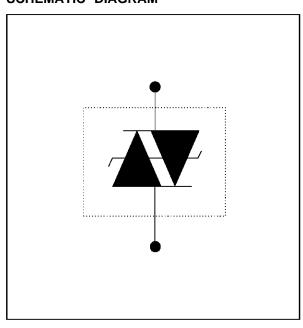


SMTHBT200

TRISIL FOR LINE CARD PROTECTION

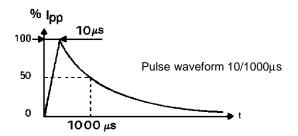
FEATURES

- BIDIRECTIONAL CROWBAR PROTECTION.
- PEAK PULSE CURRENT:
 - IPP = 75 A, $10/1000 \mu s$.
- HOLDING CURRENT = 150 mA min
- BREAKDOWN VOLTAGE = 200 V min.
- BREAKOVER VOLTAGE = 290 V max.


DESCRIPTION

This protection device has been especially designed to protect subscriber line cards using SLICS without integrated ring generators. The SMTHBT200 device protects ring generator relays against transient overvoltages.

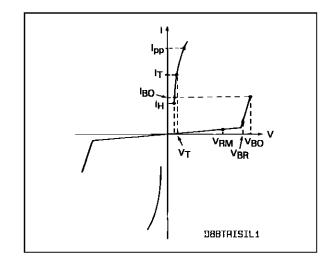
IN ACCORDANCE WITH FOLLOWING STANDARDS:


CCITT K17 - K20	{ 10/700 μs 5/310 μs	1.5 kV 38 A
VDE 0433	{ 10/700 μs 5/200 μs	2 kV 50 A
CNET	{ 0.5/700 μs 0.2/310 μs	1.5 kV 38 A

SCHEMATIC DIAGRAM

ABSOLUTE RATINGS (limiting values) (-40°C \leq T_{amb} \leq + 85°C)

Symbol	Parameter	Value	Unit	
lpp	Peak pulse current	10/1000 μs 8/20 μs	75 150	А
ITSM	Non repetitive surge peak on-state current	30	Α	
di/dt	Critical rate of rise of on-state current	100	A/μs	
dv/dt	Critical rate of rise of off-state voltage	5	KV/μs	
T _{stg} Tj	Storage and operating junction temperature rar	- 40 to + 150 150	°C °C	
TL	Maximum lead temperature for soldering during	260	°C	

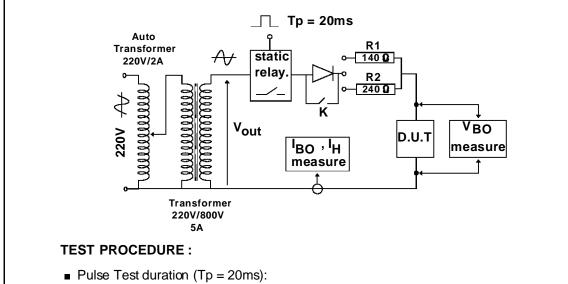


THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
R _{th} (j-l)	Junction to leads.	10	°C/W
R _{th} (j-a)	Junction-to-ambient.	75	°C/W

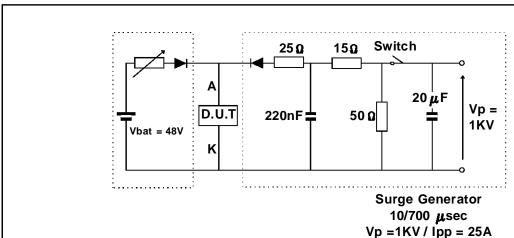
ELECTRICAL CHARACTERISTICS

Symbol	Parameter			
VRM	Stand-off voltage			
VBR	Breakdown voltage			
V _{BO}	Breakover voltage			
lн	Holding current			
VT	On-state voltage			
IBO	Breakover current			
lpp	Peak pulse current			


TYPE	I _{RM} @	V _{RM}	VBR	@ I R	V _{BO}	@	l _{BO}	Ιн	VT	С
	m	ax	min		max	min	max	min	max	max
						note1		note1	note2	note3
	μ Α	٧	٧	mA	V	mA	mA	mA	٧	рF
SMTHBT200	10	180	200	1	290	150	800	150	8	200

All parameters tested at 25°C, except where indicated

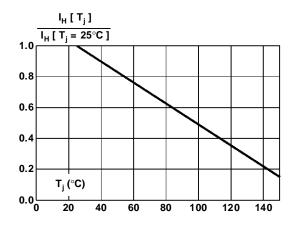
Note 1 : See the reference test circuit for $I_{H},\,I_{BO}$ and V_{BO} parameters.


Note 2 : Square pulse Tp = $500 \mu s - I_T = 5A$. Note 3 : $V_R = 1V$, F = 1MHz.

REFERENCE TEST CIRCUIT FOR I_H, I_{BO} and V_{BO} parameters :

- For Bidirectional devices = Switch K is closed
- For Unidirectional devices = Switch K is open.
- Vour Selection
 - Device with $V_{BR} \le 150 \text{ Volt}$
 - Vout = 250 V_{RMS}, $R_1 = 140 \Omega$.
 - Device with V_{BR} ≥ 150 Volt
 - Vout = 480 V_{RMS}, R_2 = 240 Ω .

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT =GO - NOGO TEST.



This is a GO-NOGO Test which allows to confirm the holding current $(I_{\mathbf{H}})$ level in a functional test circuit. This test can be performed if the reference test circuit can't be implemented.

TEST PROCEDURE:

- 1) Adjust the current level at the I_H value by short circuiting the AK of the D.U.T.
 - 2) Fire the D.U.T with a surge Current : Ipp = 25A, $10/700 \mu s$.
 - 3) The D.U.T will come back to the OFF-State within a duration of 50 ms max.

Figure 1: Relative variation of holding current versus junction temperature.

Figure 3: Peak on state voltage versus peak on state current (typical values).

Figure 2: Non repetitive surge peak on state current versus number of cycles (1 cycle = 20

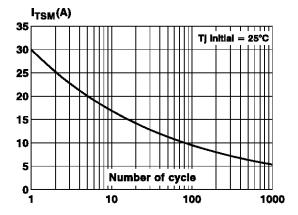
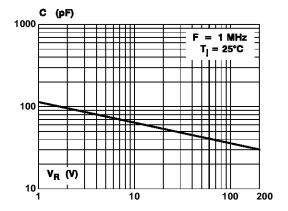
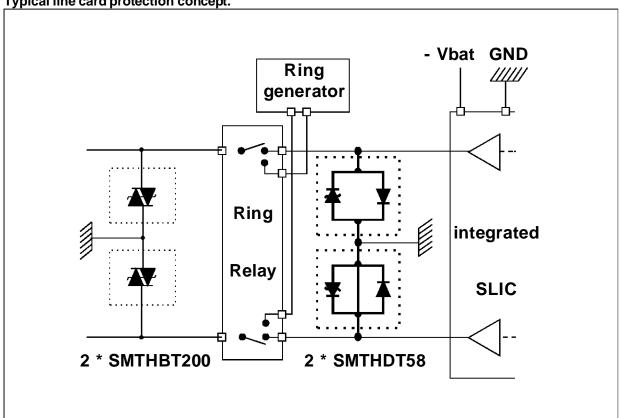
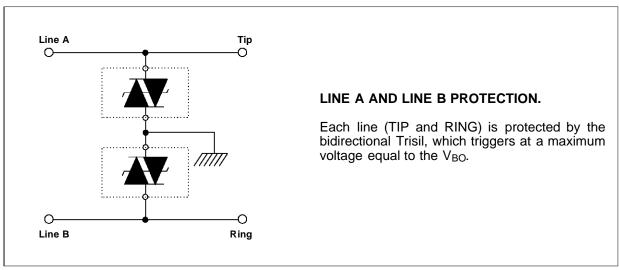
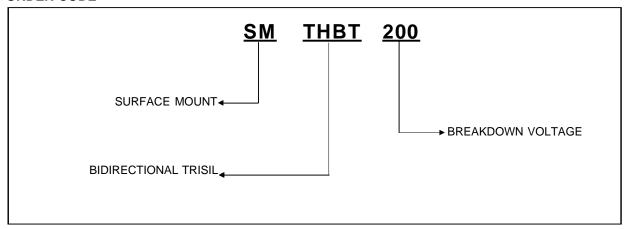




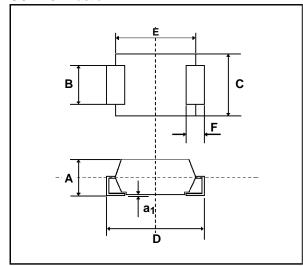
Figure 5 : Capacitance versus reverse applied voltage (typical values).



APPLICATION CIRCUIT


Typical line card protection concept.

FUNCTIONAL DESCRIPTION


ORDER CODE

MARKING = Logo, WO4

PACKAGE MECHANICAL DATA.

SOD 15 Plastic.

Ref	Millim	neters	Inches		
	min	max	min	max	
Α	2.5	3.1	0.098	0.122	
a ₁	-	0.2	-	0.008	
В	2.9	3.1	0.114	0.122	
С	4.8	5.2	0.190	0.200	
D	7.6	8.0	0.300	0.315	
Е	6.3	6.6	0.248	0.259	
F	1.3	1.7	0.051	0.067	

Packaging: Standard packaging is in film.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

