Laser Diode in TO-220 Package with FC-connector 0.75 W cw (Class 4 Laser Product) **SPL 2Fxx** (SFH 4874x6) #### **Features** - Efficient radiation source for pulsed and cw-operation - Reliable InGa(Al)As strained quantum-well material - Small TO-220 package with efficient thermal coupling - Includes thermistor to control temperature/wavelength - Single emitting area 200 μm × 1 μm - FC-type connector for efficient fiber coupling ## **Applications** - Pumping solid state lasers (Nd: YAG, Yb: YAG, ...) - Medical applications - Laser soldering - Energy transmission - Testing and measuring applications | Туре | Old Type
(as of Oct. 1996) | Wavelength *) | Ordering Code | |----------|-------------------------------|---------------|---------------| | SPL 2F81 | SFH 487406 | 808 nm | Q62702-P368 | | SPL 2F85 | SFH 487426 | 850 nm | Q62702-P1678 | | SPL 2F94 | SFH 487446 | 940 nm | Q62702-P1631 | ^{*)} Other wavelengths in the range of 780 nm ... 980 nm are available on request. ## **Maximum Ratings** $(T_{\rm A} = 25 \, {\rm ^{\circ}C})$ | Parameter | Symbol | Values | | | Unit | |--|--------------|--------|------|------|------| | | | min. | typ. | max. | | | Output power (continuous wave) 1) | P_{opt} | _ | _ | 0.8 | W | | Output power (quasi-continuous wave) ¹⁾ $(t_p \le 150 \ \mu s, \ duty \ cycle \le 1\%)$ | P_{qcw} | _ | _ | 1.1 | W | | Reverse voltage | V_{R} | _ | _ | 3 | V | | Operating temperature | T_{op} | - 10 | | + 60 | °C | | Storage temperature | $T_{ m stg}$ | - 40 | | + 70 | °C | | Maximum soldering temperature, max. 5 s | T_{s} | _ | _ | 250 | °C | ¹⁾ Optical data refer to output after a fiber of 5 m length (core Ø 125 μm, 0.35 NA, attn. 8 db/km) ## **Diode Characteristics** $(T_A = 25 \, {}^{\circ}\text{C})$ | Parameter | | Symbol | Values | | | Unit | |---|----------------------------|---------------------------------------|----------------------|----------------------|----------------------|------| | | | | min. | typ. | max. | | | Emission wavelength 1) | | λ_{peak} | 803
840
935 | 808
850
940 | 813
860
945 | nm | | Spectral width (FWHM) 1) | | Δλ | 2 | | | nm | | Output power 2) | | P_{opt} | 0.75 | | W | | | Differential efficiency 2) | 808 nm
850 nm
940 nm | η | 0.60
0.60
0.55 | 0.70
0.70
0.60 | 0.85
0.80
0.70 | W/A | | Threshold current | 808 nm
850 nm
940 nm | I_{th} | 0.40
0.30
0.30 | 0.45
0.40
0.35 | 0.55
0.50
0.40 | А | | Operating current 1) | 808 nm
850 nm
940 nm | I_{op} | 1.3
1.3
1.4 | 1.5
1.5
1.6 | 1.8
1.8
1.8 | А | | Operating voltage 1) | | V_{op} | | 2.0 | • | V | | Differential series resistance | | $r_{\rm s}$ | | 0.2 | 0.4 | Ω | | Characteristic temperature (threshold) 3) | | T_0 | 150 | | K | | | Temperature coefficient of c | urrent | $\partial I_{\text{op}} / \partial T$ | 0.5 | | | %/K | | Temperature coefficient of wavelength 4) | | $\partial \lambda / \partial T$ | 0.25 | 0.27 | 0.30 | nm/K | | Thermal resistance (junction → heat sink) | | $R_{th\;JA}$ | | 10 | • | K/W | ¹⁾ Standard operating conditions refer to 0.75 W after 5 m of fiber (core \varnothing 125 μ m, 0.35 NA, attn. 8 db/km) ## **NTC Thermistor** | Parameter | Symbol | Typ. Values | Unit | |--|-----------|-------------|------| | Resistance at room temperature (25 °C) | R_{NTC} | 10 | kΩ | ²⁾ Optical power measurements refer to output from fiber ³⁾ Model for the thermal behavior of threshold current: $I_{th}(T_2) = I_{th}(T_1) \times \exp(T_2 - T_1)/T_0$ ⁴⁾ Depending on emission wavelength ## Optical Characteristics ($T_A = 25$ °C) # Radiant Power P_{opt} vs I_{F} ## Mode Spectrum I_{rel} vs λ (P_{opt} = 1.0 W) # NTC Thermistor $R_{\rm T}$ = $f(T_{\rm A})$ $R_{\rm T\,25\,^{\circ}C}$ = 10 k Ω ± 1% $$R_{\rm T.25\,^{\circ}C} = 10 \text{ k}\Omega \pm 1\%$$ ## **Notes for Operation** ## 1. Eye Protection This laser is a **Class 4 Laser** product. Refer to the relevant safety regulations for protection during handling and operation. #### 2. Overload Protection The specified values are valid as long as the diode has not been not overloaded. Voltage spikes from the power supply unit, even when applied for nanoseconds only, may cause irreversible damage to the laser diode. Such spikes may occur when the power supply is turned on or off, or they may reach the laser diode from the line via the coupling capacitance of electronically controlled devices. The power supply should therefore be provided with appropriate protection circuits. ### **Handling Notes** #### 1. Package To avoid electrostatic damage it is recommended to observe the same rules as for handling MOS-devices. #### 2. Mechanical Attachment - 2.1 Mounting hole (suitable for M 2.5) Because of the good thermal conductivity of the TO 220 base plate (copper) the heat loss is properly dissipated even if the component is attached on one side only. Some mounting techniques are shown below (Fig. 1 – 3). - 2.2 For exact positioning of the TO component and other parts, e.g. lenses, the TO 220 package can be attached with appropriate clamping devices or screws (max. M 2.5). ### 3. Soldering When soldering the TO base to a heat sink, do not exceed the following limits: max. soldering temperature: 125 °C max. soldering time: 1 min. ## **Mounting Techniques** Figure 1 Figure 2 Figure 3 ## **Package Outlines** (Dimensions in mm, unless specified).