D.S. 4410 1.5

SL6679

DIRECT CONVERSION FSK DATA RECEIVER

The SL6679 is an advanced Direct Conversion FSK Data Receiver for operation up to 450MHz. The device integrates all functions to convert a binary FSK modulated RF signal into a demodulated data stream.

GEC PLESSEY

Adjacent Channel Rejection is provided using tuneable gyrator filters. RF and Audio AGC functions assist operation when large interfering signals are present and an Automatic Frequency Control (AFC) function is provided to extend Centre Frequency Acceptance.

FEATURES

- Very low power operation from single cell
- Superior sensitivity
- Operation at 512, 1200 and 2400 baud
- On-chip 1Volt regulator
- 1mm height miniature package offering
- Automatic frequency control function
- Programmable post detection filter
- AGC detection circuitry
- Powerdown function
- Battery strength indicator

APPLICATIONS

- Pagers: including Credit card, PCMCIA and Watch pagers.
- Low data rate receivers e.g. Security Systems

ABSOLUTE MAXIMUM RATINGS

Storage temperature $-55^{\circ}C$ to $+150^{\circ}C$ Operating temperature $-10^{\circ}C$ to $+55^{\circ}C$ The absolute maximum voltage on any pin with respect to anyother pin is +4V, subject to the following restrictions.Most negativevoltage on any pin -0.5V with respect to ground.

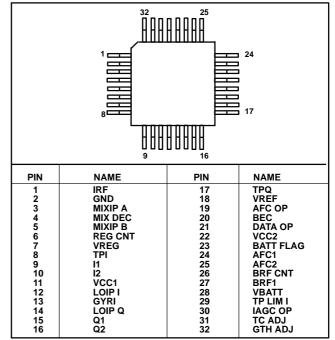


Fig. 1 Pin connections

Pin 3, MIXIP Pin 5, MIXIPB Pin 12, LOIPI Pin 14, LOIPB magnitude of current<5mA magnitude of current<5mA magnitude of current<5mA magnitude of current<5mA

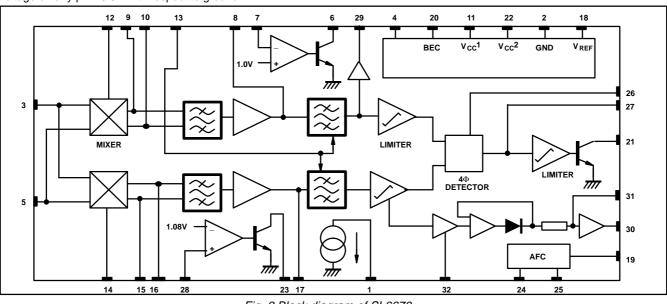


Fig. 2 Block diagram of SL6679

ELECTRICAL CHARACTERISTICS These characteristics are guaranteed over the following conditions unless otherwise stated. $T_{amb} = 25^{\circ}C$ Vcc1=1.3V, Vcc2=2.7V

		Value				
Characteristics	Pin	Min	Тур	Max	Units	Conditions
Vcc1 – Supply voltage	11	0.95	1.3	2.7	V	$Vcc1 \leq Vcc2 - 0.8volts$
Vcc2 – Supply voltage	22	1.9	2.7	3.5	V	
Icc1 – Supply current	11	1.20	1.60	2.2	mA	Including IRF
Icc2 – Supply current	22	260	390	490	μΑ	
1 volt regulator	7	0.95	1.0	1.05	V	l load =3mA. Ext PNP. β > = 100, V _{CE} = 0.1 V
1 volt regulator load current	7	0.25		3	mA	External PNP β > = 100, V _{CE} =0.1 V
LNA current source, IRF	1	375	500	700	μΑ	PTAT, voltage on Pin 1 = 0.3V and 1.3V
Voltage reference	18	1.15	1.25	1.31	V	Typ. temp co. +0.1mV/°C
Voltage reference source current	18			20	μΑ	
Voltage reference sink current	18			1.0	μΑ	
Data amplifier						
Data O/P sink current	21	25			μΑ	Output logic low Pin 21 voltage = 0.3V
Data O/P leakage current	21			1.0	μΑ	Output logic high Pin 21 voltage = Vcc2.
Output mark space ratio	21	7:9		9: 7		Preamble at 1200 baud $\Delta f = 4$ kHz Pin 26 = 0V BRF capacitor = 560pF Data Op pull up resistor = 200k Ω
Battery Economy						
Power down Icc1	11		0.5	10	μA	Pin 20=Logic low
Power down Icc2	22		2.0	10	μA	Pin 20=Logic low
Input logic high	20	Vcc2-0.3		Vcc2	V	Powered up
Input logic low	20	0		0.3	V	Powered down
Input current	20	-1.0		1.0	μA	Powered up
Input current	20	-1.0		1.0	μΑ	Powered down
Battery Flag						
Battery flag trigger point	28, 23	1.04	1.08	1.12		Current sunk by Pin 23 = $1\mu A$
Battflag sink current	28, 23			1.0	μA	Pin 28 voltage = 1.04V
Battflag sink current	28, 23	1.0			μA	Pin 28 voltage = 1.12V
Battflag sink current	28, 23	25			μΑ	Pin 28 voltage = 1.14V
VBatt input voltage	28			2.0	V	
VBatt input current	28	-1.0		1.0	μA	VBatt = 1.14V
VBatt input current	28	-1.0		1.0	μΑ	VBatt = 1.04V

ELECTRICAL CHARACTERISTICS (cont) These characteristics are guaranteed over the following conditions unless otherwise stated. T_{amb} = 25°C Vcc1=1.3V, Vcc2=2.7V

		Value				
Characteristics	Pin	Min	Тур	Мах	Units	Conditions
Mixers						
LO DC bias voltage	12, 14		Vcc1		V	
Gain to TPI	3,5,8, 12	38	42	46	dB	LO inputs (12, 14) driven in quadrature 45mVrms @ 450MHz, cw. Mixer inputs (3, 5) driven differentially 0.45mVrms @ 450.004MHz, cw.
Gain to TPQ	3,5, 14,17	38	42	46	dB	As Gain to TPI
Match of Gain to TPI and TPQ	3,5,8, 12,14, 17	-1	0	+1	dB	As Gain to TPI
Audio AGC						
Max Audio AGC sink current	30		45		μΑ	TPI, TPQ signals limiting
Audio AGC leakage current	30			1	μΑ	No signal applied
AFC						
AFC DC current, 4.5kHz IF, I _{afc4k5}	19		0.0		μΑ	$F_{C} = F_{LO} + 4.5 \text{kHz}$, cw
AFC DC current, 2.5kHz IF	19	I _{afc4k5} +0.2	I _{afc4k5} +0.7		μΑ	$F_{C} = F_{LO} + 2.5 \text{kHz,cw}$
AFC DC current, 6.5KHz IF	19		I _{afc4k5} –0.9	I _{afc4k5} –0.2	μΑ	$F_{C} = F_{LO}$ +6.5kHz, cw
Bit Rate Filter Control						
Input logic high	26	Vcc2-0.3		Vcc2	V	2400 baud
Input logic low	26	0		0.1	V	1200 baud
Tristate input current window	26	-0.4		+0.4	μΑ	512 baud
Output current BRF1	27		3.5		μΑ	Pin 26 logic High
Output current BRF1	27		1.7		μA	Pin 26 logic Low
Output current BRF1	27		0.74		μA	Pin 26 logic tristate
Input high current	26	-7.5		15	μA	
Input low current	26	-7.5		+7.5	μA	

ELECTRICAL CHARACTERISTICS Characteristics apply over the range V_{cc}1=1.04V to 2.0V, V_{cc}2=2.3V to 3.2V. V_{cc}1<V_{cc}2. -0.8V, temperature=-10C to +55C, unless otherwise stated. Characteristics are tested at room temperature only and are guaranteed by characterisation test or design.

			Value			
Characteristics	Pin	Min	Тур	Max	Units	Conditions
Vcc1 – Supply voltage	11	0.95	1.3	2.7	V	$Vcc1 \leq Vcc2 - 0.8volts \geq 25^{\circ}C$ only
Vcc2 – Supply voltage	22	1.9	2.7	3.5	V	
Icc1 – Supply current	11		1.60	2.4	mA	Including IRF
Icc2 – Supply current	22		350	510	μΑ	
1 volt regulator	7	0.93	1.0	1.05	V	l load =3mA. Ext PNP. β > = 100, V _{CE} = 0.1 V
1 volt regulator load current	7	0.25		3	mA	External PNP β > = 100, V _{CE} =0.1 V
LNA current source, IRF	1	375	500	800	μΑ	PTAT, voltage on Pin 1 = 0.3V and 1.3V
Voltage reference	18	1.13	1.25	1.33	V	Typ. temp co. +0.1mV/°C
Voltage reference source current	18			18	μΑ	
Voltage reference sink current	18			0.8	μΑ	
Turn on time			9		ms	Stable data O/P when 3dB above sensitivity. C_{VREF} = $2.2 \mu F$
Turn off Time			2		ms	Fall to 10% of steady state I_{CC1} current, C_{VREF} = 2.2 μF
Data amplifier						
Data O/P sink current	21	22			μΑ	Output logic low Pin 21 voltage = 0.3V
Data O/P leakage current	21			1.5	μΑ	Output logic high Pin 21 voltage = Vcc2.
Output mark space ratio	21	7: 9		9: 7		Preamble at 1200 baud Δf = 4kHz Pin 26 = 0V BRF capacitor = 560pF Data Op pull up resistor = 200k Ω
Battery Economy						
Power down Icc1	11		0.5	12	μΑ	Pin 20=Logic low
Power down Icc2	22		2	12	μΑ	Pin 20=Logic low
Input logic high	20	Vcc2-0.3		Vcc2	V	Powered up
Input logic low	20	0		0.3	V	Powered down
Input current	20	-1.5		1.5	μA	Powered up
Input current	20	-1.5		1.5	μΑ	Powered down
Battery Flag						
Battery flag trigger point	28, 23	1.04	1.08	1.12		Current sunk by Pin 23 = 1µA
Battflag sink current	28, 23			2	μΑ	Pin 28 voltage = 1.04V
Battflag sink current	28, 23	2			μΑ	Pin 28 voltage = 1.12V
Battflag sink current	28, 23	20			μΑ	Pin 28 voltage = 1.14V
VBatt input voltage	28			2.0	V	
VBatt input current	28	-1.5		1.5	μA	VBatt = 1.14V
VBatt input current	28	-1.5		1.5	μA	VBatt = 1.04V
•	-	-	1	-		1

ELECTRICAL CHARACTERISTICS (cont) Characteristics apply over the range V_{cc} 1=1.04V to 2.0V, V_{cc} 2=2.3V to 3.2V. V_{cc} 1< V_{cc} 2. -0.8V, temperature=-10C to +55C, unless otherwise stated. Characteristics are tested at room temperature only and are guaranteed by characterisation test or design.

	Dim		Value			
Characteristics	Pin	Min	Тур	Max	Units	Conditions
Mixers						
LO DC bias voltage	12, 14		Vcc1		V	
Gain to TPI	3,5,8,1 2	35	42	46	dB	LO inputs (12, 14) driven in quadrature 45mVrms @ 450MHz, cw. Mixer inputs (3, 5) driven differentially 0.45mVrms @ 450.004MHz, cw.
Gain to TPQ	3,5, 14,17	35	42	46	dB	As Gain to TPI
Match of Gain to TPI and TPQ	3,5,8,1 2,14,1 7	-1.5	0	+1.5	dB	As Gain to TPI
Audio AGC						
Max Audio AGC sink current	30	30	45	70	μΑ	TPI, TPQ signals limiting
Audio AGC leakage current	30			1	μΑ	No signal applied
AFC						
AFC DC current, 4.5kHz IF, I _{afc4k5}	19		0.0		μΑ	$F_{C} = F_{LO}$ +4.5kHz, cw
AFC DC current, 2.5kHz IF	19	I _{afc4k5} +0.1	I _{afc4k5} +0.7		μΑ	$F_{C} = F_{LO} + 2.5 \text{kHz,cw}$
AFC DC current, 6.5KHz IF	19		I _{afc4k5} –0.9	I _{afc4k5} –0.1	μΑ	$F_{C} = F_{LO}$ +6.5kHz, cw
Bit Rate Filter Control						
Input logic high	26	Vcc2-0.3		Vcc2	V	2400 baud
Input logic low	26	0		0.1	V	1200 baud
Tristate input current window	26	-0.4		+0.4	μΑ	512 baud
Output current BRF1	27		3.5		μΑ	Pin 26 logic High
Output current BRF1	27		1.7		μΑ	Pin 26 logic Low
Output current BRF1	27		0.74		μΑ	Pin 26 logic tristate
Input high current	26	-10		+10	μΑ	
Input low current	26	-10		+10	μA	

RECEIVER CHARACTERISTICS (450MHz) Characteristics apply over the range Vcc1=1.04V to 2.0V, Vcc2=2.3V to 3.2V. Vcc1<Vcc2.-0.8V, temperature=-10C to +55C, unless otherwise stated. Characteristics are not tested but are guaranteed by characterisation test or design. Carrier frequency 450MHz, BER 1 in 30, AFC open loop. All measurements using GPS characterisation circuit. The LNA gain is set such that an RF signal of –73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p–p at TPI and TPQ. LNA noise figure < 2dB. See Application Note AN137 for details of Test method.

		Value		11	
Characteristics	Min	Тур	Max	Units	Conditions
Sensitivity		-128		dBm	512 bps ∆f=4.5kHz
		-126	-122	dBm	1200 bps ∆f=4.0kHz
		-123	-119	dBm	2400bps ∆f=4.5kHz
					LO=-15dBm
Intermodulation, IP3		57		dB	512 bps ∆f=4.5kHz
	50	55		dB	1200 bps ∆f=4.0kHz
	48	53		dB	2400bps ∆f=4.5kHz
					LO=-15dBm
					Channel spacing 25kHz
Adjacent channel		70		dB	512 bps ∆f=4.5kHz
	62.5	69		dB	1200 bps ∆f=4.0kHz
	60	66		dB	2400bps ∆f=4.5kHz
					LO=-15dBm
					Channel spacing 25kHz
Deviation acceptance		+1.9		kHz	512 bps ∆f=4.5kHz No AFC
(AFC not connected)		-2.5		kHz	512 bps Δf =4.5kHz No AFC
	+1.8	+3.0	+4.6	kHz	1200 bps ∆f=4.0kHz No AFC
	-2.7	-2.3	-1.7	kHz	1200 bps ∆f=4.0kHz No AFC
	+1.7	+2.5	+4.6	kHz	2400bps ∆f=4.5kHz No AFC
	-3	-2.3	-1.7	kHz	2400bps ∆f=4.5kHz No AFC
Centre frequency acceptance		±2.8		kHz	512 bps ∆f=4.5kHz No AFC
(AFC not connected)	±2.0	±2.5	±2.9	kHz	1200 bps ∆f=4.0kHz No AFC
	±2.0	±2.5	±3.2	kHz	2400bps ∆f=4.5kHz No AFC
AFC Capture Range		±4		kHz	512 bps Δf =4.5kHz All at sensitivity +3db or above
(AFC closed loop)		±3.5		kHz	1200 bps Δf =4.0kHz All at sensitivity +3db or above
		±4		kHz	2400bps Δf =4.5kHz All at sensitivity +3db or above

ELECTRICAL CHARACTERISTICS (280MHz)

Characteristics apply over the range Vcc1=1.04V to 2.0V, Vcc2=2.3V to 3.2V. Vcc1<Vcc2.–0.8V, temperature=–10C to +55C, unless otherwise stated. Characteristics are not tested but are guaranteed by characterisation test or design. Carrier frequency 280MHz, BER 1 in 30, AFC open loop. All measurements using GPS characterisation circuit. The LNA gain is set such that an RF signal of –73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p–p at TPI and TPQ. LNA noise figure < 2dB. See Application Note AN137 for details of Test method.

Sensitivity		-129		dBm	512 bps ∆f=4.5kHz
	-128	-127	-124	dBm	1200 bps ∆f=4.0kHz
	-127	-124	-121	dBm	2400bps ∆f=4.5kHz
					LO=–15dBm
Intermodulation, IP3		57		dB	512 bps ∆f=4.5kHz
	52	56	60	dB	1200 bps Δf =4.0kHz
	49	53.5	57	dB	2400bps ∆f=4.5kHz
					LO=–15dBm
Adjacent channel		72		dB	512 bps ∆f=4.5kHz
	62.5	69	80	dB	1200 bps ∆f=4.0kHz
	60	60	77	dB	2400bps ∆f=4.5kHz
					LO=-15dBm
					Channel spacing 25kHz
Deviation acceptance		+1.9		kHz	512 bps ∆f=4.5kHz No AFC
(AFC not connected)		-2.5		kHz	512 bps ∆f=4.5kHz No AFC
	+1.8	+3.0	+4.6	kHz	1200 bps Δ f=4.0kHz No AFC
	-3.8	-2.9	-1.7	kHz	1200 bps ∆f=4.0kHz No AFC
	+1.7	+2.5	+4.6	kHz	2400bps ∆f=4.5kHz No AFC
	-3.0	-2.3	-1.7	kHz	2400bps ∆f=4.5kHz No AFC
Centre frequency acceptance		±3.1		kHz	512 bps ∆f=4.5kHz No AFC
(AFC not connected)	±2.0	±2.9	±3.1	kHz	1200 bps Δf =4.0kHz No AFC
	±2.0	±2.5	±3.2	kHz	2400bps ∆f=4.5kHz No AFC
AFC capture range		±4		kHz	512 bps Δf =4.5kHz All at sensitivity +3dB or above
(AFC Closed Loop)		±3.5		kHz	1200 bps ∆f=4.0kHz All at sensitivity +3dB or above
		±4		kHz	2400bps ∆f=4.5kHz All at sensitivity +3dB or above
1MHz Blocking		75		dB	512bps ∆f=4.5kHz
	67	75	78	dB	1200bps ∆f=4.0kHz
	65	73	76	dB	2400bps ∆f=4.5kHz LO=–15dBm
Mark: Space amplitude modulation acceptance	20	23		dB	2400bps R14 = 120Kohm Room temp only

Note: The Mark:Space amplitude acceptance is the maximum amplitude ratio which can occur, (e.g. due to simulcast conditions), with 2400bps, using a POCSAG decoder, with R14=120K, to achieve an 80% call rate, with the

lower amplitude set at a sensitivity plus 20dB. The maxima and minima of the amplitude modulation correspond to the positive and negative, (or vice versa), frequency shifts of the FSK modulation.

OPERATION OF SL6679

Low Noise Amplifier

To achieve optimum performance it is necessary to incorporate a Low Noise RF Amplifier at the front end of the receiver. This is easily biased using the on-chip voltages and current source provided.

All voltages and current sources used for bias of the RF amplifier, receiver and mixers should be RF decoupled using 1nF capacitors.

The receiver also requires a stable Local Oscillator at the required channel frequency.

Local Oscillator

The Local Oscillator signal is applied to the device in phase quadrature. This can be achieved with the use of two RC networks operating at their $-3dB/45^{\circ}$ transfer characteristic. The RC characteristics for I and Q channels are combined to give a full 90° phase differential between the LO ports of the device. Each LO port of the device also requires an equal level of drive from the Oscillator. This is achieved by forming the two RC networks into a power divider.

Gyrator Filters

The on-chip filters include an adjustable gyrator filter. This may be adjusted by changing the value of the resistor connected between Pin 13 and GND. This allows adjustment of the filters' cut off frequency and allows for compensation for possible process variations.

Audio AGC (See Fig. 4)

The Audio AGC consists of a current sink which is controlled by the audio (baseband) signal. It has three parameters that may be controlled by the user. These are the Attack (turn on) time, Decay (duration) time and Threshold level.

The Attack time is simply determined by the value of the external capacitor connected to "(TCADJ)". The external capacitor is in series with an internal 100kOhm resistor and the time constant of this circuit dictates the attack time of the AGC.

i.e. $T_{attack} = 100k^*C_{18}$

The decay time is determined by the external resistor connected in parallel to the capacitor $C_{tc}.$ The Decay time is simply T_{decay} =R_{17 \, X} C_{18}

When a large audio (baseband) signal is incident on the input to the AGC circuit, the variable current source is turned on. This causes a voltage drop across R_{13} . The voltage potential between V_{REF} and the voltage on Pin 31 causes a current to flow in Pin 30. This charges up C_{18} through the 100K internal resistor. As the voltage across the capacitor increases, a current source is turned on and this sinks current from Pin 32.

The current sink on Pin 32 can be used to drive the external AGC circuit by causing a PIN diode to conduct, reducing the

signal to the RF amplifier.

RF AGC

The RF AGC is an automatic gain control loop that protects the mixer's RF inputs, Pins 3 and 5, from large out of band RF signals.

The loop consists of an RF received signal strength

indicator which detect on the signal at the inputs of the mixers. This RSSI signal is then used to control the LNA current source (Pin 1)

Regulator

The on-chip regulator should be used in conjunction with a suitable PNP transistor to achieve regulation. As the transistor forms part of the regulator feedback loop the transistor should exhibit the following characteristics:-

$$H_{FE} > 100$$
 for $V_{CE} > = 0.1 V$.

If no external pnp transistor is used, the maximum current sourcing capability of the regulator is limited to $30\mu A$.

Automatic Frequency Control (See Fig. 5)

The Automatic Frequency Control consists of a detection circuit which gives a current output at AFC OP whose magnitude and sign is a function of the difference between the local oscillator (F_{LO}) and carrier frequencies (F_C). This output current is then filtered by an off chip integrating capacitor. The integrator's output voltage is used to control a voltage control crystal oscillator. This closes the AFC feedback loop giving the Automatic frequency control function.

For an FSK modulated incoming RF carrier, the AFC OP current's polarity is positive, i.e. current is sourced, for $F_{LO} < F_C$ $< F_{LO} + 4K$ and negative, i.e. current is sunk, for $F_{LO} > F_C > F_{LO} - 4K$. The magnitude of the AFC OP current is a function of frequency offset and the transmitted data's bit stream. If the carrier frequency, (F_C), equals the local oscillator frequency, (F_{LO}), then the magnitude of the current is zero.

BIT RATE FILTER CONTROL

The logic level on Pin 26 controls the cut off frequency of the 1st order bit rate for a given bit rate filter capacitor at Pin 27. This allows the cut off frequency to be changed between F_C , $2xF_C$ and $0.43xF_C$ through the logic level on Pin 26.

This function is achieved by changing the value of the current in the 4 Φ detector's output stage. A logic zero (0V to 0.1V) on Pin 26 gives a cutoff frequency of F_C , a logic one (Vcc2 –0.3 to Vcc2) gives a cut off frequency of $2xF_C$ and an open circuit connection to Pin 26 gives a cutoff frequency of 0.43xF_C.

Pin Number	Pin Name	Pin Description
1	IRF	LNA current source
2	GND	Ground
3	MIXIP A	Mixer input A
4	MIX DEC	Mixer biasing decouple
5	MIXIP B	Mixer input B
6	REG CNT	1V regulator control external PNP drive
7	VREG	1V regulator output voltage
8	TPI	I channel pre-gyrator filter test-point.
9	l1	Mixer output, I channel
10	12	Mixer output I channel
11	VCC1	Supply connection
12	LOIP I	LO input channel I
13	GYRI	Gyrator current adjust pin
14	LOIP Q	LO input channel Q
15	Q1	Mixer output, Q channel
16	Q2	Mixer output, Q channel
17	TPQ	Q channel pre-gyrator filter test point
18	VREF	Reference voltage
19	AFC OP	AFC output
20	BEC	Battery economy control
21	DATA OP	Data output pin
22	VCC2	Supply Connection
23	BATT FLAG	Battery flag output
24	AFC1	AFC characteristic defining pin
25	AFC2	AFC characteristic defining pin
26	BRF CNT	Bit rate filter control
27	BRF1	Bit rate filter 1, output from detector
28	VBATT	Battery flag input voltage
29	TP LIM I	I channel limiter (post gyrator filter) test point, output only
30	IAGC OP	Audio AGC output current
31	TC ADJ	Audio AGC time constant adjust
32	GTH ADJ	Audio AGC gain and threshold adjust. RSSI signal indicator

Fig.3 Pin description of SL6679

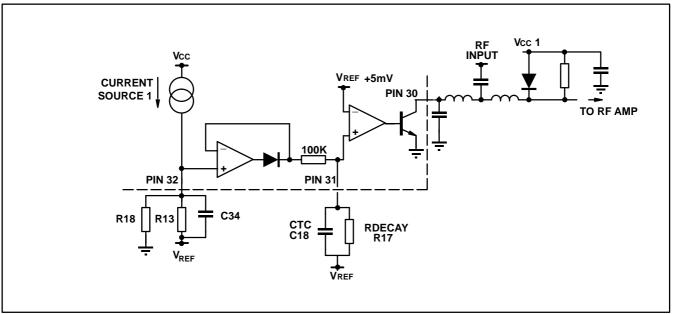


Fig.4 AGC schematic

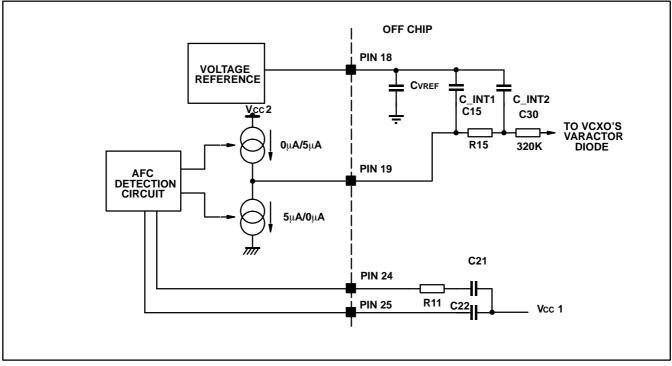
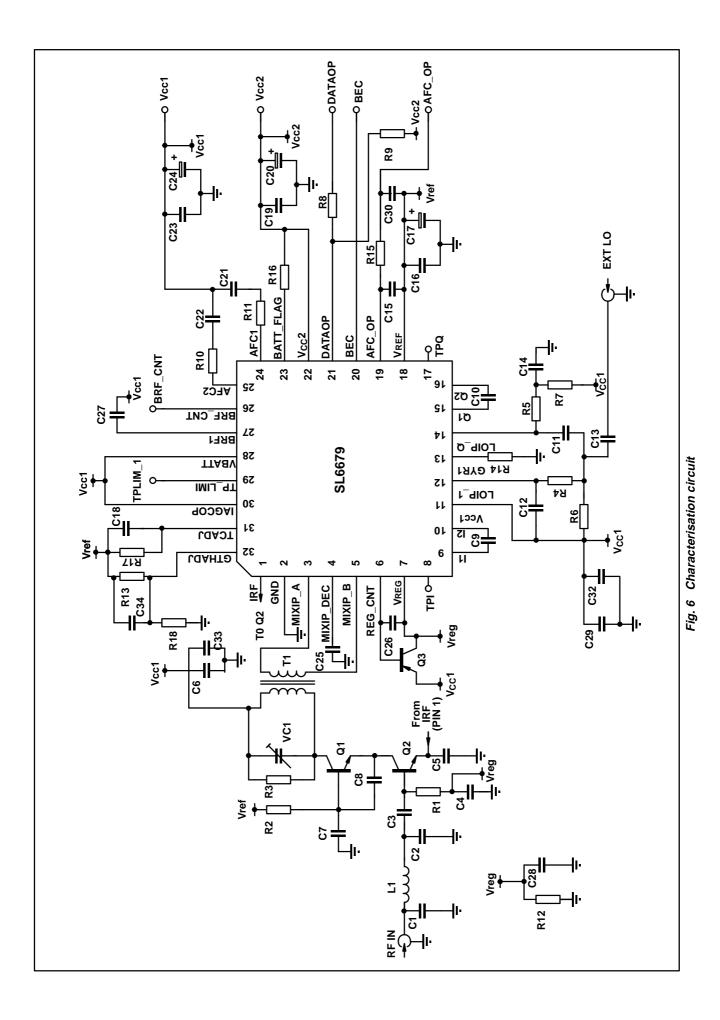



Fig.5 AFC schematic

AFC Characteristic Defining Components

Peak Deviation	Baud Rate	Components
	(bps)	C22 C21 R11
3.5kHz	512, 1200, 2400	750p 2.0n 15k
4kHz	512, 1200, 2400	560p 1.5n 15k
4.5kHz	512, 1200, 2400	510p 1.3n 15k
5kHz	512, 1200, 2400	470p 1.2n 15k
5.5kHz	512, 1200, 2400	430p 1.1n 15k
40		

COMPONENT LIST for 280MHz CHARACTERISATION BOARD

Resisto	rs	C15	1n
R1	4k7	C16	1n
R2	4k7	C17	2μ2
R3	1K5	C18	100n
R4	100	C19	1n
R5	100	C20	2μ2
R6	100	C21	1n5
R7	100	C22	560pf
R8	430k	C23	1n .
R9	220k	C24	2μ2
R10	short circuit	C25	100n
R11	15k	C26	100n
R12	2k	C27	560p
R13	39k	C28	1n
R14	180k	C29	1n
R15	430k	C30	1n
R16	220k	C32	100n
R17	220k	C33	100n
R18	3.3M	C34	100n
		VC1	3–10p

Capacitors

oupuonon	3	
Ċ1	12p	Inductors
C2	open circuit	
C3	220n	L1 56n
C4	1n	
C5	1n	Active Components
C6	1n	
C7	1n	Q1 Toshiba 2SC5065
C8	3p3	Q2 Toshiba 2SC5065
C9	4n7	Q3 FMMT589 (Zetex ZTX550)
C10	4n7	
C11	4p7	Misc
C12	5p6	
C13	1n	T1 30nH 1:1
C14	1n	coilcraft M1686–A

COMPONENT LIST for 450MHz CHARACTERISATION BOARD

	JIERISATION BOARD
ors	C15
4k7	C16
4k7	C17
1k8	C18
100	C19
100	C20
100	C21
100	C22
430k	C23
220k	C24
short circuit	C25
15k	C26
2k	C27
39k	C28
180k	C29
430k	C30
220k	C32
220k	C33
3.3M	C34
	VC1
	4k7 4k7 1k8 100 100 100 200 short circuit 15k 2k 39k 180k 430k 220k

Capacitors

Capacitor	5		
C1	open circuit	Inductors	
C2	open circuit		
C3	1n	L1	47n
C4	1n		
C5	1n	Active Com	ponents
C6	1n		-
C7	1n	Q1	Philips BFT25A
C8	3p3	Q2	Philips BFT25A
C9	4n7	Q3	FMMT589 (Zetex ZTX550)
C10	4n7		, , ,
C11	3p9	Misc	
C12	3p3		
C13	1n	T1	16nH 1:1
C14	1n		coilcraft Q4123–A

1n 1n 2μ2 100n

1n 2μ2 1n5 560p 1n 2μ2 100n 100n 560p

1n 1n 1n 100n

100n 100n 3–10p

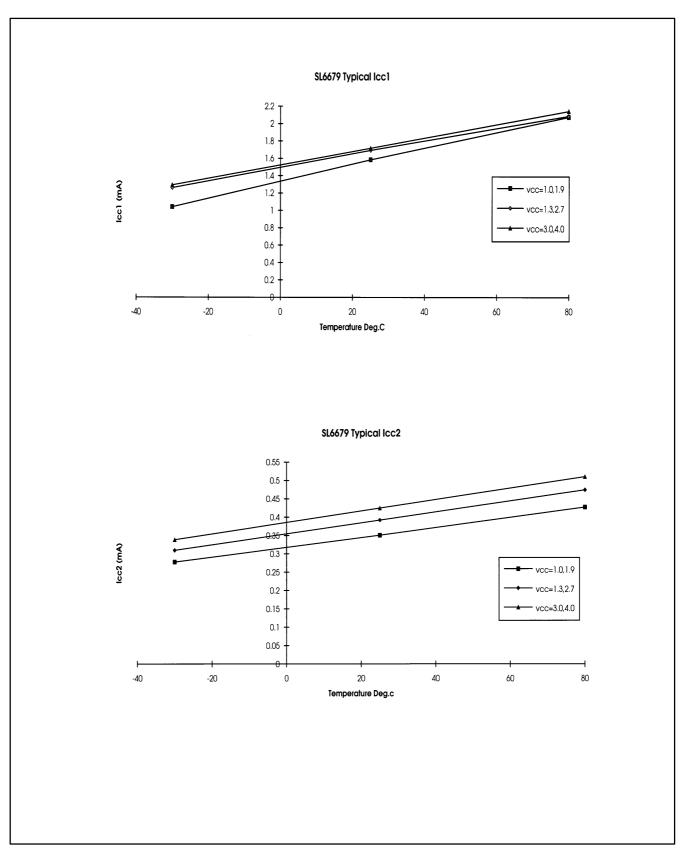


Fig. 7. Typical DC parameters vs supply and temperature.

Conditions:– Standard GPS characterisation board. Icc1 includes IRF LNA current (typ. 500µA) but does not include the regulator load current. The Audio AGC and RF AGC are both inactive. Icc2 is measured with BATTFLAG and DATA OP high, Fc = 282MHz. VBATT connected to Vcc1.

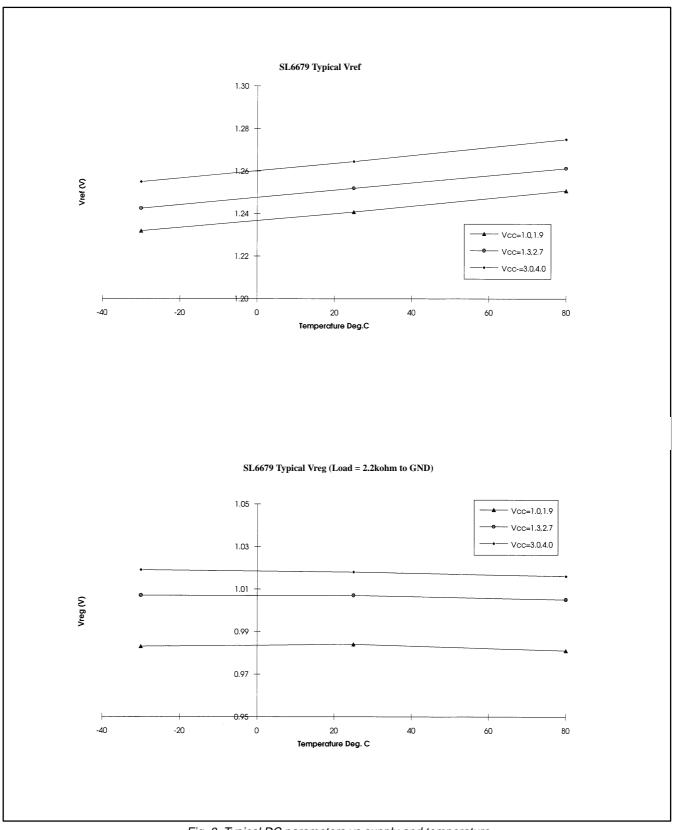


Fig. 8. Typical DC parameters vs supply and temperature.

Conditions:- Standard GPS characterisation board. Icc1 includes IRF LNA current (typ. 500µA) but does not include the regulator load current. The audio AGC and RF AGC are both inactive. Icc2 is measured with BATTFLAG and DATA OP high, Fc = 282MHz. VBATT connected to Vcc1.

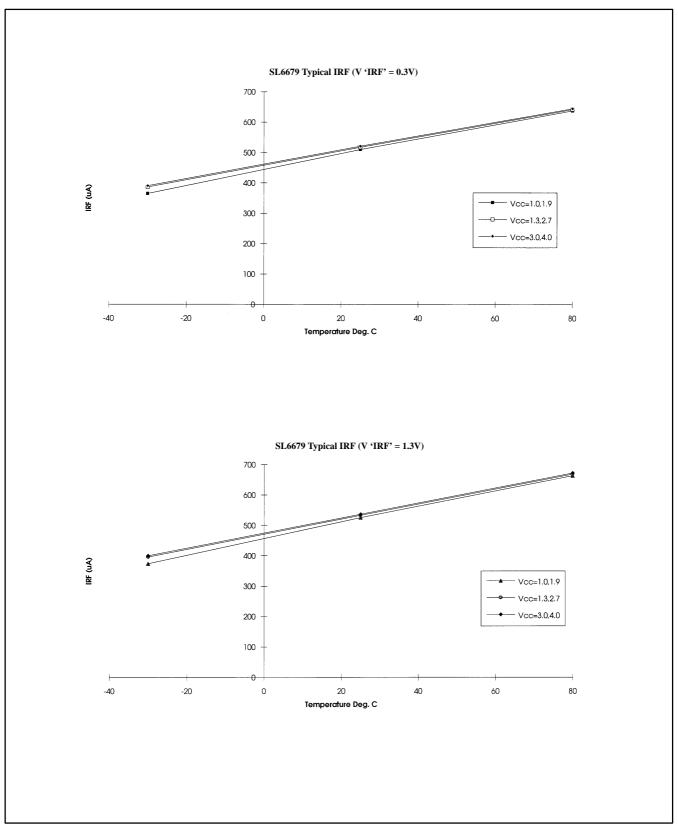


Fig. 9 Typical DC parameters vs supply and temperature.

Conditions:- Standard GPS characterisation board. Icc1 includes IRF LNA current (typ. 500μA) but does not include the regulator load current. The audio AGC and RF AGC are both inactive. Icc2 is measured with BATTFLAG and DATA OP high, Fc = 282MHz. VBATT connected to Vcc1.

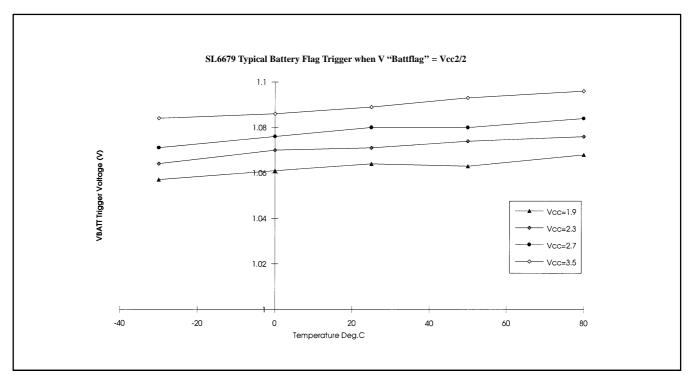


Fig. 10. Typical DC parameters vs supply and temperature.

Conditions:- Standard GPS characterisation board. Icc1 includes IRF LNA current (typ. 500μ A) but does not include the regulator load current. The audio AGC and RF AGC are both inactive. Icc2 is measured with BATTFLAG and DATA OP high, Fc = 282MHz. VBATT connected to Vcc1.

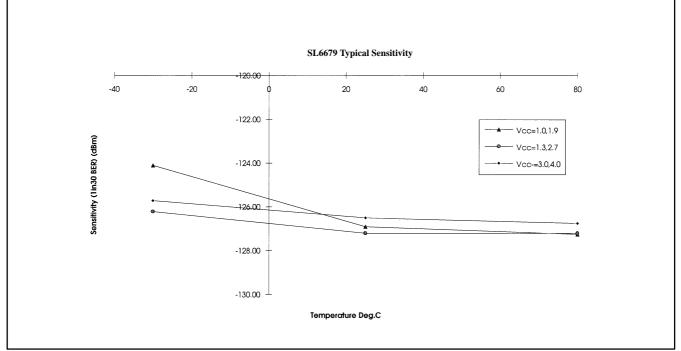
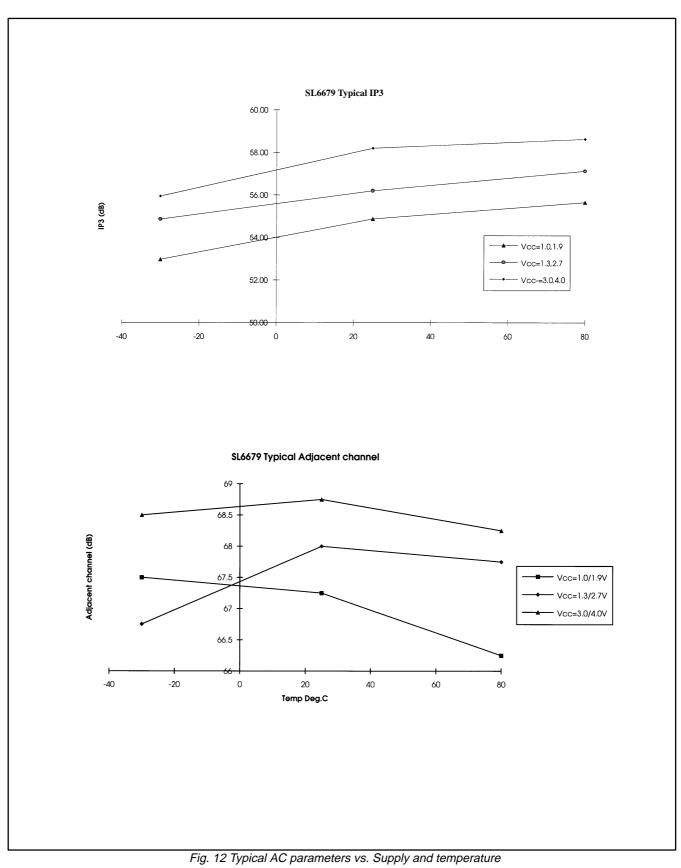



Fig. 11 Typical AC parameters vs supply and temperature.

Conditions:- 282MHz GPS characterisation board

i.e. Carrier frequency 282MHz, 1200bps baud rate, 4kHz peak deviation frequency, BER 1in 30. The LNA gain is set such that an RF signal of –73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p–p at TPI and TPQ.

Conditions:- 282MHz GPS characterisation board i.e. Carrier frequency 282MHz, 1200bps baud rate, 4kHz peak deviation frequency, BER 1in 30. The LNA gain is set such that an RF signal of -73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p-p at TPI and TPQ.

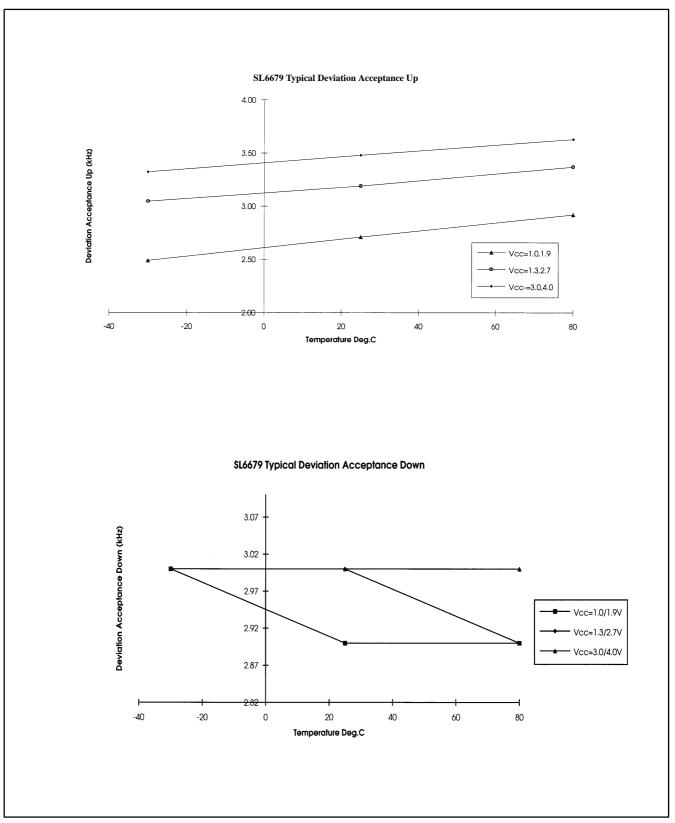


Fig. 13 Typical AC parameters vs. Supply and temperature

Conditions:- 282MHz GPS characterisation board i.e. Carrier frequency 282MHz, 1200bps baud rate, 4kHz peak deviation frequency, BER 1in 30. The LNA gain is set such that an RF signal of -73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p-p at TPI and TPQ.

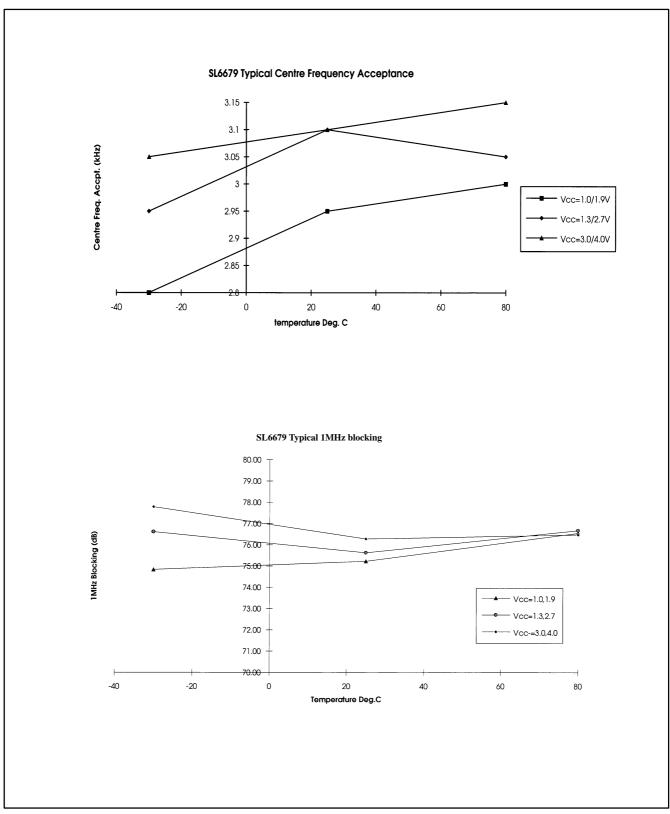
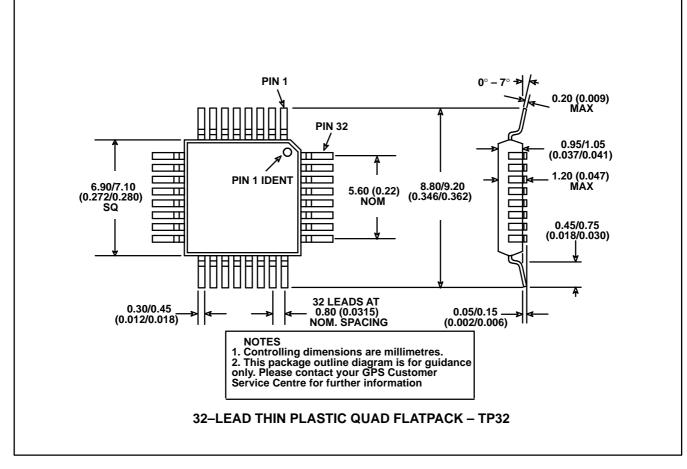



Fig. 14 Typical AC parameters vs. Supply and temperature

Conditions:- 282MHz GPS characterisation board i.e. Carrier frequency 282MHz, 1200bps baud rate, 4kHz peak deviation frequency, BER 1in 30. The LNA gain is set such that an RF signal of -73dBm at the LNA input, offset from the LO by 4kHz, gives a typical IF signal level of 300mV p-p at TPI and TPQ.

PACKAGE DETAILS

Dimensions are shown thus; mm, For further package information please contact your local Customer Service Centre

ORDERING INFORMATION

SL6679/KG/TP1N - 1mm TQFP device dry packed supplied in travs.

SL6679/KG/TP1Q - 1mm TQFP devices dry packed supplied in tape and reel.

HEADQUARTERS OPERATIONS GEC PLESSEY SEMICONDUCTORS Cheney Manor, Swindon, Wiltshire United Kingdom SN2 2QW. Tel: (01793) 518000 Fax: (01793) 518411

GEC PLESSEY SEMICONDUCTORS

P.O. Box 660017 1500 Green Hills Road, Scotts Valley, California 95067–0017, United States of America. Tel: (408) 438 2900 Fax: (408) 438 5576

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex Tel: (1) 69 18 90 00 •
- Fax: (1) 64 46 06 07
- . .
- Fax: (1) 64 46 06 07 GERMANY Munich Tel: (089) 3609 06 0 Fax: (089) 3609 06 55 ITALY Milan Tel: (02) 6607151 Fax: (02) 66040993 JAPAN Tokyo Tel: (03) 5276–5501 Fax: (03) 5276–5510 KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933 NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 7023 POLYDEAD TEL: (200 Fax: (408) 438 7023
- .

- Identified (408) 438 2900 Fax: (408) 438 7023
 SOUTH EAST ASIA Singapore Tel: 3827708 Fax: 3828872
 SWEDEN Stockholm Tel: (8) 702 97 70 Fax: (8) 640 47 36
 TAIWAN, ROC Taipei Tel: (2) 5461260 Fax: (2) 7190260
 UK, EIRE, DENMARK, FINLAND & NORWAY Swindon Tel: (01793) 726666 Fax: (01793) 518582
 These are supported by Agents and Distributors in major countries world–wide.

© GEC Plessey Semiconductors 1996 Publication No. D.S. 4410 Issue No 1.5 September 1996

TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

This publication is issued to provide information only, which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design, or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.