
CoMULus + rnd CoMACMus + rnd
CoMULsu + rnd CoMACMsu + rnd
CoMAC Rwn, Rwm No CoMACMR
CoMACu [IDXi⊗], [Rwm⊗] Yes CoMACMRu
CoMACus Rwn, [Rwm⊗] Yes CoMACMRus
CoMACsu CoMACMRsu
CoMAC- CoMACMR + rnd
CoMACu- CoMACMRu + rnd
CoMACus- CoMACMRus + rnd
CoMACsu- CoMACMRsu + rnd
CoMAC + rnd CoADD Rwn, Rwm No
CoMACu + rnd CoADD2 [IDXi⊗], [Rwm⊗] Yes
CoMACus + rnd CoSUB Rwn, [Rwm⊗] Yes
CoMACsu + rnd CoSUB2
CoMACR CoSUBR
CoMACRu CoSUB2R
CoMACRus CoMAX
CoMACRsu CoMIN
CoMACR + rnd CoLOAD Rwn, Rwm No
CoMACRu + rnd CoLOAD- [IDXi⊗], [Rwm⊗] No
CoMACRus + rnd CoLOAD2 Rwn, [Rwm⊗] No
CoMACRsu + rnd CoLOAD2-
CoNOP [Rwm⊗] Yes CoCMP

[IDXi⊗] Yes CoSHL Rwm Yes
[IDXi⊗], [Rwm⊗] Yes CoSHR #data4 No

CoNEG - No CoASHR [Rwm⊗] Yes
CoNEG + rnd CoASHR + rnd
CoRND CoABS - No
CoSTORE Rwn , CoReg

[Rwn⊗], Coreg
No
Yes

Rwn, Rwm No

[IDXi⊗], [Rwm⊗] No
CoMOV [IDXi⊗], [Rwm⊗] Yes Rwn, [Rwm⊗] No

6

136/185

MAC Instruction Set Summary

The following table gives the MAC Function Code of each instruction. This Function Code is
the third byte of the new instruction and is used by the co-processor as its operation code.
Unused function codes are treated as CoNOP Function Code by the MAC.

Table 8.2 MAC instruction function code (hexa)

Mnemonic Function Code Mnemonic Function Code
CoMUL C0 CoMACM D8
CoMULu 00 CoMACMu 18
CoMULus 40 CoMACMus 58
CoMULsu 80 CoMACMsu 98
CoMUL- C8 CoMACM- E8
CoMULu- 08 CoMACMu- 28
CoMULus- 48 CoMACMus- 68
CoMULsu- 88 CoMACMsu- A8
CoMUL + rnd C1 CoMACM + rnd D9
CoMULu + rnd 01 CoMACMu + rnd 19
CoMULus + rnd 41 CoMACMus + rnd 59
CoMULsu + rnd 81 CoMACMsu + rnd 99
CoMAC D0 CoMACMR F8
CoMACu 10 CoMACMRu 38
CoMACus 50 CoMACMRus 78
CoMACsu 90 CoMACMRsu B8
CoMAC- E0 CoMACMR + rnd F9
CoMACu- 20 CoMACMRu + rnd 39
CoMACus- 60 CoMACMRus + rnd 79
CoMACsu- A0 CoMACMRsu + rnd B9
CoMAC + rnd D1 CoADD 02
CoMACu + rnd 11 CoADD2 42
CoMACus + rnd 51 CoSUB 0A
CoMACsu + rnd 91 CoSUB2 4A
CoMACR F0 CoSUBR 12
CoMACRu 30 CoSUB2R 52
CoMACRus 70 CoMAX 3A
CoMACRsu B0 CoMIN 7A
CoMACR + rnd F1 CoLOAD 22
CoMACRu + rnd 31 CoLOAD- 2A
CoMACRus + rnd 71 CoLOAD2 62
CoMACRsu + rnd B1 CoLOAD2- 6A
CoNOP 5A CoCMP C2
CoNEG 32 CoSHL #d4 82
CoNEG + rnd 72 CoSHL other 8A
CoRND B2 CoSHR #d4 92
CoABS - 1A CoSHR other 9A
CoABS op1, op2 CA CoASHR #d4 A2
CoSTORE wwww:w000 CoASHR other AA
CoMOV 00 CoASHR + rnd #d4 B2

CoASHR + rnd other BA

6

137/185

MAC Instruction Set Summary

8.1 MAC instruction conventions

This section details the conventions used to describe the MAC instruction set.

8.1.1 Operands

opX Specifies the immediate constant value of opX

(opX) Specifies the contents of opX

(opXn) Specifies the contents of bit n of opX

((opX)) Specifies the contents of the contents of opX (i.e. opX is used as pointer
to the actual operand)

rnd minus 0000 8000H

8.1.2 Operations

(opX) ← (opY) opY MOVED into opX

(opX) + (opY) opY ADDED to opX

(opX) - (opY) opY SUBTRACTED from opX

(opX) * (opY) opY MULTIPLIED by opX

(opX) ⇔ (opY) opY COMPARED against opX

(opX) << opX Logically SHIFTED Left

(opX) >> opX Logically SHIFTED Right

(opX) >>a opX Arithmetically SHIFTED Right

opX\opY opX (MSW) and opY (LSW) CONCATENATED to a 32-bit operand.

8.1.3 Data addressing modes

“Rwn”, or “Rwm” : General Purpose Registers (GPRs) where “n” and “m” are any values
contained between 0 and 15 included.

[...] : Indirect word memory location

CoReg : MAC-Unit Register (MSW, MAH, MAL, MAS(u), MRW, MCW)

ACC : MAC Accumulator consisting of lowest byte of MSW\MAH\MAL.

#datax : Immediate constant (the number of significant bits is represented by ‘x’).

6

138/185

MAC Instruction Set Summary

8.1.4 Instruction format

The instruction format is the same as that of the standard instruction set. In addition the
following new symbols are used:

X 4-bit IDX addressing mode encoding. (see following table)

:.qqq 3-bit GPR offset encoding for new GPR indirect with offset encoding.

rrrr:r... 5-bit repeat field.

wwww:w... 5-bit CoReg address for CoSTORE instructions.

ssss: 4-bit immediate shift value.

8.1.5 Flag states

- Unchanged

* Modified

8.1.6 Repeated Instruction Syntax

Repeatable instructions CoXXX are expressed as follows when repeated

Repeat #data5 times CoXXX... or

Repeat MRW times CoXXX...

When MRW is invoked, the instruction is repeated (MRW12-0) + 1 times, therefore the

maximum number of times an instruction can be repeated is 8 192 (213) times. In turn #data5
is an integer value that specifies the number of times an instruction is repeated, #data5 must
be less than 32, and therefore in this case, CoXXX can only be repeated less than 32 times.

Table 8.3 IDX Addressing Mode Encoding and GPR offset Encoding

Addressing Mode 4-bit Encoding GPR Offset 3-bit Encoding
IDX0 1 h no-op 1 h
IDX0 + 2 h + 2 h
IDX0 - 3 h - 3 h
IDX0 + QX0 4 h + QR0 4 h
IDX0 - QX0 5 h - QR0 5 h
IDX0 + QX1 6 h + QR1 6 h
IDX0 - QX1 7 h - QR1 7 h
IDX1 9 h
IDX1 + A h
IDX1 - B h
IDX1 + QX0 C h
IDX1 - QX0 D h
IDX1 + QX1 E h
IDX1 - QX1 F h

6

139/185

Individual Instruction Description

8.1.7 Shift value

The shifter authorizes only 8-bit left/right shifts. Where the specified shift value is greater than
8-bit, an 8-bit shift is performed.

9 Individual Instruction Description

Each instruction is described in a standard format. Refer to “MAC instruction conventions” on
page 137 for detailed information about the instruction conventions.

The MAC instruction set is divided into 5 functional groups:

• Multiply and Multiply-Accumulate Instructions

• 32-Bit Arithmetic Instructions

• Shift Instructions

• Compare Instructions

• Transfer Instructions

The instructions are described within the functional groups and not in alphabetical order as
for the standard instruction set.

140/185

CoMUL(-)

CoMUL(-) Signed Multiply Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMUL op1, op2

Operation IF (MP = 1) THEN
(ACC) ← ((op1) ∗ (op2)) << 2
ELSE
(ACC) ← (op1) ∗ (op2)
END IF

Syntax CoMUL- op1, op2

Operation IF (MP = 1) THEN
(ACC) ← - (((op1) ∗ (op2)) << 2)
ELSE
(ACC) ← - ((op1) ∗ (op2))
END IF

Syntax CoMUL op1, op2, rnd

Operation IF (MP = 1) THEN
(ACC) ← ((op1) ∗ (op2)) << 2 + 0000 8000H

ELSE
(ACC) ← (op1) ∗ (op2) + 0000 8000H

END IF
(MAL) ← 0

Data Types DOUBLE WORD

Result 32-bit signed value

Description Multiplies the two signed 16-bit source operands “op1” and “op2”. The
obtained signed 32-bit product is first sign-extended, then and on condition
MP is set, it is one-bit left shifted, and finally, it is optionally either negated or
rounded before being stored in the 40-bit ACC register. The “-” option is used
to negate the specified product while the “rnd” option is used to round the
product using two’s complement rounding. The default sign option is “+” and
the default round option is “no round”. When “rnd” option is used, MAL
register is automatically cleared. “rnd” and “-” are exclusive. This non-repeat-
able instruction allows up to two parallel memory reads

MAC Condition
Flags

.

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

N Z C SV E SL

* * 0 - * *

7

141/185

CoMUL(-)

SV Not affected.

E Always cleared when MP is cleared, otherwise, only set in case
of 8000H by 8000H multiplication.

SL Not affected when MP or MS are cleared, otherwise, only set in
case of 8000H by 8000H multiplication.

Addressing Modes Mnemonic Rep Format Bytes
CoMUL Rwn, Rwm No A3 nm C0 00 4

CoMUL- Rwn, Rwm No A3 nm C8 00 4

CoMUL Rwn, Rwm, rnd No A3 nm C1 00 4

CoMUL [IDXi⊗], [Rwm⊗] No 93 Xm C0 0:0qqq 4

CoMUL- [IDXi⊗], [Rwm⊗] No 93 Xm C8 0:0qqq 4

CoMUL [IDXi⊗], [Rwm⊗], rnd No 93 Xm C1 0:0qqq 4

CoMUL Rwn, [Rwm⊗] No 83 nm C0 0:0qqq 4

CoMUL- Rwn, [Rwm⊗] No 83 nm C8 0:0qqq 4

CoMUL Rwn, [Rwm⊗], rnd No 83 nm C1 0:0qqq 4

Examples CoMUL R0, R1, rnd ; (ACC) ← (R0)*(R1) + rnd

CoMUL- R2, [R6+] ; (ACC)← -(R2)*((R6))

; (R6) ← (R6) + 2

CoMUL [IDX0+QX1], [R11+] ; (ACC) ← ((IDX0))*((R11))

; (R11)← (R11) + 2

; (IDX0) ← (IDX0) + (QX1)

CoMUL- [IDX1 -], [R15+QR0] ; (ACC) ← -((IDX1))*((R15))

; (R15) ← (R15) + (QR0)

; (IDX1) ← (IDX1) - 2

CoMUL [IDX1+QX0], [R9 - QR1], rnd ; (ACC) ← ((IDX1))*((R9)) + rnd

; (R9) ← (R9) - (QR1)

; (IDX1) ← (IDX1) + (QX0).

Multiplication Examples

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=0, MS=x 8000H 8000H 0 00H 4000H 0000H 0 0 0 - 0 -

MP=1, MS=0 0 00H 8000H 0000H 0 0 0 - 1 -

MP=1, MS=1 0 00H 7FFFH FFFFH 0 0 0 - 0 1

MP=0, MS=x 7FFFH 7FFFH 0 00H 3FFFH 0001H 0 0 0 - 0 -

MP=1, MS=x 0 00H 7FFEH 0002H 0 0 0 - 0 -

MP=1, MS=x 1 00H 7FFEH 0000H 0 0 0 - 0 -

MP=0, MS=x 4001H F456H 0 FFH FD15H 7456H 1 0 0 - 0 -

MP=1, MS=x 0 FFH FA2AH E8ACH 1 0 0 - 0 -

MP=0, MS=x 1 FFH FD15H 0000H 1 0 0 - 0 -

MP=1, MS=x 1 FFH FA2BH 0000H 1 0 0 - 0 -

7

142/185

CoMULu(-)

CoMULu(-) Unsigned Multiply Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULu op1, op2

Operation (ACC) ← (op1) ∗ (op2)

Syntax CoMULu- op1, op2

Operation (ACC) ← - ((op1) ∗ (op2))

Syntax CoMULu op1, op2, rnd

Operation (ACC) ← (op1) ∗ (op2) + 0000 8000H

(MAL) ← 0

Data Types DOUBLE WORD

Result 32-bit unsigned value

Description Multiply the two unsigned 16-bit source operands “op1” and “op2”. The
unsigned 32-bit product is first zero-extended, and then, it is optionally either
negated or rounded before being stored in the 40-bit ACC register. The
result is never affected by the MP mode flag of the MCW register. The “-”
option is used to negate the specified product while the “rnd” option is used
to round the product using two’s complement rounding. The default sign
option is “+” and the default round option is “no round”. When “rnd” option is
used, MAL register is automatically cleared. “rnd” and “-” are exclusive. This
non-repeatable instruction allows up to two parallel memory reads.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Always cleared.

SL Not affected.

N Z C SV E SL

* * 0 - 0 -

7

143/185

CoMULu(-)

Addressing Modes Mnemonic Rep Format Bytes
CoMULu Rwn, Rwm No A3 nm 00 00 4

CoMULu- Rwn, Rwm No A3 nm 08 00 4

CoMULu Rwn, Rwm, rnd No A3 nm 01 00 4

CoMULu [IDXi⊗], [Rwm⊗] No 93 Xm 00 0:0qqq 4

CoMULu- [IDXi⊗], [Rwm⊗] No 93 Xm 08 0:0qqq 4

CoMULu [IDXi⊗], [Rwm⊗], rnd No 93 Xm 01 0:0qqq 4

CoMULu Rwn, [Rwm⊗] No 83 nm 00 0:0qqq 4

CoMULu- Rwn, [Rwm⊗] No 83 nm 08 0:0qqq 4

CoMULu Rwn, [Rwm⊗], rnd No 83 nm 01 0:0qqq 4

The result of CoMULu is never saturated, whatever the value of MS bit is.
(see multiplication examples below)

Examples CoMULu R0, R1, rnd ; (ACC) ← (R0)*(R1) + rnd

CoMULu- R2, [R6+] ; (ACC) ← -(R2)*((R6))

; (R6) ← (R6) + 2

CoMULu [IDX0], [R11+] ; (ACC) ← ((IDX0))*((R11))

; (R11) ← (R11) + 2

CoMULu- [IDX1 -], [R15+QR0] ; (ACC) ← -((IDX1))*((R15))

; (R15) ← (R15) + (QR0)

; (IDX1) ← (IDX1) - 2

CoMULu [IDX0+QX0], [R9 -], rnd ; (ACC) ← ((IDX0))*((R15] + rnd

; (R9) ← (R9) - 2

; (IDX0) ← (IDX0) + (QX0).

Multiplication Examples

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=x, MS=x 8000H 8000H x 00H 4000H 0000H 0 0 0 - 0 -

MP=x, MS=x 7FFFH 7FFFH 0 00H 3FFFH 0001H 0 0 0 - 0 -

1 00H 3FFFH 0000H 0 0 0 - 0 -

MP=x, MS=x 8001H F456H 0 00H 7A2BH F456H 0 0 0 - 0 -

1 00H 7A2CH 0000H 0 0 0 - 0 -

MP=x, MS=0 FFFFH FFFFH 0 00H FFFEH 0001H 0 0 0 - 0 -

MP=x, MS=1 0 00H 7FFFH FFFFH 0 0 0 - 0 -

7

144/185

CoMULsu(-)

CoMULsu(-) Mixed Multiply Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULsu op1, op2

Operation (ACC) ← (op1) ∗ (op2)

Syntax CoMULsu- op1, op2

Operation (ACC) ← - ((op1) ∗ (op2))

Syntax CoMULsu op1, op2, rnd

Operation (ACC) ← (op1) ∗ (op2) + 0000 8000H

(MAL) ← 0

Data Types DOUBLE WORD

Result 32-bit signed value

Description Multiply the two 16-bit signed and unsigned source operands “op1” and
“op2”, respectively. The obtained signed 32-bit product is first sign-extended,
then, it is optionally either negated or rounded before being stored in the 40-
bit ACC register. The result is never affected by the MP mode flag contained
in the MCW register. The “-” option is used to negate the specified product
while the “rnd” option is used to round the product using two’s complement
rounding. The default sign option is “+” and the default round option is “no
round”. When “rnd” option is used, MAL register is automatically cleared.
“rnd” and “-” are exclusive. This non-repeatable instruction allows up to two
parallel memory reads.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Always cleared.

SL Not affected.

N Z C SV E SL

* * 0 - 0 -

7

145/185

CoMULsu(-)

Addressing Modes Mnemonic Rep Format Bytes
CoMULsu Rwn, Rwm No A3 nm 80 00 4

CoMULsu- Rwn, Rwm No A3 nm 88 00 4

CoMULsu Rwn, Rwm, rnd No A3 nm 81 00 4

CoMULsu [IDXi⊗], [Rwm⊗] No 93 Xm 80 0:0qqq 4

CoMULsu- [IDXi⊗], [Rwm⊗] No 93 Xm 88 0:0qqq 4

CoMULsu [IDXi⊗], [Rwm⊗], rnd No 93 Xm 81 0:0qqq 4

CoMULsu Rwn, [Rwm⊗] No 83 nm 80 0:0qqq 4

CoMULsu- Rwn, [Rwm⊗] No 83 nm 88 0:0qqq 4

CoMULsu Rwn, [Rwm⊗], rnd No 83 nm 81 0:0qqq 4

Examples CoMULsu R0, R1, rnd ; (ACC) ← (R0)*(R1) + rnd

CoMULsu- R2, [R6+] ; (ACC) ← -(R2)*((R6))

; (R6) ← (R6) + 2

CoMULsu [IDX0], [R11+] ; (ACC) ← ((IDX0))*((R11))

; (R11) ← (R11) + 2

CoMULsu- [IDX1 -], [R15] ; (ACC) ← -((IDX1))*((R15))

; (IDX1) ← (IDX1) - 2

CoMULsu [IDX0+QX0], [R9 - QR1], rnd ; (ACC) ← ((IDX0))*((R9)) + rnd

; (R9) ← (R9) - (QR1)

; (IDX0) ← (IDX0) + (QX0).

Multiplication Examples

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=x,
MS=x

8000H 8000H x FFH C000H 0000H 1 0 0 - 0 -

MP=x,
MS=x

7FFFH 7FFFH 0 00H 3FFFH 0001H 0 0 0 - 0 -

1 00H 3FFFH 0000H 0 0 0 - 0 -

MP=x,
MS=x

8001H F456H 0 FFH 85D5H F456H 1 0 0 - 0 -

1 FFH 85D6H 0000H 1 0 0 - 0 -

7

146/185

CoMULus(-)

CoMULus(-) Mixed Multiply Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULus op1, op2

Operation (ACC) ← (op1) ∗ (op2)

Syntax CoMULus- op1, op2

Operation (ACC) ← - ((op1) ∗ (op2))

Syntax CoMULus op1, op2, rnd

Operation (ACC) ← (op1) ∗ (op2) + 0000 8000H

(MAL) ← 0

Data Types DOUBLE WORD

Result 32-bit signed value

Description Multiply the two 16-bit unsigned and signed source operands “op1” and
“op2”, respectively. The obtained signed 32-bit product is first sign-extended,
then it is optionally either negated or rounded before being stored in the 40-
bit ACC register. The result is never affected by the MP mode flag
contained in the MCW register. The “-” option is used to negate the specified
product while the “rnd” option is used to round the product using two’s
complement rounding. The default sign option is “+” and the default round
option is “no round”. When “rnd” option is used, MAL register is automatically
cleared. “rnd” and “-” are exclusive. This non-repeatable instruction allows
up to two parallel memory reads.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Always cleared.

SL Not affected.

N Z C SV E SL

* * 0 - 0 -

7

147/185

CoMULus(-)

Addressing Modes Mnemonic Rep Format Bytes
CoMULus Rwn, Rwm No A3 nm 40 00 4

CoMULus- Rwn, Rwm No A3 nm 48 00 4

CoMULus Rwn, Rwm, rnd No A3 nm 41 00 4

CoMULus [IDXi⊗], [Rwm⊗] No 93 Xm 40 0:0qqq 4

CoMULus- [IDXi⊗], [Rwm⊗] No 93 Xm 48 0:0qqq 4

CoMULus [IDXi⊗], [Rwm⊗], rnd No 93 Xm 41 0:0qqq 4

CoMULus Rwn, [Rwm⊗] No 83 nm 40 0:0qqq 4

CoMULus- Rwn, [Rwm⊗] No 83 nm 48 0:0qqq 4

CoMULus Rwn, [Rwm⊗], rnd No 83 nm 41 0:0qqq 4

Examples CoMULus R0, R1, rnd ; (ACC) ← (R0)*(R1) + rnd

CoMULus- R2, [R6+] ; (ACC) ← -(R2)*((R6))

; (R6) ← (R6) + 2

CoMULus [IDX1+QX0], [R11+QR0] ; (ACC) ← ((IDX1))*((R11))

; (R11) ← (R11) + (QR0)

; (IDX1) ← (IDX1) + (QX0)

CoMULus- [IDX0], [R15] ; (ACC) ← -((IDX0))*((R15))

CoMULus [IDX0+QX0], [R9 - QR1], rnd ; (ACC) ← ((IDX0))*((R15] + rnd

; (R9) ← (R9) - (QR1)

; (IDX0) ← (IDX0) + (QX0).

Multiplication Examples

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=x, MS=x 8000H 8000H x FFH C000H 0000H 1 0 0 - 0 -

MP=x, MS=x 7FFFH 7FFFH 0 00H 3FFFH 0001H 0 0 0 - 0 -

1 00H 3FFFH 0000H 0 0 0 - 0 -

MP=x, MS=x 8001H F456H 0 FFH FA2AH 0001H 1 0 0 - 0 -

1 FFH FA2BH 0000H 1 0 0 - 0 -

7

148/185

CoMAC(R/-)

CoMAC(R/-) Multiply-Accumulate Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC op1, op2

Operation IF (MP = 1) THEN
(tmp) ← ((op1) ∗ (op2)) << 2
(ACC) ← (ACC) + (tmp)
ELSE
(tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp)
END IF

Syntax CoMAC op1, op2, rnd

Operation IF (MP = 1) THEN
(tmp) ← ((op1) ∗ (op2)) << 2
(ACC) ← (ACC) + (tmp) + 0000 8000H

ELSE
(tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp) + 0000 8000H

END IF
(MAL) ← 0

Syntax CoMAC- op1, op2

Operation IF (MP = 1) THEN
(tmp) ← ((op1) ∗ (op2)) << 2
(ACC) ← (ACC) - (tmp)
ELSE
(tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) - (tmp)
END IF

Syntax CoMACR op1, op2

Operation IF (MP = 1) THEN
(tmp) ← ((op1) ∗ (op2)) << 2
(ACC) ← (tmp) - (ACC)
ELSE
(tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC)
END IF

7

149/185

CoMAC(R/-)

Syntax CoMACR op1, op2, rnd

Operation IF (MP = 1) THEN
(tmp) ← ((op1) ∗ (op2)) << 2 + 0000 8000H

(ACC) ← (tmp) - (ACC)
ELSE
(tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC) + 0000 8000H

END IF
(MAL) ← 0

Data Types DOUBLE WORD

Result 40-bit signed value

Description Multiplies the two signed 16-bit source operands “op1” and “op2”. The
obtained signed 32-bit product is first sign-extended, then and on condition
MP flag is set, it is one-bit left shifted, next, it is optionally negated prior
being added/subtracted to/from the 40-bit ACC register content, finally, the
obtained result is optionally rounded before being stored in the 40-bit ACC
register. “-” option is used to negate the specified product, “R” option is used
to negate the accumulator content, and finally “rnd” option is used to round
the result using two’s complement rounding. The default sign option is “+”
and the default round option is “no round”. When “rnd” option is used, MAL
register is automatically cleared. Note that “rnd” and “-” are exclusive as well
as “-” and “R”. This instruction might be repeated and allows up to two
parallel memory reads.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

N Z C SV E SL

* * * * * *

7

150/185

CoMAC(R/-)

Addressing Modes Mnemonic Rep Format Bytes
CoMAC Rwn, Rwm No A3 nm D0 00 4

CoMAC- Rwn, Rwm No A3 nm E0 00 4

CoMAC Rwn, Rwm, rnd No A3 nm D1 00 4

CoMACR Rwn, Rwm No A3 nm F0 00 4

CoMACR Rwn, Rwm, rnd No A3 nm F1 00 4

CoMAC [IDXi⊗], [Rwm⊗] Yes 93 Xm D0 rrrr:rqqq 4

CoMAC- [IDXi⊗], [Rwm⊗] Yes 93 Xm E0 rrrr:rqqq 4

CoMAC [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm D1 rrrr:rqqq 4

CoMACR [IDXi⊗], [Rwm⊗] Yes 93 Xm F0 rrrr:rqqq 4

CoMACR [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm F1 rrrr:rqqq 4

CoMAC Rwn, [Rwm⊗] Yes 83 nm D0 rrrr:rqqq 4

CoMAC- Rwn, [Rwm⊗] Yes 83 nm E0 rrrr:rqqq 4

CoMAC Rwn, [Rwm⊗], rnd Yes 83 nm D1rrrr:rqqq 4

CoMACR Rwn, [Rwm⊗] Yes 83 nm F0 rrrr:rqqq 4

CoMACR Rwn, [Rwm⊗], rnd Yes 83 nm F1 rrrr:rqqq 4

Examples CoMAC R3, R4, rnd ; (ACC) ← (ACC) + (R3)*(R4) + rnd

CoMAC- R2, [R6+] ; (ACC) ← (ACC) - (R2)*((R6))

; (R6) ← (R6) + 2

CoMAC [IDX0+QX0], [R11+QR0] ; (ACC) ← (ACC) + ((IDX0))*((R11))

; (R11) ← (R11) + (QR0)

; (IDX0) ← (IDX0) + (QX0)

Repeat 3 times CoMAC [IDX1 - QX1], [R9+QR1]

; (ACC) ← (ACC) + ((IDX1))*((R9))

; (R9) ← (R9) + (QR1)

; (IDX1) ← (IDX1) - (QX1)

Repeat MRW times CoMAC - R3, [R7 - QR0] ; (ACC) ← (ACC) - (R3)*((R7))

; (R7) ← (R7) - (QR0)

CoMACR [IDX1], [R4+], rnd ; ACC) ← ((IDX1))*((R4)) - (Acc) + rnd

; (R4) ← (R4) + 2

7

151/185

CoMAC(R)u(-)

CoMAC(R)u(-) Unsigned Multiply-Accumulate Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACu op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp)

Syntax CoMACu op1, op2, rnd

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp) + 0000 8000H

(MAL) ← 0

Syntax CoMACu- op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) - (tmp)

Syntax CoMACRu op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC)

Syntax CoMACRu op1, op2, rnd

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC) + 0000 8000H

(MAL) ← 0

Data Types DOUBLE WORD

Result 40-bit unsigned value

Description Multiplies the two unsigned 16-bit source operands “op1” and “op2”. The
obtained unsigned 32-bit product is first zero-extended and then optionally
negated prior being added/subtracted to/from the 40-bit ACC register
content, finally, the obtained result is optionally rounded before being stored
in the 40-bit ACC register. The result is never affected by the MP mode flag
contained in the MCW register. “-” option is used to negate the specified
product, “R” option is used to negate the accumulator content, and finally
“rnd” option is used to round the result using two’s complement rounding.
The default sign option is “+” and the default round option is “no round”.
When “rnd” option is used, MAL register is automatically cleared. Note that
“rnd” and “-” are exclusive as well as “-” and “R”. This instruction might be
repeated and allows up to two parallel memory reads.

7

152/185

CoMAC(R)u(-)

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMACu Rwn, Rwm No A3 nm 10 00 4

CoMACu- Rwn, Rwm No A3 nm 20 00 4

CoMACu Rwn, Rwm, rnd No A3 nm 11 00 4

CoMACRu Rwn, Rwm No A3 nm 30 00 4

CoMACRu Rwn, Rwm, rnd No A3 nm 31 00 4

CoMACu [IDXi⊗], [Rwm⊗] Yes 93 Xm 10 rrrr:rqqq 4

CoMACu- [IDXi⊗], [Rwm⊗] Yes 93 Xm 20 rrrr:rqqq 4

CoMACu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 11 rrrr:rqqq 4

CoMACRu [IDXi⊗], [Rwm⊗] Yes 93 Xm 30 rrrr:rqqq 4

CoMACRu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 31 rrrr:rqqq 4

CoMACu Rwn, [Rwm⊗] Yes 83 nm 10 rrrr:rqqq 4

CoMACu- Rwn, [Rwm⊗] Yes 83 nm 20 rrrr:rqqq 4

CoMACu Rwn, [Rwm⊗], rnd Yes 83 nm 11 rrrr:rqqq 4

CoMACRu Rwn, [Rwm⊗] Yes 83 nm 30 rrrr:rqqq 4

CoMACRu Rwn, [Rwm⊗], rnd Yes 83 nm 31 rrrr:rqqq 4

Examples CoMACu R5, R8, rnd ; (ACC) ← (ACC) + (R5)*(R8) + rnd

CoMACu- R2, [R7] ; (ACC) ← (ACC) - (R2)*((R7))

CoMACu [IDX0 - QX0], [R11 - QR0] ; (ACC) ← (ACC) + ((IDX0))*((R11))

; (R11) ← (R11) - (QR0)

; (IDX0) ← (IDX0) - (QX0)

Repeat 3 times CoMACu [IDX1+], [R9 -] ; (ACC) ← (ACC) + ((IDX1))*((R9))

; (R9) ← (R9) - 2

; (IDX1) ← (IDX1) + 2

Repeat MRW times CoMACu- R3, [R7 - QR0]; (ACC) ← (ACC) - (R3)*((R7))

; (R7) ← (R7) - (QR0)

CoMACRu [IDX1 - QX0], [R4], rnd ; (ACC) ← ((IDX1))*((R4))-(ACC)+ rnd

; (IDX1) ← (IDX1) - (QX0)

N Z C SV E SL

* * * * * *

7

153/185

CoMAC(R)su(-)

CoMAC(R)su(-) Mixed Multiply-Accumulate Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACsu op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp)

Syntax CoMACsu op1, op2, rnd

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp) + 0000 8000H

(MAL) ← 0

Syntax CoMACsu- op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) - (tmp)

Syntax CoMACRsu op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC)

Syntax CoMACRsu op1, op2, rnd

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC) + 0000 8000H

(MAL) ← 0

Data Types DOUBLE WORD

Result 40-bit signed value

Description Multiplies the two signed and unsigned 16-bit source operands “op1” and
“op2”, respectively. The obtained signed 32-bit product is first sign-extended,
and then, it is optionally negated prior being added/subtracted to/from the
40-bit ACC register content, finally the obtained result is optionally rounded
before being stored in the 40-bit ACC register. The result is never affected by
the MP mode flag contained in the MCW register. “-” option is used to negate
the specified product, “R” option is used to negate the accumulator content,
and finally “rnd” option is used to round the result using two’s complement
rounding. The default sign option is “+” and the default round option is “no
round”. When “rnd” option is used, MAL register is automatically cleared.
Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction
might be repeated and allows up to two parallel memory reads.

7

154/185

CoMAC(R)su(-)

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMACsu Rwn, Rwm No A3 nm 90 00 4

CoMACsu- Rwn, Rwm No A3 nm A0 00 4

CoMACsu Rwn, Rwm, rnd No A3 nm 91 00 4

CoMACRsu Rwn, Rwm No A3 nm B0 00 4

CoMACRsu Rwn, Rwm, rnd No A3 nm B1 00 4

CoMACsu [IDXi⊗], [Rwm⊗] Yes 93 Xm 90 rrrr:rqqq 4

CoMACsu- [IDXi⊗], [Rwm⊗] Yes 93 Xm A0 rrrr:rqqq 4

CoMACsu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 91 rrrr:rqqq 4

CoMACRsu [IDXi⊗], [Rwm⊗] Yes 93 Xm B0 rrrr:rqqq 4

CoMACRsu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm B1 rrrr:rqqq 4

CoMACsu Rwn, [Rwm⊗] Yes 83 nm 90 rrrr:rqqq 4

CoMACsu- Rwn, [Rwm⊗] Yes 83 nm A0 rrrr:rqqq 4

CoMACsu Rwn, [Rwm⊗], rnd Yes 83 nm 91 rrrr:rqqq 4

CoMACRsu Rwn, [Rwm⊗] Yes 83 nm B0 rrrr:rqqq 4

CoMACRsu Rwn, [Rwm⊗], rnd Yes 83 nm B1 rrrr:rqqq 4

Examples CoMACsu R5, R8, rnd ; (ACC) ← (ACC) + (R5)*(R8) + rnd

CoMACsu- R2, [R7] ; (ACC) ← (ACC) - (R2)*((R7))

CoMACsu [IDX0 - QX0], [R11 - QR0] ; (ACC) ← (ACC) + ((IDX0))*((R11))

; (R11) ← (R11) - (QR0)

; (IDX0) ← (IDX0) - (QX0)

Repeat 3 times CoMACsu [IDX1+], [R9 -] ; (ACC) ← (ACC) + ((IDX1))*((R9))

; (R9) ← (R9) - 2

; (IDX1) ← (IDX1) + 2

Repeat MRW times CoMACsu -R3, [R7 - QR0]

; (ACC) ← (ACC) - (R3)*((R7))

; (R7) ← (R7) - (QR0)

CoMACsur [IDX1 - QX0], [R4], rnd ; (ACC) ← ((IDX1))*((R4)) - (ACC)

; (IDX1) ← (IDX1) - (QX0)

N Z C SV E SL

* * * * * *

7

155/185

CoMAC(R)us(-)

CoMAC(R)us(-) Mixed Multiply-Accumulate Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACus op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp)

Syntax CoMACus op1, op2, rnd

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) + (tmp) + 0000 8000H

(MAL) ← 0

Syntax CoMACus- op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (ACC) - (tmp)

Syntax CoMACRus op1, op2

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC)

Syntax CoMACRus op1, op2, rnd

Operation (tmp) ← (op1) ∗ (op2)
(ACC) ← (tmp) - (ACC) + 0000 8000H

(MAL) ← 0

Data Types DOUBLE WORD

Result 40-bit signed value

Description Multiplies the two unsigned and signed 16-bit source operands “op1” and
“op2”, respectively. The obtained signed 32-bit product is first sign-extended,
and then, it is optionally negated prior being added/subtracted to/from the
40-bit ACC register content, finally the obtained result is optionally rounded
before being stored in the 40-bit ACC register. The result is never affected
by the MP mode flag contained in the MCW register. “-” option is used to
negate the specified product, “R” option is used to negate the accumulator
content, and finally “rnd” option is used to round the result using two’s
complement rounding. The default sign option is “+” and the default round
option is “no round”. When “rnd” option is used, MAL register is automatically
cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This
instruction might be repeated and allows up to two parallel memory reads.

7

156/185

CoMAC(R)us(-)

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMACus Rwn, Rwm No A3 nm 50 00 4

CoMACus- Rwn, Rwm No A3 nm 60 00 4

CoMACus Rwn, Rwm, rnd No A3 nm 51 00 4

CoMACRus Rwn, Rwm No A3 nm 70 00 4

CoMACRus Rwn, Rwm, rnd No A3 nm 71 00 4

CoMACus [IDXi⊗], [Rwm⊗] Yes 93 Xm 50 rrrr:rqqq 4

CoMACus- [IDXi⊗], [Rwm⊗] Yes 93 Xm 60 rrrr:rqqq 4

CoMACus [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 51 rrrr:rqqq 4

CoMACRus [IDXi⊗], [Rwm⊗] Yes 93 Xm 70 rrrr:rqqq 4

CoMACRus [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 71 rrrr:rqqq 4

CoMACus Rwn, [Rwm⊗] Yes 83 nm 50 rrrr:rqqq 4

CoMACus- Rwn, [Rwm⊗] Yes 83 nm 60 rrrr:rqqq 4

CoMACus Rwn, [Rwm⊗], rnd Yes 83 nm 61 rrrr:rqqq 4

CoMACRus Rwn, [Rwm⊗] Yes 83 nm 70 rrrr:rqqq 4

CoMACRus Rwn, [Rwm⊗], rnd Yes 83 nm 71 rrrr:rqqq 4

Examples CoMACus R5, R8, rnd ; (ACC) ← (ACC) + (R5)*(R8) + rnd

CoMACus- R2, [R7] ; (ACC) ← (ACC) - (R2)*((R7))

CoMACus [IDX0 - QX0], [R11 - QR0] ; (ACC) ← (ACC) + ((IDX0))*((R11))

; (R11) ← (R11) - (QR0)

; (IDX0) ← (IDX0) - (QX0)

Repeat 3 times CoMACus[IDX1+], [R9 -] ; (ACC) ← (ACC) + ((IDX1))*((R9))

; (R9) ← (R9) - 2

; (IDX1) ← (IDX1) + 2

Repeat MRW times CoMACus-R3, [R7 - QR0]; (ACC) ← (ACC) - (R3)*((R7))

; (R7) ← (R7) - (QR0)

CoMACRus [IDX1 - QX0], [R4], rnd ;(ACC) ← ((IDX1))*((R4))-(ACC)+rnd

; (IDX1) ← (IDX1) - (QX0)

N Z C SV E SL

* * * * * *

7

157/185

CoMACM(R/-)

CoMACM(R/-) Multiply-Accumulate
Parallel Data Move and Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM [IDXi⊗], [Rwm⊗]

Operation IF (MP = 1) THEN
(tmp) ← ((IDXi))*((Rwm)) << 2
(ACC) ← (ACC) + (tmp)
ELSE
(tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp)
END IF ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACM [IDXi⊗], [Rwm⊗], rnd

Operation IF (MP = 1) THEN
(tmp) ← ((IDXi))*((Rwm)) << 2
(ACC) ← (ACC) + (tmp) + 0000 8000H

ELSE
(tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp) + 0000 8000H

END IF
(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACM- [IDXi⊗], [Rwm⊗]

Operation IF (MP = 1) THEN
(tmp) ← ((IDXi))*((Rwm)) << 2
(ACC) ← (ACC) + (tmp)
ELSE
(tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) - (tmp)
END IF ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMR [IDXi⊗], [Rwm⊗]

Operation IF (MP = 1) THEN
(tmp) ← ((IDXi))*((Rwm)) << 2
(ACC) ← (-ACC) + (tmp)
ELSE
(tmp) ← ((IDXi))*((Rwm))
(ACC) ← (-ACC) + (tmp)
END IF ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMR [IDXi⊗], [Rwm⊗], rnd

Operation IF (MP = 1) THEN
(tmp) ← ((IDXi))*((Rwm)) << 2

7

158/185

CoMACM(R/-)

(ACC) ← (-ACC) + (tmp) + 0000 8000H

ELSE
(tmp) ← ((IDXi))*((Rwm))
(ACC) ← (-ACC) + (tmp) + 0000 8000H

END IF
(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Data Types DOUBLE WORD

Result 40-bit signed value

Description Multiplies the two signed 16-bit source operands pointed to by IDXi (i=0,1)
and Rwm (m=0-15), respectively. The obtained signed 32-bit product is first
sign-extended, then and on condition the MP flag is set, it is one-bit left
shifted, and next, it is optionally negated prior being added/subtracted to/
from the 40-bit ACC register content, finally the obtained result is optionally
rounded before being stored in the 40-bit ACC register. “-” option is used to
negate the specified product, “R” option is used to negate the accumulator
content, and finally “rnd” option is used to round the result using two’s
complement rounding. The default sign option is “+” and the default round
option is “no round”. When “rnd” option is used, MAL register is automatically
cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This
instruction might be repeated and performs two parallel memory reads. In
parallel to the arithmetic operation and to the two parallel reads, the data
pointed to by IDXi overwrites another data located in memory (DPRAM). The
address of the overwritten data depends on the operation executed on IDXi,
as explained by the following table

MAC Condition
Flags

:

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi) - 2

[IDXi -] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi -QXj] (IDXi) + (QXj)

N Z C SV E SL

* * * * * *

7

159/185

CoMACM(R/-)

Addressing Modes Mnemonic Rep Format Bytes
CoMACM [IDXi⊗], [Rwm⊗] Yes 93 Xm D8 rrrr:qqqq 4

CoMACM- [IDXi⊗], [Rwm⊗] Yes 93 Xm E8 rrrr:qqqq 4

CoMACM [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm D9 rrrr:qqqq 4

CoMACMR [IDXi⊗], [Rwm⊗] Yes 93 Xm F8 rrrr:qqqq 4

CoMACMR [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm F9 rrrr:qqqq 4

Examples CoMACM [IDX1+QX0],[R1+QR1], rnd ; (ACC)←(ACC)+((IDX0))*((R10))+rnd

; (R10) ← (R10) + (QR1)

; (((IDX1)-(QX0))) ← ((IDX1))

; (IDX1) ← (IDX1) + (QX0)

Repeat 3 times CoMACM [IDX0 - QX0], [R8+QR0]

; (ACC) ← (ACC) + ((IDX0))*((R8]

; (R8) ← (R8) + (QR0)

; (((IDX0) + (QX0))) ← ((IDX0))

; (IDX0) ← (IDX0) - (QX0)

Repeat MRW times CoMACM- [IDX1+QX1], [R7 - QR0]

; (ACC) ← (ACC) - ((IDX1))*((R7))

; (R7) ← (R7) - (QR0)

; (((IDX1) - (QX1))) ← ((IDX1))

; (IDX1) ← (IDX1) + (QX1)

7

160/185

CoMACM(R)u(-)

CoMACM(R)u(-) Unsign. Multiply-Accumulate
Parallel Data Move & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMu [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMu [IDXi⊗], [Rwm⊗], rnd

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp) + 0000 8000H

(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMu- [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) - (tmp) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMRu [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (tmp) - (ACC) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMRu [IDXi⊗], [Rwm⊗], rnd

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (tmp) - (ACC) + 0000 8000H

(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Data Types DOUBLE WORD

Result 40-bit unsigned value

Description Multiplies the two unsigned 16-bit source operands pointed to by IDXi (i=0,1)
and Rwm (m=0-15), respectively. The obtained unsigned 32-bit product is
first zero-extended, it is then optionally negated prior being added/
subtracted to/from the 40-bit ACC register content, finally the obtained
result is optionally rounded before being stored in the 40-bit ACC register. “-
” option is used to negate the specified product, “R” option is used to negate
the accumulator content, and finally “rnd” option is used to round the result
using two’s complement rounding. The default sign option is “+” and the
default round option is “no round”. When “rnd” option is used, MAL register is
automatically cleared. Note that “rnd” and “-” are exclusive as well as “-” and
“R”. This instruction might be repeated and performs two parallel memory
reads. In parallel to the arithmetic operation and to the two parallel reads, the
data pointed to by IDXi overwrites another data located in memory
(DPRAM). The address of the overwritten data depends on the operation
executed on IDXi, as illustrated by the following table

7

161/185

CoMACM(R)u(-)

:

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMACMu [IDXi⊗], [Rwm⊗] Yes 93 Xm 18 rrrr:rqqq 4

CoMACMu- [IDXi⊗], [Rwm⊗] Yes 93 Xm 28 rrrr:rqqq 4

CoMACMu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 19 rrrr:rqqq 4

CoMACMRu [IDXi⊗], [Rwm⊗] Yes 93 Xm 38 rrrr:rqqq 4

CoMACMRu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 39 rrrr:rqqq 4

Examples CoMACMu [IDX1+QX0], [R10+QR1], rnd ; (ACC)←(ACC) + ((IDX0)) * ((R10))+ rnd

; (R10) ← (R10) + (QR1)

; [IDX1-2.QX0] ← [IDX1]

; (IDX1) ← (IDX1) + (QX0)

Repeat 3 times CoMACMu [IDX0 - QX0], [R8+QR0]

; (ACC) ←(ACC) + ((IDX0))*((R8))

; (R8) ← (R8) + (QR0)

; (((IDX0) + (QX0))) ← ((IDX0))

; (IDX0) ←(IDX0) - (QX0)

Repeat MRW times CoMACMRu [IDX1+QX1], [R7 - QR0]

; (ACC) ←((IDX1))*((R7)) - (ACC)

; (R7) ← (R7) - (QR0)

; (((IDX1) - (QX1))) ←((IDX1))

; (IDX1) ← (IDX1) + (QX1)

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi)- 2

[IDXi -] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi -QXj] (IDXi) + (QXj)

N Z C SV E SL

* * * * * *

7

162/185

CoMACM(R)su(-)

CoMACM(R)su(-) Mix. Multiply-Accumulate
Parallel Data Move and Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMsu [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMsu [IDXi⊗], [Rwm⊗], rnd

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp) + 0000 8000H

(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMsu- [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) - (tmp) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMRsu [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (tmp) - (ACC) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMRsu [IDXi⊗], [Rwm⊗], rnd

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (tmp) - (ACC) + 0000 8000H

(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Data Types DOUBLE WORD

Result 40-bit signed value

Description Multiplies the two signed and unsigned 16-bit source operands pointed to by
IDXi (i=0,1) and Rwm (m=0-15), respectively. The obtained signed 32-bit
product is first sign-extended, it is then optionally negated prior being added/
subtracted to/from the 40-bit ACC register content, finally the obtained result
is optionally rounded before being stored in the 40-bit ACC register. “-”
option is used to negate the specified product, “R” option is used to negate
the accumulator content, and finally “rnd” option is used to round the result
using two’s complement rounding. The default sign option is “+” and the
default round option is “no round”. When “rnd” option is used, MAL register is
automatically cleared. Note that “rnd” and “-” are exclusive as well as “-” and
“R”. This instruction might be repeated and performs two parallel memory
reads.
In parallel to the arithmetic operation and to the two parallel reads, the data
pointed to by IDXi overwrites another data located in memory (DPRAM). The
address of the overwritten data depends on the operation executed on IDXi,
as illustrated by the following table

7

163/185

CoMACM(R)su(-)

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMACMsu [IDXi⊗], [Rwm⊗] Yes 93 Xm 98 rrrr:rqqq 4

CoMACMsu- [IDXi⊗], [Rwm⊗] Yes 93 Xm A8 rrrr:rqqq 4

CoMACMsu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 99 rrrr:rqqq 4

CoMACMRsu[IDXi⊗], [Rwm⊗] Yes 93 Xm B8 rrrr:rqqq 4

CoMACMRsu[IDXi⊗], [Rwm⊗], rnd Yes 93 Xm B9 rrrr:rqqq 4

Example CoMACMsu [IDX1+QX0], [R10+QR1], rnd ; (ACC) ←(ACC) + ((IDX1))*((R10)) + rnd

; (R10) ← (R10) + (QR1)

; (((IDX1) -(QX0))) ← ((IDX1))

; (IDX1) ← (IDX1) + (QX0)

Repeat 3 times CoMACMsu [IDX0 - QX0], [R8+QR0], rnd

; (ACC) ← (ACC) + ((IDX0))*((R8))

; (R8) ← (R8) + (QR0)

; (((IDX0) + (QX0)))← ((IDX0))

; (IDX0) ← (IDX0) - (QX0)

Repeat MRW times CoMACMRsu [IDX1+QX1], [R7 - QR0], rnd

; (ACC) ← ((IDX1))*((R7)) - (ACC) + rnd

; (R7) ← (R7) - (QR0)

; (((IDX1)) - (QX1))) ← ((IDX1))

; (IDX1) ← (IDX1) + (QX1)

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi) - 2

[IDXi -] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi - QXj] (IDXi) + (QXj)

N Z C SV E SL

* * * * * *

7

164/185

CoMACM(R)us(-)

CoMACM(R)us(-) Mix. Multiply-Accumulate
Parallel Data Move and Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMus [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMus [IDXi⊗], [Rwm⊗], rnd

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) + (tmp) + 0000 8000H

(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMus- [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (ACC) - (tmp) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMRus [IDXi⊗], [Rwm⊗]

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (tmp) - (ACC) ((IDXi(-⊗))) ← ((IDXi))

Syntax CoMACMRus [IDXi⊗], [Rwm⊗], rnd

Operation (tmp) ← ((IDXi))*((Rwm))
(ACC) ← (tmp) - (ACC) + 0000 8000H

(MAL) ← 0 ((IDXi(-⊗))) ← ((IDXi))

Data Types DOUBLE WORD

Result 40-bit signed value

Description Multiplies the two unsigned and signed 16-bit source operands pointed to by
IDXi (i=0,1) and Rwm (m=0-15), respectively. The obtained signed 32-bit
product is first sign-extended, it is then optionally negated prior being added/
subtracted to/from the 40-bit ACC register content, finally the obtained result
is optionally rounded before being stored in the 40-bit ACC register. “-”
option is used to negate the specified product, “R” option is used to negate
the accumulator content, and finally “rnd” option is used to round the result
using two’s complement rounding. The default sign option is “+” and the
default round option is “no round”. When “rnd” option is used, MAL register is
automatically cleared. Note that “rnd” and “-” are exclusive as well as “-” and
“R”. This instruction might be repeated and performs two parallel memory
reads.
In parallel to the arithmetic operation and to the two parallel reads, the data
pointed to by IDXi overwrites another data located in memory (DPRAM). The
address of the overwritten data depends on the operation executed on IDXi,
as illustrated by the following table

7

165/185

CoMACM(R)us(-)

:

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMACMus [IDXi⊗], [Rwm⊗] Yes 93 Xm 58 rrrr:rqqq 4

CoMACMus- [IDXi⊗], [Rwm⊗] Yes 93 Xm 68 rrrr:rqqq 4

CoMACMus [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 59 rrrr:rqqq 4

CoMACMRus[IDXi⊗], [Rwm⊗] Yes 93 Xm 78 rrrr:rqqq 4

CoMACMRus[IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 79 rrrr:rqqq 4

Examples CoMACMus [IDX1+QX0], [R10+QR1], rnd ; (ACC) ← (ACC) + ((IDX0))*((R10)) +rnd

; (R11) ← (R11) + (QR1)

; (((IDX1) - (QX0)))← ((IDX1))

; (IDX1) ← (IDX1) + (QX0)

Repeat 3 times CoMACMus [IDX0 - QX0], [R8+QR0]

; (ACC) ← (ACC) + ((IDX0))*((R8))

; (R8) ← (R8) + (QR0)

; (((IDX0) + (QX0))) ← ((IDX0))

; (IDX0) ← (IDX0) - (QX0)

Repeat MRW times CoMACMRus [IDX1+QX1], [R7 - QR0], rnd

; (ACC) ← ((IDX1))*((R7)) - (ACC) + rnd

; (R7) ← (R7) - (QR0)

; (((IDX1) - (QX1)))← ((IDX1))

; (IDX1) ← (IDX1) + (QX1)

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi) - 2

[IDXi -] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi - QXj] (IDXi) + (QXj)

N Z C SV E SL

* * * * * *

7

166/185

CoADD(2)

CoADD(2) Add

Group 32-bit Arithmetic Instructions

Syntax CoADD op1, op2

Operation (tmp) ← (op2)\(op1)
(ACC) ← (ACC) + (tmp)

Syntax CoADD2 op1, op2

Operation (tmp) ← 2 * (op2)\(op1)
(ACC) ← (ACC) + (tmp)

Data Types DOUBLE WORD

Result 40-bit signed value

Description Adds a 40-bit operand to the 40-bit Accumulator contents and store the
result in the accumulator. The 40-bit operand results from the concatenation
of the two source operands op1 (LSW) and op2 (MSW) which is then sign-
extended. “2” option indicates that the 40-bit operand is also multiplied by
two prior being added to ACC. When the MS bit of the MCW register is set
and when a 32-bit overflow or underflow occurs, the obtained result
becomes 00 7ffff ffffh or ff 8000 0000h, respectively. This instruction is repeat-
able with indirect addressing modes and allows up to two parallel memory
reads

MAC Condition
Flags

.

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Note The E-flag is set when the nine highest bits of the accumulator are not equal.
The SV-flag is set, when a 40-bit arithmetic overflow/ underflow occurs.

N Z C SV E SL

* * * * * *

7

167/185

CoADD(2)

Addressing Modes Mnemonic RepeatableFormat Bytes
CoADD Rwn, Rwm No A3 nm 02 00 4

CoADD2 Rwn, Rwm No A3 nm 42 00 4

CoADD [IDXi⊗], [Rwm⊗] Yes 93 Xm 02 rrrr:rqqq 4

CoADD2 [IDXi⊗], [Rwm⊗] Yes 93 Xm 42 rrrr:rqqq 4

CoADD Rwn, [Rwm⊗] Yes 83 nm 02 rrrr:rqqq 4

CoADD2 Rwn, [Rwm⊗] Yes 83 nm 42 rrrr:rqqq 4

Examples CoADD R0, R1 ; (ACC) ← (ACC) + (R1)\(R0)

CoADD2 R2, [R6+] ; (ACC) ← (ACC) + 2*(((R6))\(R2))

; (R6) ← (R6) + 2

Repeat 3 times CoADD [IDX1+QX1], [R10+QR0]

; (ACC) ← (ACC) + (((R10))\((IDX1)))

; (R10) ← (R10) + (QR0)

; (IDX1) ← (IDX1) + (QX1)

Repeat MRW times CoADD2 R4, [R8 - QR1] ; (ACC) ← (ACC) + 2*(((R8))\(R4))

; (R8) ← (R8) - (QR1)

Addition Examples

Instr. MS op 1 op 2 ACC (before) ACC (after) N Z C SV E SL

CoADD x 0000H FFFFH 00 0100 0000H 00 00FF 0000H 0 0 1 - 0 -

CoADD2 x 0000H 0200H 00 0300 0000H 00 0700 0000H 0 0 0 - 0 -

CoADD 0 0000H 4000H 7F BFFF FFFFH 7F FFFF FFFFH 0 0 0 - 1 -

CoADD 0 0001H 4000H 7F BFFF FFFFH 80 0000 0000H 1 0 0 1 1 -

CoADD 0 FFFFH FFFFH FF FFFF FFFFH FF FFFF FFFEH 1 0 1 - 0 -

CoADD 0 FFFFH FFFFH 00 0000 0001H 00 0000 0000H 0 1 1 - 0 -

CoADD 0 FFFFH FFFFH 80 0000 0000H 7F FFFF FFFFH 0 0 1 1 1 -

CoADD2 0 0001H 2000H FF C000 0001H 00 0000 0003H 0 0 1 - 0 -

CoADD2 0 0001H 1800H FF C000 0001H FF F000 0003H 1 0 0 - 0 -

CoADD 0 B4A1H 73C2H 00 7241 A0C3H 00 E604 5564H 0 0 0 - 1 -

1 00 7FFF FFFFH 0 0 0 - 0 1

CoADD 0 B4A1H A3C2H FF 8241 A0C3H FF 2604 5564H 1 0 1 - 1 -

1 FF 8000 0000H 1 0 1 - 0 1

CoADD 0 B4A1H 73C2H 7F B241 A0C3H 80 2604 5564H 1 0 0 1 1 -

CoADD 0 B4A1H A3C2H 80 0241 A0C3H 7F A604 5564H 0 0 1 1 1 -

7

168/185

CoSUB(2)(R)

CoSUB(2)(R) Subtract

Group 32-bit Arithmetic Instructions

Syntax CoSUB op1, op2

Operation (tmp) ← (op2)\(op1)
(ACC) ← (ACC) - (tmp)

Syntax CoSUB2 op1, op2

Operation (tmp) ← 2 * (op2)\(op1)
(ACC) ← (ACC) - (tmp)

Syntax CoSUBR op1, op2

Operation (tmp) ← (op2)\(op1)
(ACC) ← (tmp) - (ACC)

Syntax CoSUB2R op1, op2

Operation (tmp) ← 2 * (op2)\(op1)
(ACC) ← (tmp) - (ACC)

Data Types DOUBLE WORD

Result 40-bit signed value

Description Subtracts a 40-bit operand from the 40-bit Accumulator contents or vice
versa when “r” option is used and store the result in the accumulator. The 40-
bit operand results from the concatenation of the two source operands op1
(LSW) and op2 (MSW) which is then sign-extended. “2” option indicates that
the 40-bit operand is also multiplied by two prior being subtracted/added
from/to ACC/negated ACC. When the MS bit of the MCW register is set and
when a 32-bit overflow or underflow occurs, the obtained result becomes 00
7ffff ffffh or ff 8000 0000h, respectively. This instruction is repeatable with
indirect addressing modes and allows up to two parallel memory reads

MAC Condition
Flags

.

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Note The E-flag is set when the nine highest bits of the accumulator are not equal.
The SV-flag is set, when a 40-bit arithmetic overflow/ underflow occurs.

N Z C SV E SL

* * * * * *

7

169/185

CoSUB(2)(R)

Addressing Modes Mnemonic Rep Format Bytes
CoSUB Rwn, Rwm No A3 nm 0A 00 4

CoSUBR Rwn, Rwm No A3 nm 12 00 4

CoSUB2 Rwn, Rwm No A3 nm 4A 00 4

CoSUB2R Rwn, Rwm No A3 nm 52 00 4

CoSUB [IDXi⊗], [Rwm⊗] Yes 93 Xm 0A rrrr:rqqq 4

CoSUBR [IDXi⊗], [Rwm⊗] Yes 93 Xm 12 rrrr:rqqq 4

CoSUB2 [IDXi⊗], [Rwm⊗] Yes 93 Xm 4A rrrr:rqqq 4

CoSUB2R [IDXi⊗], [Rwm⊗] Yes 93 Xm 52 rrrr:rqqq 4

CoSUB Rwn, [Rwm⊗] Yes 83 nm 0A rrrr:rqqq 4

CoSUBR Rwn, [Rwm⊗] Yes 83 nm 12 rrrr:rqqq 4

CoSUB2 Rwn, [Rwm⊗] Yes 83 nm 4A rrrr:rqqq 4

CoSUB2R Rwn, [Rwm⊗] Yes 83 nm 52 rrrr:rqqq 4

Examples CoSUB R0, R1 ; (ACC) ← (ACC) - (R1)\(R0)

CoSUB2 R2, [R6+] ; (ACC) ← (ACC) + 2*(((R6))\ (R2))

; (R6) ← (R6) + 2

Repeat 3 timesCoSUB [IDX1+QX1], [R10+QR0]

; (ACC) ← (ACC) - (((R10))\((IDX1)))

; (R10) ← (R10) + (QR0)

; (IDX1) ← (IDX1) + (QX1)

Repeat MRW timesCoSUBr2 R4, [R8 - QR1] ; (ACC) ← 2*(((R8))\(R4))- (ACC)

; (R8) ← (R8) - (QR1)

Subtraction Examples

Instr. MS op 1 op 2 ACC (before) ACC (after) N Z C SV E SL

CoSUB x 183AH 72ACH 00 7FFF FFFFH 00 0D53 E7C5H 0 0 0 - 0 -

CoSUBr x 183AH 72ACH 00 7FFF FFFFH FF F2AC 183BH 1 0 1 - 0 -

CoSUB2 x 0C1DH 3956H 00 E604 5564H 00 7358 3D2AH 0 0 0 - 0 -

CoSUBr2 x 0C1DH 3956H 00 E604 5564H FF 8CA7 C2D6H 1 0 1 - 0 -

CoSUB 0 FFFFH FFFFH 7F FFFF FFFFH 80 0000 0000H 1 0 1 1 1 -

1 00 7FFF FFFFH 0 0 1 1 0 1

CoSUB2 0 0000H 3000H 7F FFFF FFFFH 7F 9FFF FFFFH 0 0 0 - 1 -

CoSUB2 0 0001H 0000H 80 0000 0000H 7F FFFF FFFEH 0 0 0 1 1 -

1 FF 8000 0000H 1 0 0 1 0 1

7

170/185

CoNEG

CoNEG Negate Accumulator with Optional Rounding

Group 32-bit Arithmetic Instructions

Syntax CoNEG
CoNEG rnd

Operation IF (rnd) THEN
(ACC) ← 0 - (ACC) + 00008000H

(MAL) ← 0
ELSE
(ACC) ← 0 - (ACC)
END IF

Data Types ACCUMULATOR

Result 40-bit signed value

Description The Accumulator content is subtracted from zero and the result is optionally
rounded before being stored in the accumulator register. with “rnd” option
MAL is cleared. When the MS bit of the MCW register is set and when a 32-
bit overflow or underflow occurs, the obtained result becomes 00 7ffff ffffh or
ff 8000 0000h, respectively. This instruction is not repeatable

MAC Condition
Flags

.

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoNEG No A3 00 32 00 4
CoNEG rnd No A3 00 72 00 4

Examples CoNEG ; (ACC) ← 0 - (ACC)

CoNEG rnd ; (ACC) ← 0 - (ACC) + rnd

N Z C SV E SL

* * * * * *

Instr. MS rnd ACC (before) ACC (after) N Z C SV E SL

CoNEG x No 00 1234 5678H FF EDCB A988H 1 0 0 - 0 -

CoNEG x Yes 00 1234 5678H FF EDCC 0000H 1 0 0 - 0 -

7

171/185

CoABS

CoABS Absolute Value

Group 32-bit Arithmetic Instructions

Syntax CoABS

Operation (ACC) ← Abs(ACC)

Syntax CoABS op1, op2

Operation (ACC) ← Abs((op2)\(op1))

Data Types ACCUMULATOR, DOUBLE WORD

Result 40-bit signed value

Description Compute the absolute value of the Accumulator if no operands are specified
or the absolute value of a 40-bit source operand and load the result in the
Accumulator. The 40-bit operand results from the concatenation of the two
source operands op1 (LSW) and op2 (MSW) which is then sign-extended.
This instruction is not repeatable

MAC Condition
Flags

.

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoABS No A3 00 1A 00 4
CoABS Rwn, Rwm No A3 nm CA 00 4

CoABS [IDXi⊗], [Rwm⊗] No 93 Xm CA 0:0qqq 4

CoABS Rwn, [Rwm⊗] No 83 nm CA 0:0qqq 4

N Z C SV E SL

* * 0 - * *

7

172/185

CoLOAD(2)(-)

CoLOAD(2)(-) Load Accumulator

Group 32-bit Arithmetic Instructions

Syntax CoLOAD op1, op2

Operation (tmp) ← (op2)\(op1)
(ACC) ← 0 + (tmp)

Syntax CoLOAD- op1, op2

Operation (tmp) ← (op2)\(op1)
(ACC) ← 0 - (tmp)

Syntax CoLOAD2 op1, op2

Operation (tmp) ← 2*((op2)\(op1))
(ACC) ← 0 + (tmp)

Syntax CoLOAD2- op1, op2

Operation (tmp) ← 2*((op2)\(op1))
(ACC) ← 0 - (tmp)

Data Types DOUBLE WORD

Result 40-bit signed value

Description Loads the accumulator with a 40-bit source operand. The 40-bit source
operand results from the concatenation of the two source operands op1
(LSW) and op2 (MSW) which is then sign-extended. “2” and “-” options
indicate that the 40-bit operand is also multiplied by two or/and negated,
respectively, prior being stored in the accumulator. The “-” option indicates
that the source operand is 2’s complemented. When the MS bit of the MCW
register is set and when a 32-bit overflow or underflow occurs, the obtained
result becomes 00 7ffff ffffh or ff 8000 0000h, respectively. This instruction is
not repeatable and allows up to two parallel memory reads.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

N Z C SV E SL

* * * - * *

7

173/185

CoLOAD(2)(-)

Addressing Modes Mnemonic Rep Format Bytes
CoLOAD Rwn, Rwm No A3 nm 22 00 4

CoLOAD- Rwn, Rwm No A3 nm 2A 00 4

CoLOAD2 Rwn, Rwm No A3 nm 62 00 4

CoLOAD2- Rwn, Rwm No A3 nm 6A 00 4

CoLOAD [IDXi⊗], [Rwm⊗] No 93 Xm 22 0:0qqq 4

CoLOAD- [IDXi⊗], [Rwm⊗] No 93 Xm 2A 0:0qqq 4

CoLOAD2 [IDXi⊗], [Rwm⊗] No 93 Xm 62 0:0qqq 4

CoLOAD2- [IDXi⊗], [Rwm⊗] No 93 Xm 6A 0:0qqq 4

CoLOAD Rwn, [Rwm⊗] No 83 nm 22 0:0qqq 4

CoLOAD- Rwn, [Rwm⊗] No 83 nm 2A 0:0qqq 4

CoLOAD2 Rwn, [Rwm⊗] No 83 nm 62 0:0qqq 4

CoLOAD2- Rwn, [Rwm⊗] No 83 nm 6A 0:0qqq 4

7

174/185

CoNOP

CoNOP No-Operation

Group 32-bit Arithmetic Instructions

Syntax CoNOP

Operation No Operation

Description Modifies the address pointers without changing the internal MAC-Unit regis-
ters.

MAC Condition
Flags

N Not affected.

Z Not affected.

C Not affected.

SV Not affected.

E Not affected.

SL Not affected.

Addressing Modes Mnemonic Rep Format Bytes
CoNOP [Rwm⊗] Yes 93 0m 5A rrrr:rqqq 4

CoNOP [IDXi⊗] Yes 93 X0 5A rrrr:r000 4

CoNOP [IDXi⊗], [Rwm⊗] Yes 93 Xm 5A rrrr:rqqq 4

Examples CoNOP [IDX0+QX1], [R11+QR1] ; (R11) ← (R11) + (QR1)

; (IDX0) ← (IDX0) + (QX1)

CoNOP [R1+] ; (R1) ← (R1) + 2

Repeat MRW times CoNOP [IDX1+QX0] ; (IDX1) ← (IDX1) + (QR0)

N Z C SV E SL

- - - - - -

7

175/185

CoSHL

CoSHL Accumulator Logical Shift Left

Group Shift Instructions

Syntax CoSHL op1

Operation (count) ← (op1)
(C) ← 0
DO WHILE (count) ≠ 0
(C) ← (ACC39)
(ACCn) ← (ACCn-1) [n=1...39]
(ACC0) ← 0
(count) ← (count) -1
END WHILE

Data Types ACCUMULATOR

Result 40-bit signed value

Description Shifts the ACC register left by as many times as specified by the operand
op1. The least significant bits of the result are filled with zeros. Only shift
values contained between 0 and 8 are allowed. “op1” can be either a 4-bit
unsigned immediate data, or the least significant 4 bits (considered as
unsigned data) of any register directly or indirectly addressed operand.
When the MS bit of the MCW register is set and when a 32-bit overflow or
underflow occurs, the obtained result becomes 00 7ffff ffffh or ff 8000 0000h,
resp. This instruction is repeatable when “op 1” is not an immediate operand.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C The carry flag is set according to the last MSB shifted out of op1.

SV Set if the last shifted out bit is different from N.

E Set if the MAE is used. Cleared otherwise.

SL Set if the content of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoSHL Rwn Yes A3 nn 8A rrrr:r000 4

CoSHL #data4 No A3 00 82 ssss:0 4

CoSHL [Rwm⊗] Yes 83 mm 8A rrrr:rqqq 4

Examples CoSHL #3 ; (ACC) ← (ACC) << 3

CoSHL R3 ; (ACC) ← (ACC) << (R33-0)

CoSHL [R10 - QR0] ; (ACC) ← (ACC) << ((R103-0))

; (R10) ← (R10) - (QR0)

N Z C SV E SL

* * * * * *

7

176/185

CoSHR

CoSHR Accumulator Logical Shift Right

Group Shift Instructions

Syntax CoSHR op1

Operation (count) ← (op1)
(C) ← 0
DO WHILE (count) ≠ 0
((ACCn) ← (ACCn+1) [n=0...38]
(ACC39) ← 0
(count) ← (count) -1
END WHILE

Data Types ACCUMULATOR

Result 40-bit signed value

Description Shifts the ACC register right by as many times as specified by the operand
op1. The most significant bits of the result are filled with zeros accordingly.
Only shift values contained between 0 and 8 are allowed. “op1” can be either
a 4-bit unsigned immediate data, or the least significant 4 bits (considered as
unsigned data) of any register directly or indirectly addressed operand. The
MS bit of the MCW register does not affect the result. This instruction is
repeatable when “op 1” is not an immediate operand.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Not affected.

Addressing Modes Mnemonic RepeatableFormat Bytes
CoSHR Rwn Yes A3 nn 9A rrrr:r000 4

CoSHR #data4 No A3 00 92 ssss:0 4

CoSHR [Rwm⊗] Yes 83 mm 9A rrrr:rqqq 4

Examples CoSHR #3 ; (ACC) ← (ACC) >> 3

CoSHR R3 ; (ACC) ← (ACC) >> (R33-0)

CoSHR [R10 - QR0] ; (ACC) ← (ACC) >> ((R103-0))

; (R10) ← (R10) - (QR0)

N Z C SV E SL

* * 0 - * -

7

177/185

CoASHR

CoASHR Accumulator Arithmetic Shift Right with Optional Round

Group Shift Instructions

Syntax CoASHR op1
CoASHR op1, rnd

Operation (count) ← (op1)
(C) ← 0
DO WHILE (count) ≠ 0
(ACCn) ← (ACCn+1) [n=0...38]
(count) ← (count) -1
END WHILE
IF (rnd) THEN
(ACC) ← (ACC) + 00008000H

(MAL) ← 0
END IF

Data Types ACCUMULATOR

Result 40-bit signed value

Description Arithmetically shifts the ACC register right by as many times as specified by
the operand op1. To preserve the sign of the ACC register, the most signifi-
cant bits of the result are filled with sign 0 if the original MSB was a 0 or with
ones if the original MSB was 1. Only shift values between 0 and 8 are
allowed. “op1” can be either a 4-bit unsigned immediate data, or the least
significant 4 bits (considered as unsigned data) of any register directly or
indirectly addressed operand. Without “rnd” option, the MS bit of the MCW
register does not affect the result. While with “rnd” option and if the MS bit is
set and when a 32-bit overflow or underflow occurs, the obtained result
becomes 00 7ffff ffffh or ff 8000 0000h, respectively. This instruction is repeat-
able when “op 1” is not an immediate operand.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry is generated (rnd). Cleared otherwise.

SV Set if an arithmetic overflow occurred (rnd). Not affected other-
wise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated (rnd).
Not affected otherwise

N Z C SV E SL

* * * * * *

7

178/185

CoASHR

Addressing Modes Mnemonic Rep Format Bytes
CoASHR Rwn Yes A3 nn AA rrrr:r000 4

CoASHR Rwn, rnd Yes A3 nn BA rrrr:r000 4

CoASHR #data4 No A3 00 A2 ssss:0 4

CoASHR #data4, rnd No A3 00 B2 ssss:0 4

CoASHR [Rwm⊗] Yes 83 mm AA rrrr:rqqq 4

CoASHR [Rwm⊗], rnd Yes 83 mm BA rrrr:rqqq 4

Examples CoASHR #3, rnd ; (ACC) ← (ACC) >>a 3 + rnd

CoASHR R3 ; (ACC) ← (ACC) >>a (R33-0)

CoASHR [R10 - QR0] ; (ACC) ← (ACC) >>a ((R103-0))

; (R10) ← (R10) - (QR0)

7

179/185

CoRND

CoRND Round Accumulator

Group Shift Instructions

Syntax CoRND

Operation (ACC) ← (ACC) + 0000 8000H

(MAL) ← 0

Data Types ACCUMULATOR

Result 40-bit signed value

Description Rounds the ACC register contents by adding 0000 8000h to it and store the
result in the ACC register and the lower part of the ACC register, MAL, is
cleared. When the MS bit of the MCW register is set and when a 32-bit
overflow or underflow occurs, the obtained result becomes 00 7ffff ffffh or ff
800 0000h, respectively. This instruction is not repeatable.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not
affected otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoRND No A3 00 B2 00 4

Notes CoRND is equivalent to CoASHR #0, rnd.

Example CoRND ; (ACC) ← (ACC) + rnd

N Z C SV E SL

* * * * * *

7

180/185

CoMAX

CoMAX Maximum

Group Compare Instructions

Syntax CoMAX op1 op2

Operation (tmp) ← (op2)\(op1)
(ACC) ← max((ACC), (tmp))

Data Types DOUBLE WORD

Result 40-bit signed value

Description Compares a signed 40-bit operand against the ACC register content. The
40-bit operand results from the concatenation of the two source operands
op1 (LSW) and op2 (MSW) which is then sign-extended. If the contents of
the ACC register is smaller than the 40-bit operand, then the ACC register
is loaded with it. Otherwise the ACC register remains unchanged. The MS bit
of the MCW register does not affect the result. This instruction is repeatable
with indirect addressing modes.

MAC Condition
Flags

.

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC register is changed. Not affected
otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMAX Rwn, Rwm No A3 nm 3A 00 4

CoMAX [IDXi⊗], [Rwm⊗] Yes 93 Xm 3A rrrr:rqqq 4

CoMAX Rwn, [Rwm⊗] Yes 83 nm 3A rrrr:rqqq 4

Examples CoMAX [IDX1+QX0], [R11+QR1] ; (ACC)← Max((ACC),((R11))\((IDX1)))

; (R11) ← (R11) + (QR1)

; (IDX1) ← (IDX1) + (QX0)

CoMAX R1, R1 ; (ACC) ← Max((ACC), (R10)\(R1))

Repeat 23 times CoMAX R5, [R6 - QR0] ; (ACC) ← Max((ACC), ((R6))\(R5)))

; (R6) ← (R6) - (QR0)

N Z C SV E SL

* * 0 - * *

7

181/185

CoMIN

CoMIN Minimum

Group Compare Instructions

Syntax CoMIN op1, op2

Operation (tmp) ← (op2)\(op1)
(ACC) ← min((ACC), (tmp))

Data Types DOUBLE WORD

Result 40-bit signed value

Description Compares a signed 40-bit operand against the ACC register content. The
40-bit operand results from the concatenation of the two source operands
op1 (LSW) and op2 (MSW) which is then sign-extended. If the contents of
the ACC register is greater than the 40-bit operand, then the ACC register is
loaded with it. Otherwise the ACC register remains unchanged. The MS bit
of the MCW register does not affect the result. This instruction is repeatable
with indirect addressing modes.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC register is changed. Not affected
otherwise.

Addressing Modes Mnemonic Rep Format Bytes
CoMIN Rwn, Rwm No A3 nm 7A 00 4

CoMIN [IDXi⊗], [Rwm⊗] Yes 93 Xm 7A rrrr:rqqq 4

CoMIN Rwn, [Rwm⊗] Yes 83 nm 7A rrrr:rqqq 4

Examples CoMIN [IDX1+QX0], [R11+QR1] ; (ACC) ← min((ACC), ((R11))\((IDX1)))

; (R11) ← (R11) + (QR1)

; (IDX1) ← (IDX1) + (QX0)

CoMIN R1, R10 ; (ACC) ← min((ACC), (R10)\(R1))

Repeat 23 times CoMIN R5, [R6 - QR0] ; (ACC) ← min((ACC), ((R6))\(R5)))

; (R6) ← (R6) - (QR0)

N Z C SV E SL

* * 0 - * *

7

182/185

CoCMP

CoCMP Compare

Group Compare Instructions

Syntax CoCMP op1, op2

Operation tmp ← (op2)\(op1)
(ACC) ⇔ (tmp)

Data Types DOUBLE WORD

Description Subtracts a 40-bit signed operand from the 40-bit Accumulator content and
update the N, Z and C flags contained in the MSW register leaving the accu-
mulator unchanged. The 40-bit operand results from the concatenation, “\”,
of the two source operands op1 (LSW) and op2 (MSW) which is then sign-
extended. The MS bit of the MCW register does not affect the result. This
instruction is not repeatable and allows up to two parallel memory reads.

MAC Condition
Flags

N Set if the most significant bit of the result is set. Cleared other-
wise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

SV Not affected.

E Not affected.

SL Not affected.

Addressing Modes Mnemonic Rep Format Bytes
CoCMP Rwn, Rwm No A3 nm C2 00 4

CoCMP [IDXi⊗], [Rwm⊗] No 93 Xm C2 0:0qqq 4

CoCMP Rwn, [Rwm⊗] No 83 nm C2 0:0qqq 4

Examples CoCMP [IDX1+QX0], [R11+QR1] ; MSW(N,Z,C) ←(ACC) - ((R11))\((IDX1))

; (R11) ← (R11) + (QR1)

; (IDX1) ← (IDX1) + (QX0)

CoCMP R1, [R2-] ; MSW(N,Z,C) ← (ACC) - ((R2))\(R1)

; (R2) ← (R2) - 2

CoCMP R2, R5 ; MSW(N,Z,C) ← (ACC) - (R5)\(R2)

N Z C SV E SL

* * * - - -

7

183/185

CoSTORE

CoSTORE Store a MAC-Unit Register

Group Transfer Instructions

Syntax CoSTORE op1, op2

Operation (op1) ← (op2)

Data Types WORD

Description Moves the contents of a MAC-Unit register specified by the source operand
op2 to the location specified by the destination operand op1. This instruction
is repeatable with destination indirect addressing mode (for example to clear
a table in memory)

MAC Condition
Flags

.

N Not affected

Z Not affected

C Not affected

SV Not affected

E Not affected

SL Not affected

Addressing Modes Mnemonic Rep Format Bytes
CoSTORE Rwn, CoReg No C3 nn wwww:w000 00 4

CoSTORE [Rwn⊕], CoReg Yes B3 nn wwww:w000 rrrr:rqqq 4

Note Due to pipeline side effects, CoSTORE cannot be directly followed by a MOV
instruction the source operand of which is also a MAC-Unit Register like
MSW, MAH, MAL, MAS(u), MRW, or MCW. In that particular case a NOP
must be inserted between the CoSTORE and the MOV instruction.

Examples CoSTORE [R11+QR1], MAS ; ((R11)) ← limited((ACC))

; (R11) ←(R11) + (QR1)

Repeat 3 times CoSTORE [R2-], MAL ; ((R2)) ← (MAL)

; (R2) ← (R2) - 2

N Z C SV E SL

- - - - - -

184/185

CoMOV

CoMOV Memory to Memory Move

Group Transfer Instructions

Syntax CoMOV op1, op2

Operation (op1) ← (op2)

Data Types WORD

Description Moves the contents of the memory location specified by the source operand,
op2, to the memory location specified by the destination operand op1. This
instruction is repeatable. Note that, unlike for the other instructions, IDXi can
address the entire memory. This instruction does not affect the Mac
Condition Flags but modify the CPU Condition Flags as any other MOV
instruction.

CPU Condition
Flags

E Set if the value of op2 represents the lowest possible negative
number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared
otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set.
Cleared otherwise.

MAC Condition
Flags

N Not affected.

Z Not affected.

C Not affected.

SV Not affected.

E Not affected.

SL Not affected.

Addressing Modes Mnemonic Rep Format Bytes
CoMOV [IDXi⊗], [Rwm⊗] Yes D3 Xm 00 rrrr:rqqq 4

Examples Repeat 24 times CoMOV [IDX1+QX0], [R11+QR1]

; ((IDX1)) ← ((R11))

; (R11) ← (R11) + (QR1)

; (IDX1) ← (IDX1) + (QX0)

E Z V C N

* * - - *

N Z C SV E SL

- - - - - -

185/185

Notes

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously
supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems
without the express written approval of SGS-THOMSON Microelectronics.

1997 SGS-THOMSON Microelectronics - All rights reserved.

SGS-THOMSON Microelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco

The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

8

