PRELIMINARY DATA SHEET

SDA 9410-B13 DAEDALUS Display Processor and Scan Rate Converter using Embedded DRAM Technology Units

SDA 9410 - B1 Revision Histo	
Previous Version	ons: 1998-08-01
	Changes to the previous issue Version 00, Edition 08.98, are marked with a change ar

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: docservice@micronas.com

1	Introduction	.11
2	Features	.12
3	Block diagram	.14
4	Pin Description	
5	System description	.19
5.1	Introduction	
5.2	Input sync controller (ISCM/ISCS)	
5.3	Input format conversion (IFCM/IFCS)	
5.4	Input signal processing	
5.4.1	Adjustable delay	
5.4.2	Vertical and horizontal compression (VHCOMM/VHCOMS)	
5.4.3	Noise reduction	
5.4.4	Noise measurement	
5.4.5	Letter box detection	
5.5	Clock concept	
5.6	Application modes and memory concept	
5.6.1		
5.6.2	Configuration controlling	
5.6.3	SRC mode configuration	
5.6.4	SSC and MUP mode configuration	
5.6.5	Configuration switch	
5.6.6	Joint line free display	
5.6.7	Master slave switch	
5.6.8	Refresh and still picture mode	
5.6.9	Memory management and animation controlling	
5.7	Output sync controller (OSCM/S)	
5.7.1	HOUT generator	
5.7.2	VOUT generator	
5.7.3	Switching from H-and-V-freerunning to H-and-V-locked mode	
5.7.4	Operation mode generator	
5.8	Motion estimation	
5.9	Motion compensation	
5.10	Global motion, film mode and phase detection	
5.11	Vertical expansion	
5.12	Display processing	
5.12.1	Peaking	
5.12.2	Digital luminance transition improvement	
5.12.3	Digital colour transition improvement	
5.12.4		
5.12.5	Coarse delay	116

9	Package Outlines
8 8.1 8.2 8.3 8.4	Wave forms176I²C Bus timing START/STOP176I²C Bus timing DATA176Timing diagram clock177Clock circuit diagram177
7	Application information
6 6.1 6.2 6.3	Electrical Characteristics170Absolute maximum ratings170Operating range171Characteristics (Under operating range conditions)173
5.12.6 5.13 5.13.1 5.13.2 5.13.3 5.13.4	Digital-to-Analog conversion116I²C Bus117I²C Bus slave address117I²C Bus format117I²C Bus format117I²C Bus commands120Detailed description127

Figure 1	Block diagram	14
Figure 2	Block diagram 2	15
Figure 3	Pin configuration	16
Figure 4	Principles of SRC mode	19
Figure 5	Principles of SSC mode	20
Figure 6	Principles of MUP mode	21
Figure 7	Input I ² C Bus parameter	22
Figure 8	Field detection and VINM delay	24
Figure 9	Explanation of 656 format	28
Figure 10	SYNCENM/SYNCENS signal	29
Figure 11	Input timing	29
Figure 12	Block diagram of input processing blocks	30
Figure 13	Block diagram of VHCOMM/VHCOMS	32
Figure 14	Principles of panorama mode	38
Figure 15	Block diagram of noise reduction	40
Figure 16	Block diagram of motion detector	41
Figure 17	LUT for motion detection	
Figure 18	Example of noise measurement	45
Figure 19	Principle of letter box detection	46
Figure 20	Block diagram of letter box detection	47
Figure 21	Histogram and line type decision	
Figure 22	Visibility of letter box detection I ² C Bus parameters	
Figure 23	Clock concept of SDA 9410	51
Figure 24	Application for SDA 9410	
Figure 25	Supported data formats	
Figure 26	Switching from SRC-PIP mode to SSC mode	
Figure 27	Changing picture sizes to get a double window display	
Figure 28	Completing the operations to a master slave exchange	
Figure 29	Example for animation	
Figure 30	Equation of the position of the left upper picture corner	
Figure 31	Explanation of memory management I	
Figure 32	Explanation of memory management II	
Figure 33	Explanation of memory management III	
Figure 34	Block diagram of OSCM/S	
Figure 35	Output I ² C Bus parameter	
Figure 36	Output write I ² C Bus parameter	
Figure 37	Ingenious configurations of the HOUT and VOUT generator	
Figure 38	VOUT generation depending on I ² C Bus parameter RMODE	
Figure 39	Explanation of field and display line-scanning pattern	
Figure 40	Explanation of operation mode timing	
Figure 41	Principle of block matching	
Figure 42	Block diagram of motion estimation and compensation.	
Figure 43	Block diagram of motion estimation	98

Figure 44 Figure 45	Relative positions of the spatial predictors
Figure 46	Principles of motion compensation
Figure 47	Principles of motion compensation for the b field (FILSEL=0)101
Figure 48	Output sequence generation: Camera mode102
Figure 49	Output sequence generation: PAL film mode103
Figure 50	Output sequence generation: NTSC film mode
Figure 51	Calculation of maximum VPAN value
Figure 52	Block diagram of display processing109
Figure 53	Block diagram peaking
Figure 54	Principles of DCTI
Figure 55	Application for SDA 9410175

Table 1	Pin definitions and functions	17
Table 2	Input signals	22
Table 3	Input write I ² C Bus parameter	23
Table 4	Input write I ² C Bus parameter	24
Table 5	Input write I ² C Bus parameter	25
Table 6	Input read I ² C Bus parameter	25
Table 7	Input signals	26
Table 8	Input data formats	26
Table 9	Input sync formats	27
Table 10	DELM/DELS I ² C Bus parameter	31
Table 11	Examples of vertical filter adjustment	34
Table 12	Conversion table between dezV and DEZVM / DEZVS	34
Table 13	Input write I ² C Bus parameter YPEAKM/YPEAKS/CPEAKM/CPEAKS	35
Table 14	Input write I ² C Bus parameter	
Table 15	Examples of horizontal filter adjustment	
Table 16	Conversion table between dezH and DEZHM/DEZMS	
Table 17	Input write I ² C Bus parameter CHFILM/CHFILS	
Table 18	Filter I ² C Bus parameter in case of PANAON=1	
Table 19	I ² C Bus parameter PANAST in case of PANAON=1	
Table 20	Input write I ² C Bus parameter	
Table 21	Input write I ² C Bus parameter	
Table 22	I ² C Bus parameter TNRVAY/C	
Table 23	I ² C Bus parameter TNRHOY/C and TNRKOY/C	43
Table 24		
Table 25	Input write I ² C Bus parameter	
Table 26	Input write I ² C Bus parameter	
Table 27	Input read I ² C Bus parameter	
Table 28	Line Type Decision of LBD	
Table 29	Evaluation of the reliability signal RELY	
Table 30	Correction of "start/end-line decision filter" block	
Table 31	Input write I ² C Bus parameter	
Table 32	Input read I ² C Bus parameter	
Table 33	Input signals	
Table 34	Output signals	51
Table 35	Clock concept switching matrix	
Table 36		
Table 37		
Table 38	Definition of CHRFORM/CHRFORS	54
Table 39		
Table 40		
Table 41		
Table 42	Programmable data configurations	
Table 43	Applications of different data configurations	58

Table 44	Maximum picture sizes	59
Table 45	Definition of MEMWRS	59
Table 46	Definition of MEMWRM	59
Table 47	Input write I ² C Bus parameter	60
Table 48	Definition of WRFLDM/WRFLDS	61
Table 49	Input write I ² C Bus parameter	61
Table 50	Definition of ORGMEMM	62
Table 51	Definition of ORGMEMS	62
Table 52	Definition of MEMRDM	62
Table 53	Definition of MEMRDS	62
Table 54	Definition of MEMWRM	63
Table 55	Definition of MEMWRS	63
Table 56	Switching from SRC PIP mode to SSC mode	64
Table 57	Changing the picture sizes to double window format	65
Table 58	Performing a master slave exchange	66
Table 59	Input write I ² C Bus parameter	67
Table 60	Output read I ² C Bus parameter	67
Table 61	Supported data formats	68
Table 62	Input write I ² C Bus parameter	68
Table 63	Output read I ² C Bus parameter	69
Table 64	Input write I ² C Bus parameter	70
Table 65	Input write I ² C Bus parameter	75
Table 66	Input write I ² C Bus parameter	76
Table 67	Output signals	77
Table 68	Output write I ² C Bus parameter	
Table 69	Output write I ² C Bus parameter INTMODE	82
Table 70	Output write I ² C Bus parameter INTMODE	82
Table 71	Static operation modes (only valid for ADOPMOM=0, RMODE=0)	86
Table 72	Static operation modes (only valid for ADOPMOM=0, RMODE=1)	
Table 73	Special combinations of STOPMOM and ADOPMOM	
Table 74	Display line-scanning pattern sequence	
Table 75	Static operation modes slave	89
Table 76	Adaptive operation modes	95
Table 77	Output write I ² C Bus parameter	95
Table 78	Key I ² C Bus parameters of the 3-D RS motion estimation	
Table 79	Output write I ² C Bus parameter	
Table 80	Output write I ² C Bus parameter	104
Table 81	Principles of global motion and film mode detection	105
Table 82	Definition of scmin/scmax depending on SFMINTH/SFMAXTH	105
Table 83	Output write I ² C Bus parameter	106
Table 84	1 1	107
Table 85		107
Table 86	Examples of reachable expansion factors	108

Table 87	Output write I ² C Bus parameter	109
Table 88	Output signals	
Table 89	Conversion table BCOF/HCOF to gain_bp/gain_hp	111
Table 90	Output write I ² C Bus parameters	111
Table 91	I ² C Bus parameter THRESY	112
Table 92	I ² C Bus parameter THRESY_UP	112
Table 93	I ² C Bus parameter ASCENTLTI	113
Table 94	Output write I ² C Bus parameters	113
Table 95	I ² C Bus parameter THRESC	114
Table 96	I ² C Bus parameter ASCENTCTI	115
Table 97	Output write I ² C Bus parameters	115
Table 98	Output write I ² C Bus parameters	115
Table 99	Output write I ² C Bus parameter	116
Table 100	Output write I ² C Bus parameter	116

BLANK PAGE

Introduction

1 Introduction

The SDA 9410 is a new component of the Micronas $MEGAVISION^{\textcircled{R}}$ IC set, which enables the system to reduce large area and line flickering of interlaced TV standards.

The scan rate conversion to 100/120 Hz interlaced or 50/60 Hz progressive scan is motion vector based. For the 100/120 Hz (50/60 Hz) conversion the SDA 9410 really calculates 100/120 Hz (50/60 Hz) fields with continuous motion phases to avoid double contour effects in the motion display. In the special case of movie sources, which have a non-continuous motion phase, the SDA 9410 generates at the output an appropriate sequence with a continuous motion phase ("True Motion").

Due to the frame based signal processing, the noise reduction has been greatly improved. Furthermore different motion detectors for luminance and chrominance have been implemented. For automatic controlling of the noise reduction parameters a noise measurement algorithm is included, which measures the noise level in the picture or in the blanking period. In addition a spatial noise reduction is implemented, which reduces the noise even in the case of motion.

The SDA 9410 has two input channels, which can be used for different features like Picture-in-Picture (maximum approximately 1/9 picture) and "Double-window/Split-screen". The two input signals can be scaled horizontally and vertically with variable factors. Panorama modes will be supported.

Besides that an algorithm for the detection of letter box pictures is included. The SDA 9410 delivers the start and the end line of the active picture part of the input signal to an external μ C. The μ C calculates the zoom factors for displaying the active picture part on the full screen and sends this values back to the SDA 9410.

Picture sharpness can be greatly improved by a LTI (luminance transition improvement) or/and peaking and a CTI (colour transition improvement) algorithm. The resolution of the output signals is 9 bit. The SDA 9410 has analog output signals.

Features

2 Features

Different application modes

- SRC mode:
- High performance scan rate converter

- High performance scan rate converter plus high resolution frame based joint-line-free Picture-in-Picture (maximum approximately 1/9 picture)

- SSC mode:
- Split screen applications with two signal sources (e.g. double window)
- MUP mode:
- Multipicture display mode (e.g. tuner scan)

• 8 bit amplitude resolution of each input channel

- Two input channels
- Input frequency up to 27 MHz

- ITU-R 656 data format (8 wires data only and additional sync information or 8 wires including sync information)

- 4:2:2 luminance and chrominance parallel (2x8 wires)

Two different representations of input chrominance data

- 2's complement code
- Positive dual code
- Two flexible input sync controllers
- Vertical peaking of the input signal
- Flexible scaling of the input signal
 - Flexible digital vertical compression of the input signal (1.0, ... [2 line resolution] ... , 1/32)
 - Flexible horizontal compression and expansion of the input signal (2.0, ... [4 pixel resolution] ... , 1.0 , ... [4 pixel resolution] ... , 1/32)
 - Panorama mode (programmable characteristic)

Noise reduction

- Motion adaptive spatial and temporal noise reduction (3D-NR)

- Temporal noise reduction for luminance and chrominance, frame based or field based

- Different motion detectors for luminance and chrominance or identical
- Flexible programming of the temporal noise reduction parameters
- Automatic measurement of the noise level (5 bit value, readable by I²C-bus)

• 3-D motion estimation

- High performance motion estimation based on block matching algorithm
 Film mode detector (PAL and NTSC), Global motion flag (readable by I²C bus)
- Automatic detection of letter box formats (readable by I²C bus)
- TV mode detection by counting line numbers (PAL, NTSC, readable by I²C bus)

• Embedded memory

- 6 Mbit embedded DRAM core for field memories
- 1,1 Mbit embedded DRAM core for line memories, vector memory, block-to-line

I

Features

converter

- 36 kbit SRAM for block matching, line-to-block converter
- Flexible clock and synchronization concept
 - Decoupling of the input and output clock system possible
- Scan rate conversion
 - Motion compensated 100/120 Hz interlaced scan conversion (Micronas VDU)
 - Motion compensated 50/60 Hz progressive scan conversion (Micronas VDU)
 - Simple interlaced modes: ABAB, AABB, AAAA, BBBB
 - Simple progressive modes: AB, AA*, B*B
 - True Motion: 50 Hz motion resolution even for 25 Hz PAL film sources 60 Hz motion resolution even for 30 Hz NTSC film sources
 - Large area and line flicker reduction
- Flexible digital vertical expansion of the output signal (1.0, ... [1/64] ... , 2.0)
- Sharpness improvement
 - Digital colour transition improvement (DCTI)
 - Digital luminance transition improvement (DLTI)
 - Peaking (luminance only)

• Flexible output sync controller

- Flexible positioning of the two output channels in all application modes
- Flexible height and width of the two output pictures
- Flexible programming of the output sync raster

• Signal manipulations

- Still frame or field
- Insertion of coloured background
- Insertion of a selection border
- Adjustable delay between Y and UV signal (+4,...[1]...,-3 input pixels) at the input side

- Adjustable delay between Y and UV signal (+3,...[0.5]...,- 4 output pixels) at the output side

• Three D/A converters

- 9 bit amplitude resolution for Y, -(R-Y), -(B-Y) output
- 60 MHz maximal clock frequency
- Two-fold oversampling
- Simplification of external analog post filtering and differential analog outputs
- I²C-bus control (400 kHz)
- P-MQFP-100 package
- $3.3 V \pm 5\%$ supply voltage

Block diagram

3 Block diagram

Figure 1 Block diagram

The SDA 9410 contains the blocks, which will be briefly described below:

ISCM/S - Flexible input sync controller

IFCM/S - Input format conversion, Adjustable delay

VHCOMM/S - Vertical and horizontal compression, horizontal expansion, panorama mode (only M)

TSNR - Temporal and spatial noise reduction, noise measurement

LBD - Letter box detection

ME - Motion estimation, Film mode and phase detection

MC - Memory controller

OSCM/S - Flexible output sync controller

OFC - Output format conversion, 4:4:4, 8:8:8 interpolation, Adjustable delay

SRCM/S - Scan rate conversion, vertical expansion

MUX - Combination of the two output channels

DLTI/DCTI/Peaking - Luminance and chrominance transition improvement, luminance peaking

I²C - I²C bus interface

PLLM/S/D - PLL for frequency doubling

LM - Line memory core, VM - Vector memory core

ED - eDRAM core

Block diagram

Figure 2 Block diagram 2

Pin Description

4 Pin Description

Pin Diagram: P-MQFP-100

(top view)

Figure 3 Pin configuration

I

Pin Description

Symbol	Pin Num.	Input Outp.	Function		
VSSLx *)	8,13,15,16, 22,23,75	S	Supply voltage for digital logic parts ($V_{\rm SS}$ = 0 V)		
VDDLx	9,12, 68,74	S	Supply voltage for digital logic parts (V_{DD} = 3.3 V)		
VSSPx	10,17,29,43, 57, 70, 79, 100	S	Supply voltage for pads ($V_{SS} = 0 \text{ V}$)		
VDDPx	11,21,36,54, 69, 80,99	S	Supply voltage for pads (V_{DD} = 3.3 V)		
VSSE1	67	S	Supply voltage for embedded DRAM ($V_{SS} = 0 \text{ V}$)		
VDDEx	14,66	S	Supply voltage for embedded DRAM (V_{DD} = 3.3 V)		
VSSAx	19,59,92,96, 98	S	Supply voltage for analog PLL and for analog parts DAC ($V_{\rm SS}$ = 0 V)		
VDDAx	20,60, 95,97	S	Supply voltage for analog PLL and for analog parts DAC ($V_{\rm DD}$ = 3.3 V)		
YINM 07	39,,42; 44,,47	I/TTL	Data input Y master channel		
UVINM 07	30,,35; 37; 38	I/TTL PD	Data input UV master channel		
YINS 07	61,,65; 71,,73	I/TTL PD	Data input Y slave channel		
UVINS 07	48,,53; 55;56	I/TTL PD	Data input UV slave channel		
RESET	81	I/TTL	System reset. The RESET input is low active. In order to ensure correct operation a "Power On Reset" must be performed. The RESET pulse must have a minimum duration of two clock periods the master (CLKM) and slave clock (CLKS), respectively.		
HINM	27	I/TTL PD	H-Sync input master channel		
VINM	26	I/TTL PD	V-Sync input master channel		
SYNCENM	28	I/TTL	Synchronization enable input master channel		
HINS	77	I/TTL PD	H-Sync input slave channel		
VINS	78	I/TTL PD	V-Sync input slave channel		
SYNCENS	76	I/TTL	Synchronization enable input slave channel		
SDA	24	IO	I ² C-Bus data line		
SCL	25	1	I ² C-Bus clock line		
BLANK	7	O/TTL	Blanking signal		
VOUT	5	O/TTL	V-Sync output		
HOUT	4	O/TTL	H-Sync output		

Table 1	Pin definitions	and	functions
	i ili ucililiuolis	and	lanctions

Pin Description

Symbol	Pin Num.	Input Outp.	Function			
INTERLACED	6	O/TTL	Interlace signal for AC coupled vertical deflection			
CLKM	18	I/TTL	System clock master channel			
CLKS	58	I/TTL	System clock slave channel			
X1 / CLKD	2	I/TTL	Crystal connection / System clock display channel			
X2	1	O/ANA	Crystal connection			
CLK-OUT	3	O/TTL	System clock output			
TEST	82	I/TTL	Test input, connect to V_{SS} for normal operation			
IY_O	87	O/ANA	Analog luminance output Y			
IYQ_O	86	O/ANA	Differential analog Y output, connect to V _{SS} for normal operation			
VDDY	88	S	Supply voltage for analog parts DAC (V_{DD} = 3.3 V)			
IU_O	84	O/ANA	Analog luminance output U			
IUQ_O	83	O/ANA	Differential analog U output, connect to V_{SS} for normal operation			
VDDU	85	S	Supply voltage for analog parts DAC (V_{DD} = 3.3 V)			
IV_O	90	O/ANA	Analog luminance output V			
IVQ_O	89	O/ANA	Differential analog V output, connect to V_{SS} for normal operation			
VDDV	91	S	Supply voltage for analog parts DAC (V_{DD} = 3.3 V)			
UREF_I	94	I/ANA	Analog reference voltage for DACs			
RREF_I	93		Reference resistor for DACs			

Table 1Pin definitions and functions (continued)

S: supply, I: input, O: output, TTL: digital (TTL)

ANA: analog

PD: pull down (switched on or off depending on I²C bus parameter FORMATM, FORMATS or SLAVECON)

*) x - placeholder for number

I

Introduction

5 System description

5.1 Introduction

The SDA 9410 is the first single-chip Micronas MEGAVISION[®] feature box including scan rate conversion and the necessary field memories, a second input channel for split screen applications like picture-and-picture and digital-to-analog converters. The SDA 9410 has three application modes: the SRC (Scan Rate Conversion) mode, the SSC (Split SCreen) mode and the MUP (MUlti Picture) mode.

The two input channels of the SDA 9410 are not equivalent. One input channel is always the so called "master" channel and one input channel is always the so called "slave" channel. Both channels are combined of the output side of the SDA 9410 in the "MUX" block. The master channel is always the "synchronization" master of both channels.

In the SRC mode the SDA 9410 can be used as a high performance scan rate converter. Scan rate conversion is done by a motion compensated algorithm known as Micronas VDU (Vector Driven Up conversion). In addition a high resolution frame based joint-linefree picture-and-picture (maximum approximately 1/9 picture) can be displayed. The figure below shows an example of the SRC mode.

Figure 4 Principles of SRC mode

Introduction

For this usage the 6 Mbit eDRAM core is separated in two luminance fields and two chrominance fields (either 4:2:0 or 4:1:1) and a memory area for luminance and chrominance fields (4:1:1) [maximum circa 1/9 picture] for picture-in-picture applications. The vector based scan rate conversion is possible for the master channel only.

For the SSC mode the 6 Mbit eDRAM core is split in two 3 Mbit areas, which are able to contain a maximum of two luminance fields and two chrominance fields (either 4:2:0 or 4:1:1). The figure below shows different applications ("Double window", "Zoom-in-zoom-out"). In this case only a simple scan rate conversion (e.g. field doubling for interlaced conversion: AABB) for both output channels is possible.

Figure 5 Principles of SSC mode

Introduction

The MUP mode allows the combination of one life picture and a configuration of still pictures. The figure below shows an application. In this case only a simple scan rate conversion (e.g. field doubling for interlaced conversion: AABB or AAAA) is possible.

Figure 6 Principles of MUP mode

The behaviour of the master and the slave channel does not differ in general. Therefore for further description of the master and the slave channel the figures are also valid for both unless it is pointed out.

5.2 Input sync controller (ISCM/ISCS)

Signals	Pin number	Description
HINM	27	horizontal synchronization signal (polarity programmable, I ² C Bus parameter 11h HINPOLM, default: high active)
VINM	26	vertical synchronization signal (polarity programmable, I ² C Bus parameter 11h VINPOLM, default: high active)
SYNCENM	28	enable signal for HINM and VINM signal, low active ("Input format conversion (IFCM/IFCS)" on page 26)
HINS	77	horizontal synchronization signal (polarity programmable, I ² C Bus parameter 33h HINPOLS, default: high active)
VINS	78	vertical synchronization signal (polarity programmable, I ² C Bus parameter 33h VINPOLS, default: high active)
SYNCENS	76	enable signal for HINS and VINS signal, low active ("Input format conversion (IFCM/IFCS)" on page 26)

Table 2Input signals

The input sync controller derives framing signals from the H- and V-Sync for the input data processing. The framing signals depend on different I²C Bus parameters and mark the active picture area.

Figure 7 Input I²C Bus parameter

The distance between the incoming H-syncs in system clocks of CLKM/CLKS must be even.

I ² C Bus parameter [Default value]	Sub address	Description
NALIPM [20]	12h	Not Active Line InPut Master defines the number of lines from the V-Sync to the first active line of the field
NALIPS [20]	34h	Not Active Line InPut Slave defines the number of lines from the V-Sync to the first active line of the field
ALPFIPM [144]	10h	Active Lines Per Field InPut Master defines the number of active lines
ALPFIPS [144]	32h	Active Lines Per Field InPut Slave defines the number of active lines
NAPLIPM NAPIPDLM [0] NAPIPPHM [0]	03h, 0Ch	Not Active Pixels Per Line InPut Master defines the number of pixels from the H-Sync to the first active pixel of the line. The number of pixels is a combination of NAPIPDLM and NAPIPPHM.
NAPLIPS NAPIPDLS [0] NAPIPPHS [0]	2Dh, 2Eh	Not Active Pixels Per Line InPut defines the number of pixels from the H-Sync to the first active pixel of the line. The number of pixels is a combination of NAPIPDLS and NAPIPPHS.
APPLIPM [180]	0Fh	Active Pixels Per Line InPut Master defines the number of active pixels
APPLIPS [180]	31h	Active Pixels Per Line InPut Slave defines the number of active pixels

Table 3Input write I²C Bus parameter

Inside of the SDA 9410 a field detection block is necessary for the detection of an odd (A) or even (B) field. Therefore the incoming H-Sync H1 (delayed HINM/HINS signal, delay depends on NAPIPDLM/NAPIPDLS and NAPIPPHM/NAPIPPHS) is doubled (H2 signal). Depending on the phase position of the rising edge of the VINM/VINS signal an A (rising edge between H1 and H2) or B (rising edge between H2 and H1) field is detected. For proper operation of the field detection block, the VINM/VINS must be delayed depending on the delay of the HINM/HINS signal (H1). The figure below explains the field detection process and the functionality of the VINDELM/VINDELS I²C Bus parameter (inside the SDA 9410 the delayed VINM/VINS signal is called Vd and the detected field signal is called Ffd).

Figure 8 Field detection and VINM delay

I ² C Bus parameter [Default value]	Sub address	Description
VINDELM [0]	11h	Delay of the incoming V-Sync VINM (must be adjusted depending on the delay of the HINM signal)
VINDELS [0]	33h	Delay of the incoming V-Sync VINS (must be adjusted depending on the delay of the HINS signal)
FIEINVM 1 : Field A=1 [0]: Field A=0	0Bh	Inversion of the internal field polarity master
FIEINVS 1 : Field A=1 [0]: Field A=0	2Dh	Inversion of the internal field polarity slave
VCRMODEM [1]: on 0 : off	0Bh	In case of non standard interlaced signals (VCR, Play- Stations) a filtering of the internal field signal has to be done (should also be used for normal TV signals)
VCRMODES [1]: on 0 : off	2Dh	In case of non standard interlaced signals (VCR, Play- Stations) a filtering of the internal field signal has to be done (should also be used for normal TV signals)

Table 4Input write I²C Bus parameter

In case of non-standard signals the field order is indeterminate (e.g. AAA..., BBB..., AAABAAAB..., etc.). Therefore a special filtering algorithm is implemented, which can be switched on by the I²C Bus parameter VCRMODEM/VCRMODES. It is recommended to set the I²C Bus parameter VCRMODEM=1. In other case (VCRMODEM=0) an additional

internal signal VTSEQM is generated. This signal level is high (VTSEQM=1), if at least the last to fields were identical. Due to the fixed storage places of the fields in the internal memory block, this information is necessary for the scan rate conversion processing ("Output sync controller (OSCM/S)" on page 77, it is recommended in case of VCRMODEM=0 to choose an adaptive operation mode).

The OPDELM I²C Bus parameter is used to adjust the outgoing V-Sync VOUT in relation to the incoming delayed V-Sync VINM. In case of SSC and MUP mode the recommended default value should not be changed.

I ² C Bus parameter [Default value]	Sub address	Description
OPDELM [170]	1Bh	Delay (in number of lines) of the internal V-Sync (delayed VINM) to the outgoing V-Sync (VOUT)

Table 5Input write I²C Bus parameter

The internal line counter is used to determine the information about the standard of the incoming signal.

I ² C Bus parameter	Sub address	Description
TVMODEM	7Bh	TV standard of the incoming signal master: 1: NTSC 0: PAL
TVMODES	7Dh	TV standard of the incoming signal slave: 1: NTSC 0: PAL

Table 6Input read I²C Bus parameter

5.3 Input format conversion (IFCM/IFCS)

Signals	Pin number	Description
YINM07	39,40,41,42,44,45,46,47	luminance input master
UVINM07	30,31,32,33,34,35,37.38	chrominance input master
YINS07	61,62,63,64,65,71,72,73	luminance input slave
UVINS07	48,49,50,51,52,53,55,56	chrominance input slave

Table 7Input signals

The SDA 9410 accepts at the input side the sample frequency relations of Y : (B-Y) : (R-Y): 4:2:2 and CCIR 656.

Data Pin		CCIR 656 FORMATM = 1X		4:2:2 Parallel FORMATM = 00		
	FORM	FORMATM = 01				
YINM7	U ₀₇	Y ₀₇	V ₀₇	Y ₁₇	Y ₀₇	Y ₁₇
YINM6	U ₀₆	Y ₀₆	V ₀₆	Y ₁₆	Y ₀₆	Y ₁₆
YINM5	U ₀₅	Y ₀₅	V ₀₅	Y ₁₅	Y ₀₅	Y ₁₅
YINM4	U ₀₄	Y ₀₄	V ₀₄	Y ₁₄	Y ₀₄	Y ₁₄
YINM3	U ₀₃	Y ₀₃	V ₀₃	Y ₁₃	Y ₀₃	Y ₁₃
YINM2	U ₀₂	Y ₀₂	V ₀₂	Y ₁₂	Y ₀₂	Y ₁₂
YINM1	U ₀₁	Y ₀₁	V ₀₁	Y ₁₁	Y ₀₁	Y ₁₁
YINM0	U ₀₀	Y ₀₀	V ₀₀	Y ₁₀	Y ₀₀	Y ₁₀
UVINM7					U ₀₇	V ₀₇
UVINM6					U ₀₆	V ₀₆
UVINM5					U ₀₅	V ₀₅
UVINM4					U ₀₄	V ₀₄
UVINM3					U ₀₃	V ₀₃
UVINM2					U ₀₂	V ₀₂
UVINM1					U ₀₁	V ₀₁
UVINM0					U ₀₀	V ₀₀

Table 8Input data formats

X_{ab}: X: signal component a: sample number b: bit number

In case of CCIR 656 three modes are supported (FORMATM/FORMATS=11 means full CCIR 656 support, including H-, V-Sync and Field signal, FORMATM/FORMATS=01 means only data processing, H- and V-Sync have to be added separately according PAL/NTSC norm, FORMATM/FORMATS=10 means only data processing, H- and V-sync have to be added separately according CCIR656-PAL/NTSC norm). The representation of the samples of the chrominance signal is programmable as positive dual code (unsigned, I²C Bus parameter TWOINM/TWOINS=0) or two's complement code (TWOINM/TWOINS=1, **"I²C Bus" on page 117**, I²C Bus parameter 0Bh,2Dh). Inside the SDA 9410 all algorithms assume positive dual code.

FORMATM/ FORMATS	HINS/HINS	VINM/VINS	YINM/YINS	UVINM/UVINS
00	PAL/NTSC	PAL/NTSC	4:2:2	4:2:2
01 (CCIR 656 only data)	PAL/NTSC	PAL/NTSC	CCIR 656	х
10	CCIR 656	CCIR 656	CCIR 656	x
11 (full CCIR 656)	x	x	CCIR 656	x

Table 9Input sync formats

The amplitude resolution for each input signal component is 8 bit, the maximum clock frequency is 27 MHz. Consequently the SDA 9410 is dedicated for application in high quality digital video systems.

The **Figure 9** shows the generation of the internal H- and V-syncs in case of full CCIR 656 mode. The H656 sync is generated after the EAV. The V656 and F656 signals change synchronously with the EAV timing reference code.

Figure 9 Explanation of 656 format

The **Figure 10** explains the functionality of the SYNCENM/SYNCENS signal. The SDA 9410 needs the SYNCENM/SYNCENS (synchronization enable) signal, which is used to gate the YINM/YINS, UVINM/UVINS as well as the HINM/HINS and the VINM/VINS signal. This is implemented for frontends which are working with 13.5 MHz and a large output delay time for YINM/YINS, UVINM/UVINS, HINM/HINS and VINM/VINS (e.g. Micronas VPC32XX, output delay: 35 ns). For this application the half system clock CLKM/CLKS (13.5 MHz) from the frontend should be provided at this pin. In case the frontend is working at 27.0 MHz with sync signals having delay times smaller than 25 ns, this input can be set to low level (SYNCENM/SYNCENS= V_{SS}) (e.g. Micronas SDA 9206, output delay: 25 ns). Thus the signals YINM/YINS, UVINM/UVINS, HINM/HINS and VINM/VINS are sampled with the CLKM/CLKS system clock when the SYNCENM/ SYNCENS input is low.

The **Figure 10** shows the gated inputs signals YINMen, UVINMen, HINMen and VINMen.

Figure 10 SYNCENM/SYNCENS signal

The **Figure 11** shows the input timing and the functionality of the NAPIPDLM/NAPIPDLS and NAPIPPHM/NAPIPPHS I²C Bus parameter in case of CCIR 656 and 4:2:2 parallel data input format for one example. The signals HINMint, YINMint and UVMint are the internal available sampled input signals.

CLKM	
HINM _	
HINMint	
CCIR 656 int	rface
YINM	xxx xxx xv0 x y0 x v0 y1 x u2 x y2 x v2 x y3 x u4 x y4
YINMint UVINMint	(NAPIPDLM* 4 + NAPIPPHM + 7) * Tclkm =(0 * 4 + 2 + 7) * Tclkm = 9 Tclkm (e.g.) (NAPIPDLM* 4 + NAPIPPHM + 7) * Tclkm =(0 * 4 + 3 + 7) * Tclkm = 10 Tclkm (e.g.) u0 \ v0 \ u2 \ v2 \ u4
4:2:2 interfac	
YINM	xxx y0 y1 y2 y3 y4
UVINM	xxx u0 v0 u2 v2 u4
YINMint UVINMint	

Figure 11 Input timing

5.4 Input signal processing

The **Figure 12** shows a detailed block diagram of the input processing blocks. The input signal can be vertically and horizontally compressed or horizontally expanded by a large number of factors. Furthermore the input signal can be processed by different noise reduction algorithms to reduce the noise in the signal. The noise measurement block determines the noise level of the input signal. The letter box detection block finds the start and end line of letter box pictures. The information can be used by a μ C to calculate zooming factors and to control the IC for resizing the picture for a full screen display on 16:9 tubes.

Figure 12 Block diagram of input processing blocks

The different blocks and the corresponding I²C Bus parameters will be described now in more detail.

5.4.1 Adjustable delay

It is possible to adjust the luminance signal in relation to the chrominance signal in (CLKM/CLKS) steps. For further processing it is important, that the luminance signal and the chrominance signal are adjusted. Adjustment may be necessary, if the luminance and chrominance signal generated by the frontend processor are not adjusted.

DELM/DELS (04h,026h)	Delay between luminance and chrominance data in steps of 27.0 MHz (CLKM/CLKS)
0	-3
1	-2
2	-1
3	0
4	+1
5	+2
6	+3
7	+4

Table 10DELM/DELS I2C Bus parameter

5.4.2 Vertical and horizontal compression (VHCOMM/VHCOMS)

The **Figure 13** shows the block diagram of the VHCOMM and VHCOMS block. The VHCOMM and VHCOMS block are able to compress the picture in horizontal and vertical direction continuously. The minimal step size in vertical direction is two lines, the minimal step size in horizontal direction is four pixels. The figure below shows also the functionality and the formula, which shows the relation between the number of input lines (pixels) and output lines (pixels). In horizontal direction an expansion is also possible. Panorama mode in horizontal direction will be supported.

Figure 13 Block diagram of VHCOMM/VHCOMS

5.4.2.1 Vertical compression and peaking

The overall reduction of the vertical compression block can be calculated by the formula:

The user must specify the vertical input picture size (defined by I²C Bus parameter ALPFIPM/ALPFIPS) and the vertical output picture size (defined by I²C Bus parameter APPLM/APPLS) as well as the I²C Bus parameter INTVM/INTVS (I²C Bus parameter, 09h,0Ah,2Bh,2Ch) and DEZVM/DEZVS (I²C Bus parameter, 0Ah,2Ch), which can be calculated with the algorithm listed below (C-code).

```
intV, dezV: variables
for( intV=2*ALPFM/S, dezV=1; intV<=2*ALPFIPM/S; intV*=2, dezV*=2 )
;
intV = ((512*2*ALPFIPM/S*2+intV/2)/intV);
dezV/=2;
if(dezV>16)
{
    intV=intV*dezV/16;
    dezV=16;
}
INTVM/S=intV-512;
```

Vertical line size 2*ALPFM/S (2*ALPFIPM/S=288)	INTVM/S	dezV/DEZVM/S	Comment
288	0	1/1	largest size, bypass recommended DEZVM/ DEZVS=0
216	171	1/1	
192	256	1/1	Double window
145	505	1/1	
144	0	2/4	
96	256	2/4	PIP (1/3 picture)
73	497	2/4	
72	0	4/5	
36	0	8/6	
18	0	16/7	
10	409	16/7	smallest size

Table 11 Examples of vertical filter adjustment

dezV	DEZVM / DEZVS
16	111
8	110
4	101
2	100
1	001

Table 12 Conversion table between dezV and DEZVM / DEZVS

The vertical compression block can be switched off by setting DEZVM/DEZVS equal "0" and INTVM/INTVS=0. In this case it is possible to switch on a low pass filter for the chrominance data path by the I²C Bus parameter CHFILM/CHFILS (I²C Bus parameter, 03h, 25h). If CHFILM/CHFILS is equal to "0" or "2" the vertical filter for the chrominance is switched off. If CHFILM/CHFILS is equal to "1" or "3" the vertical filter for the chrominance is switched on (Table 17 "Input write I²C Bus parameter CHFILM/CHFILS" on page 38).

In addition a vertical peaking of the input signal is possible.

² C Bus parameter 0 (minimum value)		3 (maximum value)
YPEAKM/YPEAKS	peaking off	maximum peaking factor
CPEAKM/CPEAKS	peaking off	maximum peaking factor

Table 13 Input write I²C Bus parameter YPEAKM/YPEAKS/CPEAKM/CPEAKS

I ² C Bus parameter	Sub address	Description
INTVM	09h,0Ah	Interpolation factor for vertical compression master
DEZVM	0Ah	Decimation factor for vertical compression master
INTVS	2Bh,2Ch	Interpolation factor for vertical compression slave
DEZVS	2Ch	Decimation factor for vertical compression master
YPEAKM	0Ah	Vertical peaking factor for luminance signal master
CPEAKM	0Ah	Vertical peaking factor for chrominance signal master
YPEAKS	2Ch	Vertical peaking factor for luminance signal slave
CPEAKS	2Ch	Vertical peaking factor for chrominance signal slave
ALPFM	0Dh	Number of active lines per field after vertical compression master
ALPFS	2Fh	Number of active lines per field after vertical compression slave
CHFILM	03h	Chrominance filter master channel on/off
CHFILS	25h	Chrominance filter slave channel on/off

Table 14Input write I²C Bus parameter

5.4.2.2 Horizontal compression/expansion and panorama mode

The overall reduction of the horizontal compression block can be calculated by the formula:

The user must specify the horizontal input picture size (defined by the I²C Bus parameter APPLIPM/APPLIPS) and the horizontal output picture size (defined by the I²C Bus parameter APPLM/APPLS) as well as the I²C Bus parameter INTHM/INTHS (I²C Bus parameter, 07h, 08h, 29h, 2Ah) and DEZHM/DEZHS (I²C Bus parameter, 08h, 2Ah), which can be calculated with the algorithm listed below (C-code).

```
intV, dezV: variables
for( intH=4*APPLM/S, dezH=1; intH<=4*APPLIPM/S; intH*=2, dezH*=2 )
;
intH = ((2048*4*APPLIPM/S*2+intH/2)/intH);</pre>
```

```
if( dezH>16)
{
intH= intH*dezH/16;
dezH=16;
}
INTHM/S = intH
```
Horizontal pixel size (related to CLKM/2) 4*APPLM (4*APPLIPM=720)	intH	dezH/ DEZHM/S	Comment
1440	2048	1/1	largest size, only 720 will be stored
724	4073	1/1	largest size, only 720 will be stored
720	2048	2/4	bypass recommended DEZHM/DEZHS=0
540	2731	2/4	4:3 picture on 16:9 tube
364	4050	2/4	
360	2048	4/5	Double window
184	4007	4/5	
180	2048	8/6	
92	4007	8/6	
90	2048	16/7	
48	3840	16/7	
24	7680	16/7	smallest size

Table 15 Examples of horizontal filter adjustment

dezH	DEZHM/S
16	111
8	110
4	101
2	100
1	001

Table 16 Conversion table between dezH and DEZHM/DEZMS

The horizontal compression/expansion block can be switched off by setting DEZHM/ DEZHS equal "0" and INTHM/INTHS=2048. In this case it is possible to switch on a low pass filter for the chrominance data path by the I²C Bus parameter CHFILM/CHFILS (I²C Bus parameter, 03h,25h). If CHFILM/CHFILS is equal to "0" or "1" the horizontal filter for the chrominance is switched off. If CHFILM/CHFILS is equal to "2" or "3" the horizontal filter for the chrominance is switched on. The table below shows the different settings of CHFILM/S.

CHFILM/CHFILMS	Vertical low pass filter (only valid for DEZVM/DEZVS=0)	Horizontal low pass filter (only valid for DEZHM/DEZHS=0)
11	Vertical filter on	Horizontal filter on
10	Vertical filter off	Horizontal filter on
01	Vertical filter on	Horizontal filter off
00	Vertical filter off	Horizontal filter off

Table 17 Input write I²C Bus parameter CHFILM/CHFILS

In case of panorama mode the compression/expansion factor varies over one line. The figure below shows some examples.

Figure 14 Principles of panorama mode

Different settings of the I²C Bus parameters INTHM/INTHS and DEZHM/DEZHS are necessary. The table below defines the settings:

PANAON	dezH	intH
0	DEZHM/DEZHS	INTHM
1	1	INTHM (4096 recommended)

Table 18 Filter I²C Bus parameter in case of PANAON=1

I ² C Bus parameter	0 (minimum value)	15 (maximum value)
PANAST	slight panorama	strong panorama

Table 19 I²C Bus parameter PANAST in case of PANAON=1

I ² C Bus parameter	Sub address	Description
INTHM	07h,08h	Interpolation factor for horizontal compression/expansion master
DEZHM	08h	Decimation factor for horizontal compression/ expansion master
INTHS	29h,2Ah	Interpolation factor for horizontal compression/expansion slave
DEZHS	2Ah	Decimation factor for horizontal compression/ expansion slave
APPLM	0Eh	Number of active pixels per line in the input data stream after horizontal compression/ expansion master
APPLS	30h	Number of active pixels per line in the input data stream after horizontal compression/ expansion slave
PANAON	1Ah	Horizontal panorama mode on/off
PANAST	1Ah	Gradient of horizontal panorama mode

Table 20Input write I²C Bus parameter

5.4.3 Noise reduction

The figure below shows a block diagram of the spatial and temporal motion adaptive noise reduction (first order IIR filter). The spatial noise reduction is only performed on the luminance signal. The structure of the temporal motion adaptive noise reduction is the same for the luminance as for the chrominance signal.

Figure 15 Block diagram of noise reduction

5.4.3.1 Spatial noise reduction

Normally a spatial noise reduction reduces the resolution due to the low pass characteristic of the used filter. Therefore the spatial noise reduction of the SDA 9410 works adaptive on the picture content. The low pas filter process is only executed on a homogeneous area.

I ² C Bus parameter	Sub address	Description
SNRON 1: on 0: off	1Ah	Spatial noise reduction of luminance signal

Table 21Input write I²C Bus parameter

5.4.3.2 Motion adaptive temporal noise reduction

The equation below describes the behaviour of the temporal motion adaptive noise reduction filter. The same equation is valid for the chrominance signal. Depending on the motion in the input signal, the K-factor Ky (Kuv) can be adjusted between 0 (no motion) and 15 (motion) by the motion detector. The K-factor for the chrominance filter can be either Ky (output of the luminance motion detector, TNRSEL=0) or Kuv (output of the chrominance signal the delay of the feed back path can be either a field delay (DTNRON=1) or a frame delay (DTNRON=0) (block diagram of noise reduction).

Equation for temporal noise reduction (luminance signal)

$$YOUT = \left(\frac{1 + Ky}{16}\right)(YSNR - YR) + YR$$

Equation for temporal noise reduction (chrominance signal)

$$UVOUT = \left(\frac{1+K}{16}(UVSNR - UV1) + UV1; K = (Ky; Kuv)\right)$$

(compare "Block diagram of noise reduction" on page 40)

The **Figure 16** shows the motion detector in more detail. Temporal noise reduction can be switched off by NRON (NRON=0). The I²C Bus parameter TNRFIY/C switches between a fixed noise reduction K-factor TNRVAY/C (TNRFIY/C=0) or a motion adaptive noise reduction K-factor (TNRFIY/C=1).

Figure 16 Block diagram of motion detector

In case of adaptive noise reduction the K-factor depends on the detected "Motion" (see **Figure 16**). The "Motion"-Ky/Kuv characteristic curve (LUT) is fixed inside the SDA 9410, but the characteristic curve can be changed by two I²C Bus parameters: TNRHOY/C and TNRKOY/C. TNRHOY/C shifts the curve horizontally and TNRKOY/C shifts the

curve vertically. For a fixed characteristic curve, the sensitivity of the motion detector is adjustable by TNRCLY/C.

Figure 17 LUT for motion detection

I ² C Bus parameter	0 (minimum value)	15 (maximum value)
TNRVAY/C	strong noise reduction (not motion adaptive, Ky/Kuv=0)	no noise reduction (not motion adaptive, Ky/Kuv=15)

Table 22 I²C Bus parameter TNRVAY/C

I ² C Bus parameter	Range
TNRHOY/C	-32, , 31
TNRKOY/C	-8,, 7

Table 23 I²C Bus parameter TNRHOY/C and TNRKOY/C

I ² C Bus parameter	0 (minimum value)	15 (maximum value)
TNRCLY/C	maximum sensitivity for motion -> strong noise reduction	minimum sensitivity for motion -> weak noise reduction

Table 24 I²C Bus parameter TNRCLY

I ² C Bus parameter	Sub address	Description
NRON 1: on 0: off	1Ah	Temporal Noise Reduction of Luminance and Chrominance On (SRC-Mode)
TNRSEL 1: separate 0: luminance motion detector	18h	Switch for motion detection of temporal noise reduction of chrominance signal
DTNRON 1: field 0: frame	1Ah	Delay for temporal noise reduction of luminance and chrominance signal
TNRFIY/C 1: off 0: on	18h/19h	Switch for fixed K-factor value defined by TNRVAY/C
TNRVAY/C	17h	Fixed K-factor for temporal noise reduction of luminance/chrominance
TNRHOY/C	18h/19h	Horizontal shift of the motion detector characteristic
TNRKOY/C	16h	Vertical shift of the motion detector characteristic
TNRCLY/C	15h	Classification of temporal noise reduction

Table 25Input write I²C Bus parameter

5.4.4 Noise measurement

The noise measurement algorithm can be used to change the I²C Bus parameters of the temporal noise reduction processing depending on the actual noise level of the input signal. This is done by the I²C Bus controller which reads the NOISEME value, and sends depending on this value different I²C Bus parameter sets to the temporal noise reduction registers of the SDA 9410. The NOISEME value can be interpreted as a linear curve from no noise (0) to strong noise (30). Value 31 indicates an overflow status and can be handled in different ways: strong noise or measurement failed.

Two measurement algorithms are included, which can be chosen by the I²C Bus parameter NMALG. In case NMALG=1 the noise is measured during the vertical blanking period in the line defined by NMLINE. For NMALG=0 the noise is measured during the first active line. In the latter case the delay of the noise reduction algorithm must be set to the frame difference value (DTNRON=0, I²C Bus sub address 1Ah). In both cases the value is determined by averaging over several fields.

The **Figure 18** shows an example for the noise measurement. The NMLINE I²C Bus parameter determines the line, which is used in the SDA 9410 for the measurement. In case of VINDEL=0 and NMLINE=0 line 3 of the field A and line 316 of the field B is

chosen. In case of VINDEL=0 and NMLINE=3 line 6 of the field A and line 319 of the field B is chosen.

Figure 18 Example of noise measurement

I ² C Bus parameter	Sub address	Description
NMALG	14h	Noise measurement algorithm 1: measurement during vertical blanking period (measure line can be defined by NMLINE) 0: measurement in the first active line
NMLINE	14h	Line for noise measurement (only valid for NMALG=1)

Table 26Input write I²C Bus parameter

I ² C Bus parameter	Sub address	Description
NOISEME	7Ah	Noise level of the input signal: 0 (no noise), , 30 (strong noise) [31 (strong noise or measurement failed)]
NMSTATUS	7Ch	Signals a new value for NOISEME 1: a new value can be read 0: current noise measurement has not been updated (compare chapter $PCBus$ on page 117)

Table 27Input read I²C Bus parameter

5.4.5 Letter box detection

The **Figure 19** shows the display of a 4:3 letter box source on 16:9 tube. Black bars on the top and bottom as well as on the right and on the left are visible. It is possible by vertical and horizontal expansion to display the picture on the whole tube. Therefore only the first line (Start Line of Active Area - SLAA) and the last line (End Line of Active Area - ELAA) of the active area must be known. The letter box detection algorithm detects SLAA and ELAA. Both I²C Bus parameters can be read out via I²C Bus. The μ C of the TV chassis can use both values to calculate the corresponding zoom factor for the vertical expansion.

Figure 19 Principle of letter box detection

The **Figure 20** shows the block diagram of the letter box detection. The letter box algorithm processes only the luminance data. Each incoming field is processed. The default value of SLAA is NALPFIPM+PD and of ELAA is 2*ALPFIPM+NALPFIPM+PD-1 (PD - Processing Delay), which means no letter box format source material.

Figure 20 Block diagram of letter box detection

Each line of the input picture will be assigned to one of three line types (LT) by the "Histogram" and "Line Type decision" block. The figure below shows in detail the functionality of both blocks. The "Histogram" block counts the amount of pixels (BC), which are larger or equal 2*TH_DN_BN (I²C Bus parameter, 1Ch). Depending on the counter value the line is assigned to one of the three line types by the "Line Type Decision" block. The I²C parameter TH_AA and TH_LB can be used to influence the result of the "Line Type Decision" block.

Line Type (LT)	Priority	BC
AA	1	>= 4 * TH_AA
LB	2	< 4 * TH_LB
UNS	3	$< 4 * TH_AA and >= 4 * TH_LB$

Table 28Line Type Decision of LBD

The line type AA marks lines which belong to an active area, the line type LB marks lines which belong to a letter box area (maybe including logos, subtitles) and the line type UNS marks lines which could not assigned with security to one of both line types mentioned before.

Figure 21 Histogram and line type decision

Based on the line types the first line of the active area (SLAA, I²C parameter 78h) and the last line of the active area (ELAA, I²C parameter 79h) is determined. Furthermore the information about reliability of the SLAA and ELAA value is determined. The reliability information is readable by I²C Bus of the parameters STATUS_SLAA and STATUS_ELAA. If STATUS_SLAA/STATUS_ELAA is equal "1" the SLAA/ELAA value is reliable, otherwise the SLAA/ELAA value is not reliable.

In addition a global reliability signal RELY exists, which is also readable by I²C Bus. The results of the letter box detection are reliable, if the RELY signal is read as "1". The "Reliability evaluation" block determines the RELY signal, which can be influenced by the I²C Bus parameter TH_MUNSL, TH_AUNS and TH_ALB. The table below explains the generation of the RELY signal. The thresholds TH_MUNSL, TH_AUNS and TH_ALB are compared with internal counter values UNSLENGTH, UNSAMOUNT and LBAMOUNT, respectively. If one of the three conditions is true, the RELY signal is set to not reliable. UNSLENGTH contains the maximum length of consecutive lines with the line type UNS. UNSAMOUNT contains the amount of lines with the line type UNS and LBAMOUNT contains the amount of line type LB.

RELY	
0 (not reliable)	UNSLENGTH > 16 * TH_MUNSL or UNSAMOUNT > 16 * TH_AUNS or LBAMOUNT > 16 *TH_ALB
1 (reliable)	otherwise

Table 29 Evaluation of the reliability signal RELY

The I²C Bus parameter TH_MA_AA can be used to force the SLAA and ELAA value to their default values. Therefore the amount of active area line types AA is counted in the

upper half of the input picture (AAFH) and the lower half of the input picture (AASH). If one of both counter values is greater as 2*TH_MA_AA + 112, the SLAA and ELAA I²C Bus parameters are set to their default values.

Output signals	
SLAA=NALPIPM+PD ELAA=2*ALPFIPM+SLAA-1 Status_SLAA=TRUE Status_ELAA=TRUE	(AAFH or AASH) >= 2 * TH_MA_AA + 112
no change of the values	otherwise

Table 30 Correction of "start/end-line decision filter" block

It is possible to make the results of the letter box detection visible on screen in real time to optimize the I²C Bus parameters. The figure below explains the different possibilities. The I²C Bus parameter VOLBD can be used to switch on (VOLBD=1) or off (VOLBD=0) the visibility function.

Figure 22 Visibility of letter box detection I²C Bus parameters

l²C Bus parameter [default]	Sub address	Description
TH_DN_BN [15]	1Ch	Darkness Brightness threshold
TH_LB [12]	1Ch,1Dh	Letter box threshold
TH_ALB [6]	1Dh	Amount of letter box threshold
TH_AA [50]	1Eh	Active area threshold
TH_MUNSL [5]	1Fh	Maximum length of insecure threshold
TH_AUNS [7]	1Fh	Amount of letter box and insecure threshold
TH_MA_AA [14]	20h	Maximum amount of active area threshold
VOLBD [0]	20h	Makes result of letter box detection visible on screen 1: on 0: off

Table 31 Input write I²C Bus parameter

I ² C Bus parameter	Sub address	Description
SLAA	78h	First line of active area = 2 * SLAA
ELAA	79h	Last line of active area = 2 * ELAA
STATUS_SLAA	7Bh	Status of SLAA 1: SLAA is reliable 0: SLAA is not reliable
STATUS_ELAA	7Bh	Status of SLAA 1: ELAA is reliable 0: ELAA is not reliable
RELY	7Bh	Reliability signal: 1: All values of letter box detection are reliable 0: All values of letter box detection are not reliable
LBDSTATUS	7Ch	Signals new values for letter box detection 1: new values can be read 0: current letter box detection measurement not finalized (compare chapter I^2CBUS on page 117)

Table 32 Input read I²C Bus parameter

Clock concept

5.5 Clock concept

Signals	Pin number	Description
CLKM	18	System clock input master channel
CLKS	58	System clock input slave channel
X1/CLKD	2	System clock input display channel

Table 33Input signals

Signals	Pin number	Description
CLKOUT	3	Clock output

Table 34Output signals

The SDA 9410 supports different clock concepts. The **Figure 24** shows a typical application of the SDA 9410. The frontend clock is connected to CLKM input. The second frontend clock is connected to CLKS input. The CLKOUT pin is connected to the backend and the X1/CLKD input is connected to a crystal oscillator. The **Figure 23** explains the clock switch, which may be used for the separate modes (see also **Table 37** "**Ingenious configurations of the HOUT and VOUT generator**" on page 80).

Figure 23 Clock concept of SDA 9410

Clock concept

Figure 24 Application for SDA 9410

CLKMDEN (5Fh)	PLLD input
0	CLKM
1	X1/CLKD

Clock	Used in block
CLKM_pll	ISCM, IFCM, VHCOMM, TSNR, LBD, LM, I ² C
CLKS_pll	ISCS, IFCS, VHCOMS, LM, I ² C
CLKD_pll	OSCM/S, ME, SRCM, SRCS, ED, MC, LM, DLTI, DCTI, Peaking, DAC, I ² C

Table 35 Clock concept switching matrix

I ² C Bus parameter	Sub address	Description
PLLMOFF 1: off 0: on	00h	PLLM master channel on or off, only for test purpose
PLLMRA	00h	PLLM range, only for test purpose
PLLSOFF 1: off 0: on	22h	PLLS slave channel on or off, only for test purpose
PLLSRA	22h	PLLS range
PLLDOFF 1: off 0: on	5Fh	PLLD display channel on or off, only for test purpose
PLLDRA	5Fh	PLLD range
CLKOUTON 1: enabled 0: disabled	5Fh	Output of system clock CLKOUT
CLKMDEN 1: X1/CLKD 0: CLKM	5Fh	Input clock for PLLD

Table 36Input write I²C Bus parameter

5.6 Application modes and memory concept

5.6.1 Introduction

The Main Memory of the SDA 9410 has an overall capacity of 6 Mbit. It is divided into two identical and independent 3 Mbit parts.

The Main Memory has 2 completely independent data inputs (master and slave channel) to enable a multitude of PIP features. In general the channels are asynchronous having 2 separate clock PLLs (CLKM, CLKS). Reading of master and slave data for display is performed using a third asynchronous clock (CLKD). In this way a decoupling of input and output clocks is achieved.

The Main Memory supports different operation modes of the SDA 9410 by adapted data configurations. The different modes are defined by the I²C Bus parameter MEMOP (I²C Bus sub address 53h).

МЕМОР	Memory operation mode	
00	SRC-Mode (Sample Rate Conversion)	
01	SSC-Mode (Split screen)	
10	MUP-Mode (Multi picture)	
11	not defined	

Table 37 Definition of MEMOP

In SRC operation mode the capacity to store 2 fields of the luminance and chrominance components of the master channel is supplied (4:1:1 or 4:2:0 format, I²C Bus parameter CHRFORM/CHRFORS, 12h/34h).

CHRFORM	Data format
00	4:1:1
01	4:2:0
1X	reserved

CHRFORS	Data format
0	4:1:1
1	4:2:0

Table 38Definition of CHRFORM/CHRFORS

The Figure 25 shows the differences between the 4:1:1, 4:2:2 and 4:2:0 data format.

Figure 25 Supported data formats

Additionally 3 fields of a decimated picture of the slave channel with the size of up to 1/ 9 of the original format can be stored (4:1:1 or 4:2:0 format). In this mode motion estimation and compensation (Micronas VDU algorithm) for the master channel is supported (up to 30 MHz clock frequency). In parallel it is possible to insert the slave channel at any display position using frame mode and without joint lines. Noise reduction algorithm by recursive filtering is supported only for the master channel in SRC-Mode.

In SSC-Mode the data configuration of master and slave channel can be different. Depending on the picture size it is possible to store only 1 field of luminance and chrominance data or 2 fields. The data configuration can be defined by the I²C Bus parameters ORGMEMM and ORGMEMS, respectively.

ORGMEMM	Data configuration of the memory	
1	2 fields (limited picture size in SSC- and MUP-Mode)	
0	1 field	

Table 39Definition of ORGMEM

ORGMEMS	Data configuration of the memory
1	3 fields PIP (SRC-Mode), 2 fields (restricted picture size, SSC and MUP Mode)
0	Slave channel blocked (SRC-Mode and ORGMEMM=1) 1 field (SSC- and MUP-Mode; SRC-Mode and ORGMEMM=0)

Table 40 Definition of ORGMEMS

Having 2 fields available for the master channel joint line free display can be activated. Storing 2 fields for both channels a complete joint line free display is possible. In both cases a suitable shift of the output raster phase is necessary (especially for 'Double Window' / 'Split Screen' / 'Picture And Picture' / 'Side by Side'). In SSC mode field repetition (Simple 100Hz AABB; Field repetition AAAA or BBBB) is used for interlaced scan (100/120 Hz) rate conversion, ABAB modes are not supported. For progressive scan conversion also only field based algorithms are possible (Simple 50Hz AA*, B*B; Field repetition AA*, B*B). For the definition of the different scan rate conversion algorithms compare **"Operation mode generator" on page 83**.

Positioning of the pictures on the display is done externally by specifying the start of reading for both channels.

In MUP-Mode the configurations and functions for both channels are programmable independently. Two fields of the master channel can be stored to achieve a joint line free display of one decimated live picture. Applying smaller decimation factors only one field can be stored and joint line free display is not possible any more. These 2 modes correspond to SSC configuration for the master channel, AABB mode is supported.

For the second channel or for both channels any number of decimated fields can be stored step by step. The horizontal positions of the pictures are adjustable in steps of 4 pixel, the vertical positions are also variable and have a step size of 2 lines. The width and the height of a decimated picture depend on the corresponding decimation factors. A maximum of 1 picture per channel can be live. Only field repetition (AAAA, BBBB) is supported in this mode. Other display modes cause raster artefacts in live pictures. Joint lines are also not removed in live pictures.

A special MUP-Mode based on SSC memory configuration enables storing of 2 fields of a decimated still picture. The fields are calculated using only one input field for decimation. The generated lines are interpreted alternating as A- and B-lines. The described method improves vertical resolution of still pictures clearly without causing motion artefacts. The limited memory capacity does not allow to fill the complete display with decimated pictures created with the described method using only one channel. The different configuration can be selected by the I²C Bus parameter VERRESM and VERRESS, respectively.

VERRESM/VERRESS	Vertical resolution in MUP-Mode (ORGMEMM/ORGMEMS=1 and WRFLDM/WRFLDS=1)
1	frame resolution
0	field resolution

Table 41Definition of VERRESM/VERRESS

5.6.2 Configuration controlling

The following **Table 42** and **Table 43** summarize all possible combinations of memory data configurations for the master and slave channel and the corresponding applications. The main configurations are no. 1 for motion compensated up conversion and PIP insertion, no. 5 for joint line free Split Screen display and no. 9 for high quality Multi Picture including one live channel.

Table 44 shows the possible picture sizes. The data formats can be always 4:2:0 or 4:1:1. In SSC and MUP mode the picture sizes are influenced by the I²C Bus parameters MEMWRM and MEMWRS.

Config.	МЕМОР	ORGMEMM	ORGMEMS			Slave (ave Channel	
						Fields		
				Y	С	Y	С	
1	00	1	1	2	2	3	3	
2	00	1	0	2	2	not av	vailable	
3	00	0	1	1	1	3 2	3 2	
4	00	0	0	1	1	1	1	
5	01	1	1	2	2	2	2	
6	01	1	0	2	2	1	1	
7	01	0	1	1	1	2	2	
8	01	0	0	1	1	1	1	
9	10	1	1	2	2	2	2	
10	10	1	0	2	2	1	1	
11	10	0	1	1	1	2	2	
12	10	0	0	1	1	1	1	

Table 42Programmable data configurations

Config.	Mode	Application
1	SRC	motion compensated up conversion (4:1:1 or 4:2:0) + PIP (ABAB, frame based)
2	SRC	motion compensated up conversion with enlarged picture size, no PIP facility
3	SRC	AABB conversion for master and slave channel, slave data is written twice (PIP- and SSC-configuration) used during switching from configuration 1 to configuration 7 without artefacts
4	SRC	2 independent not synchronized full size channels, AABB conversion
5	SSC	joint line free 'Double Window' / 'Split Screen' / 'PAP' display, AABB conversion
6	SSC	display of 2 live channels, AABB conversion slave channel exceeds the maximum double window size
7	SSC	display of 2 live channels, AABB conversion master channel exceeds the maximum double window size
8	SSC	2 independent not synchronized full size channels, AABB conversion
9	MUP	high resolution Multi Picture for master and slave channel (one live picture possible) AABB conversion
10	MUP	high resolution Multi Picture for master channel, reduced resolution Multi Picture for slave channel, AABB conversion
11	MUP	reduced resolution Multi Picture for master channel, high resolution Multi Picture for slave channel, AABB conversion
12	MUP	reduced resolution Multi Picture for master and slave channel, AABB conversion

Table 43 Applications of different data configurations

Config.	Master Channel		Slave Channel	Slave Channel		
	Size [Pixel X Lines	s]	Size [Pixel X Lines	X Lines]		
	MEMWRM=0	MEMWRM=1	MEMWRS=0	MEMWRS=1		
1	768 X 288		256 X 104	256 X 104		
2	768 X 341		not available			
3	768 X 288		256 X 104 / 512 X	X 176		
4	768 X 341		768 X 341			
5	512 X 256	768 X 170	512 X 256	768 X 170		
6	512 X 256	768 X 170	512 X 512	768 X 341		
7	512 X 512	768 X 341	512 X 256	768 X 170		
8	512 X 512	768 X 341	512 X 512	768 X 341		
9	512 X 256	768 X 170	512 X 256	768 X 170		
10	512 X 256	768 X 170	512 X 512	768 X 341		
11	512 X 512	768 X 341	512 X 256	768 X 170		
12	512 X 512	768 X 341	512 X 512	768 X 341		

Table 44Maximum picture sizes

MEMWRS	Memory write mode slave channel	
1	max. 768 pixel/line	
0	max. 512 pixel/line	

Table 45Definition of MEMWRS

MEMWRM	Memory write mode master channel (ORGMEM=01 or 10, SSC or MUP Mode)	
1	max. 768 pixel/line	
0	max. 512 pixel/line	

Table 46Definition of MEMWRM

l²C Bus parameter [Default]	Sub address	Description
CHRFORM [0)	12h	Chrominance data format master channel
CHRFORS [0]	34h	Chrominance data format slave channel
ORGMEMM [1]	58h	Data configuration of the memory master channel
ORGMEMS [1]	57h	Data configuration of the memory slave channel
MEMOP [00]	53h	Memory operation mode
VERRESM [0]	58h	Vertical resolution master channel
VERRESS [0]	57h	Vertical resolution slave channel
MEMWRM [0]	58h	Memory write mode master channel
MEMWRS [0]	57h	Memory write mode slave channel

Table 47Input write I²C Bus parameter

5.6.3 SRC mode configuration

Conditions: MEMOP=00, ORGMEMM=1, ORGMEMS=1

The described data configuration is typical for normal SRC mode with motion compensated 100 Hz ABAB conversion and joint line free frame based PIP insertion.

maximum picture size (master Channel) : 768 pixel X 288 lines

maximum picture size (slave channel) : 256 pixel X 104 lines

5.6.4 SSC and MUP mode configuration

Conditions: MEMOP=01 or 10, ORGMEMM=1, ORGMEMS=1

This is the typical configuration needed for joint line free 'Split Screen' / 'Double Window' or 'PAP' display in 4:1:1 or 4:2:0 format using AABB conversion. The same configuration can be used for Multi Picture mode displaying a joint line free live picture and multiple high resolution still pictures.

```
maximum picture size (master and slave) : 512 (768) pixel X 256 (170) lines
```

In MUP-Mode it is possible to write only A fields into the memory. Therefore the I²C Bus parameters

WRFLDM and WRFLDS can be used.

WRFLDM / WRFLDS	Write field (MUP-Mode, MEMOP=10)	
1	only A fields are written	
0	all fields are written corresponding to the actual mode	

Table 48Definition of WRFLDM/WRFLDS

I ² C Bus parameter [Default]	Sub address	Description
WRFLDM [0]	58h	Write field master channel (MUP-Mode)
WRFLDS [0]	57h	Write field slave channel (MUP-Mode)

Table 49Input write I²C Bus parameter

5.6.5 Configuration switch

This chapter deals with the switching between the different operation modes without causing visible picture artifacts. The typical application concerns the transition from SRC-PIP mode to SSC double window mode (see **figure 26 on page 63** and **figure 27 on page 64**) and furthermore to an exchange of master and slave channel (see **figure 28 on page 65**).

ORGMEMM	Data configuration of the memory (Master Channel)
0	SRC mode, ORGMEMM=1: no slave channel available SRC mode, ORGMEMM=0, SSC- and MUP-mode: 1 field is stored
1	SRC-mode: 3 fields are stored for PIP SSC- and MUP-mode: 2 fields are stored

Table 50Definition of ORGMEMM

ORGMEMS	Data configuration of the memory (Slave Channel)
0	SRC mode, ORGMEMM=1: no slave channel available SRC mode, ORGMEMM=0, SSC- and MUP-mode: 1 field is stored
1	SRC-mode: 3 fields are stored for PIP SSC- and MUP-mode: 2 fields are stored

Table 51Definition of ORGMEMS

MEMRDM	Memory read mode master channel (SRC-Mode, MEMOP=00)					
1	Reading only field memory area for AABB conversion					
0	Reading both field memory areas for ABAB conversion					

Table 52Definition of MEMRDM

MEMRDS	Memory read mode slave channel (SRC-Mode, MEMOP=00)			
1	Reading data in PIP-configuration (joint line free, ABAB)			
0	Reading data in SSC-configuration, 1 or 2 decimated fields, AABB			

Table 53Definition of MEMRDS

MEMWRM	Memory read mode master channel (only for SSC- and MUP-mode)			
0	512 pixel / line			
1	768 pixel / line			

Table 54 Definition of MEMWRM

MEMWRS	Memory read mode slave channel
0	SRC-mode: writing data in PIP configuration SSC- and MUP-mode: 512 pixel / line
1	SRC-mode: writing data in PIP- <u>and</u> in SSC configuration SSC- and MUP-mode: 768 pixel / line

Table 55 Definition of MEMWRS

A typical animated transition to a double window display can be divided into two parts: changing the operation mode from SRC to SSC (figure 26 on page 63) and changing the picture sizes and positions continuously according to a double window display (**figure 27 on page 64**). In SSC mode no vector driven up conversion modes are possible. Only field based algorithms are supported. The corresponding I²C commands are summarized in **Table 56** and **Table 57**.

Figure 26 Switching from SRC-PIP mode to SSC mode

Figure 27 Changing picture sizes to get a double window display

Steps	MEM- OP	ORG- MEMM	ORG- MEMS	MEM- WRM	MEM- WRS	MEM- RDS	MEM- RDM	Operation
1	00	1	1	0	0	0	0	SRC mode with 1/9 PIP insertion
2	00	1	1	0	0	0	0	a field based up conversion mode must be programmed by STOPMOM and STOPMOS
2a*	00	1	1	0	0	0	1	only one field is read for master channel (reduced vertical resolution)
3	00	0	1	0	1	0	X	memory capacity of master channel is reduced to 1 field memory organization of slave channel is prepared for SSC configuration
4	00	0	1	0	1	1	Х	slave channel reading is switched to SSC memory configuration
5	01	0	1	1	0	Х	Х	SSC mode: full size master picture, 1/9 size of slave picture

* Step 2a may be left out

Steps	MEM- OP	ORG- MEMM	ORG- MEMS	MEM- WRM	MEM- WRS	MEM- RDS	Operation
6	01	0	1	1	0	Х	changing picture sizes of master and slave by programming the corresponding decimation I ² C Bus parameters
7	01	1	1	0	0	х	reducing the width below 512 pixel for the master picture two fields can be stored

Table 57 Changing the picture sizes to double window format

Starting in SRC mode with a PIP insertion (step 1) at first a field based up conversion mode must be chosen for both channels, e.g. AABB conversion for interlaced modes and intrafield interpolation for progressive modes (step 2). Now the capacity for the master channel can be reduced to 1 field (step 3). The free memory capacity is used to write the slave data at two address areas in parallel corresponding to SRC-PIP configuration and SSC configuration. In step 4 the reading of the slave channel data is switched to SSC configuration. In the last step also the master channel is switched to SSC mode. In this configuration we can store 1 field of the master channel and 2 fields of the slave channel. The Joint Line Controller can be activated and joint line free display is possible.

Reducing the size of the master picture and enlarging the slave picture size is performed in step 6 in table . During this phase we can get problems with joint line free display of the master picture until the horizontal width is below 512 pixel. Now also the master channel is enabled to store 2 fields and joint line free display is possible again (step 7). In this configuration double window display is performed.

During all steps positioning of both pictures is free programmable to enable multiple variations of the animation.

Figure 28 Completing the operations to a master slave exchange

Steps	MEM- OP	ORG- MEMM	ORG- MEMS	MEM- WRM	MEM- WRS	MEM- RDS	Operation
8	01	1	1	0	0	X	changing picture sizes of master and slave by programming the corresponding decimation I ² C Bus parameters
9	01	1	0	0	1	X	exceeding a width of 512 pixel for the slave picture only one field can be stored
10	01	1	0	0	1	Х	further changes of picture sizes until full size slave picture and 1/9 size master picture is displayed
11	01	0	1	1	0	Х	switching synchronization to slave channel and exchanging the inputs
12	00	0	1	0	1	1	switching to SRC mode using still field based up conversion
13	00	0	1	0	1	0	slave channel reading is switched to SRC memory configuration
14	00	1	1	0	0	0	also the master channel works frame based
15	00	1	1	0	0	0	programming STOPMOM and STOPMOS to frame based up conversion

Table 58Performing a master slave exchange

Starting with the double window configuration (**figure 27 on page 64**) the procedure is continued with an animation to perform an exchange of the master and slave sources to get a display like it is shown in **figure 28 on page 65**.

In step 8 the picture size of the master channel is decreased and the size of the slave picture is increased continuously. When the width of the slave picture exceeds 512 pixel only one field can be stored (step 9). Joint line free display of the slave channel is not always possible in this configuration. When full size slave picture format and 1/9 master picture size is reached (step 10) an exchange of master and slave channel is possible. Unstable picture phases can be avoided when the display raster phase is adapted to the slave channel before the hardware exchange of both sources is done. For display phase raster shifting see **"Master slave switch" on page 68**.

Now we can activate the SRC mode again. At first we just change the mode maintaining the field based conversions (step 12). Then the slave data configuration of the memory is changed to SRC configuration (step 13) and at last the master channel memory capacity is enlarged to 2 fields (step 14) and frame based up conversion modes are enabled (step 15).

5.6.6 Joint line free display

This chapter describes the I²C Bus parameters to get a joint line free display in SSC mode.

I ² C Bus parameter [Default]	Sub address	Description
RSHFTM [0]	55h	Joint line free display of master channel by shifting the output raster phase (SSC-Mode) 1: enabled 0: disabled
RSHFTS [0]	55h	Joint line free display of master and slave channel by shifting the output raster phase (SSC-Mode, RSHFTM=1) 1: enabled 0: disabled
SHFTSTEP [0100]	55h	Increment for raster phase shift per output frame (lines)
PROG_THRES [0111100]	56h	Threshold to display progressive PIP without joint lines

Table 59Input write I²C Bus parameter

l²C Bus parameter	Description
SHIFTACT	indicates active shifting process of the display raster phase 0: display phase shifting not active 1: display phase shift active

Table 60Output read I²C Bus parameter

A special circuit is implemented to achieve a joint line free display in SSC mode (e.g. Double Window Display). This circuit synchronizes the two input sources and removes the joint lines by automatic controlled shifting of the display raster phase. This procedure enlarges the value of OPDELM resulting in an delayed start of the output processing.

The I²C Bus parameters RSHFTM and RSHFTS enable joint line free display for master and slave channel, separately. SHFTSTEP fixes the amount of lines which is added to OPDELM with each output frame. The readable I²C Bus parameter SHIFTACT signalizes the progressing shifting operation.

It is recommended to enable the registers RSHFTM and RSHFTS in all application modes.

Mode	Input Master Channel	Input Slave Channel	Output Display Channel	Comment
SRC	625/50i	625/50i	625/100i 625/50p	Motion compensation for master channel possible
SRC	525/60i	525/60i	525/120i 525/60p	Motion compensation for master channel possible
SRC	625/50i	525/60i	625/100i 625/50p	joint line free display for slave channel possible (NEW)
SRC	525/60i	625/50i	525/120i 525/60p	joint line free display for slave channel possible (NEW)
SSC/ MUP	625/50i	625/50i	625/100i 625/50p	No motion compensation possible
SSC/ MUP	525/60i	525/60i	525/120i 525/60p	No motion compensation possible
SSC/ MUP	625/50i	525/60i	625/100i 625/50p	No motion compensation possible, no joint line free display for slave channel possible
SSC/ MUP	525/60i	625/50i	525/120i 525/60p	No motion compensation possible, no joint line free display for slave channel possible

Table 61Supported data formats

5.6.7 Master slave switch

This chapter describes the I²C Bus parameters used to execute a master and slave exchange.

l²C Bus parameter [Default]	Sub address	Description
MASTSLA [0]	55h	Master / Slave shift: 1: Master and slave input signals are exchanged, reset of display raster shift 0: Display raster is synchronized to input master channel (vertical sync)
MASLSHFT [0]	56h	Master / Slave shift: 1: Display raster is shifted slave phase to prepare a master/slave switch 0: Display raster is synchronized to input master channel (vertical sync)

Table 62Input write I²C Bus parameter

I ² C Bus parameter [Default]	Sub address	Description
SHIFTACT	7Fh	Shifting of display raster phase active 1: phase shift in progress 0: phase shift not active

Table 63 Output read I²C Bus parameter

Master slave exchange means an animated exchange of the master and slave picture source without visible synchronization problems of the deflection PLL compared with a hard switch between both sources. To avoid this synchronization problem the display raster phase is slowly shifted to a position that fits to the slave channel sync pulses. Then the exchange can be done without visible artefacts. For the animation see **"Configuration switch" on page 61**.

What to do to perform a master slave switch:

1.I²C Parameter MASLSHFT must be set. Shift process is started.

2.The I²C output signal SHIFTACT must be observed. After setting MASLSHFT is becomes '1' and signalizes that the shift process is active. When it becomes '0' the shift process is finished and the desired phase of the display raster is obtained.

3.At the same time exchanging of master and slave inputs and setting of I²C parameter MASTSLA must be performed. Now the chip is synchronized to the former slave channel that now has become the master.

4.At last the I²C Bus parameters MASLSHFT and MASTSLA should be reset.

5.6.8 Refresh and still picture mode

The master and the slave channel picture can be frozen by the I²C Bus parameter FREEZEM and FREEZES, respectively. The I²C Bus parameters REFRON and REFRPER may be used to activate a memory refresh for the internal memory.

I ² C Bus parameter [Default]	Sub address	Description
FREEZEM [0]	58h	Freeze picture master 1: freezed (no writing of master channel) 0: live
FREEZES [0]	57h	Freeze picture slave 1: freezed (no writing of slave channel) 0: live
REFRPER [00]	53h	Refresh period of the memory (REFRON=1; 50 Hz, 625 lines standard) 00: ~ 10ms 01: ~ 7ms 10: ~ 5.5ms 11: ~ 4ms
REFRON [0]	55h	Refresh of internal memory 1: memory refresh activated 0: no memory refresh

Table 64Input write I²C Bus parameter

5.6.9 Memory management and animation controlling

The **"Example for animation" on page 71** shows a possible application of the SDA 9410. 11 still pictures plus one life picture (cup of coffee) are located around a second life (boat) picture (see picture number 1). The still pictures plus one life picture (cup of coffee) are located in the slave memory and the life picture (boat) in the master memory. The user wants to switch now between the cup of coffee and the boat channel. A possible animation could look like this. The boat will be compressed and disappears (number 2 and number 3). Due to the fact, that only background colour should be visible, the parts of the life picture, which disappear after compression, will be overwritten with the back ground colour. Afterwards the new channel is expanded and overwrites the border colour (cup of coffee, number 4 and number 5).

To support this and other features several I²C Bus parameters exists, which will be described in more detail afterwards.

Figure 29 Example for animation

The I²C Bus parameters IPOSXM and IPOSYM or IPOSXS and IPOSYS, respectively, specify the position of the left upper corner of a stored picture. The figure below explains the functionality of the I²C Bus parameters. The whole memory is organized as blocks, which have a width of 32 pixels. The position (x,y) defined by the I²C Bus parameters is defined by the equation below:

$$(x, y) = (32 \bullet (\frac{|POSXM|}{8}) + 4 \bullet (|POSXM| modulo 8), |POSYM)$$

Figure 30 Equation of the position of the left upper picture corner

The IPOSYM and IPOSYS I²C Bus parameter specify the vertical position with a resolution of one line for 4:1:1 format and 2 lines for 4:2:0 format for the master and slave channel, respectively. The 5 MSBs of the IPOSXM and IPOSXS defines the horizontal position with a resolution of 32 pixels (block resolution). The 3 LSBs of IPOSXM and IPOSXS are used for fine positioning of the picture in a block with a resolution of 4 pixels. Due to the fact, that only blocks can be written to the memory, the pixels left of the fine positioning are filled up with border values (border values are defined by YBORDERM/YBORDERS, UBORDERM/UBORDERS, VBORDERM/VBORDERS). If the number of pixels is smaller as 32 pixels (block size), the missing pixels of a block are also filled up with border values.

Figure 31 Explanation of memory management I

The Figure 32 shows a picture (boat, number 1), which is located with the left upper corner at the position (x1,y1). The picture will be compressed in vertical and horizontal direction and stored at the position (x2,y2). The vertical and horizontal compression mechanism of the input signal was explained before (compare "Vertical and horizontal compression (VHCOMM/VHCOMS)" on page 32). This result could look like as showed in the picture number 2b. Parts of the original boat are still visible. Therefore in addition the I²C Bus parameters LEBORDM/LEBORDS, RIBORDM/RIBORDS, UPBORDM/UPBORDS and LWBORDM/LWBORDS exist. These I²C Bus parameters specify the amount of pixels at the left side and the right side and the amount of lines at the top and the bottom which has to be written in addition into the memory with coloured border values (I²C Bus parameters YBORDERM, YBORDERS, UBORDERM, UBORDERS, VBORDERM, VBORDERS). Then the result could look like as showed in the picture number 2a (white border colour). The amount of pixels at the left side can be defined by the I²C Bus parameters LEBORDM/LEBORDS (amount of border pixels = 4 * LEBORDM/LEBORDS) and the amount of pixels at the right side can be defined by the I²C Bus parameter RIBORDM/RIBORDS (amount of border pixels = 4 * RIBORDM/ RIBORDS). The maximum amount of pixels, which can be written in addition, is 28 pixels on each side. The I²C Bus parameters UPBORDM/S and LWBORDM/S specify the amount of lines which has to be written in addition into the memory at the upper and lower edge of the picture with coloured border values. The maximum amount of lines, which can be written in addition, is 15 on each side. But there is a limitation that the sum of UPBORDM/UPBORDS + LWBORDM/LWBORDS should not exceed 20 (PAL) lines. In horizontal direction as mentioned before only blocks (32 pixels) can be written into the memory. That means for instance if the LEBORDM parameter has a value bigger as zero and the 3 LSBs of IPOSXM parameter are zero (start position at a begin of a block), that the complete block on the left side of the block specified by IPOSXM will be filled with border colour.

Figure 32 Explanation of memory management II

So the animation shown in the **Figure 32** can be done in the following way. The picture (boat) has at the beginning a defined size (defined by the I²C Bus parameters APPLM1, ALPFM1, INTHM1, DEZHM1, INTVM1, DEZVM1) and the left upper corner of the picture is located at the position (x1,y1) (defined by IPOSXM1, IPOSYM1). Specify the new picture size. Set the corresponding I²C Bus parameters (APPLM2, ALPFM2, INTHM2, DEZHM2, INTVM2, DEZVM2) to get the new picture size. Specify the new vertical and horizontal position (x2,y2) (defined by IPOSXM2, IPOSYM2). Specify in addition the amount of lines at the upper and lower edge, which has to be overwritten with border values. In addition the amount of pixels at the left and right edge, which has to be overwritten with border values (LWBORDM, UPBORDM, LEBORDM, RIBORDM). Send the new values to the I²C interface. Remember that the reduction of the picture is limited in horizontal and vertical direction, if the border should be overwritten with border colour.

The **Figure 33** shows in detail what happens by means of a horizontal bar, which is horizontally reduced. The width of the bar is 84 pixels (compare **Figure 33**). The position x1, defined by IPOSX1 is for instance,

IPOSXM1=00001100b=12 => x1 = 32 * 1 + 4 * 4 = 48

The I²C Bus parameters LEBORDM and RIBORDM are both equal 0. The first block and the last block are filled up with border values (black colour - background value).

The bar is compressed horizontally and the new width of the bar is 44 pixels. The new position defined by IPOSX2 after the reduction step may be

IPOSXM2=00010001b=17=>x2 = 32 * 2 + 4 * 1 = 68.

That means the actual picture size is reduced for 40 pixels, 20 pixels at the left side (Left Side = 68 - 48 = 20) and 20 pixels at the right side (Right Side = 132 - 20). Therefore the

I²C Bus parameter LEBORDM has to be set to LEBORDM=5 (amount of pixels = 4*LEBORDM = 4*5 = 20), if the pixels remaining in the memory should be overwritten with border values. In addition the I²C Bus parameter RIBORDM has to be set to RIBORDM=5 (amount of pixels = 4*RIBORDM = 4*5 = 20), if the pixels remaining in the memory should be overwritten with border values. The new position of the left edge is 68 and begin of the block is 64, thus the difference between the begin of the bar and the actual block is 68-64=4. That means that from the additional 20 pixels, which have to be written left of the bar, at least 16 pixels belong to the block which begins at the position 32. That means, that the complete block (begin at position 32) is filled up with border values. The same argumentation is valid for the right edge of the bar.

Figure 33 Explanation of memory management III

Repeating the procedure described above must be used for an animation as explained in **Figure 29**.

I ² C Bus parameter [Default]	Sub address	Description
UPBORDM [0]	06h	Amount of upper border lines by vertical compression master
LWBORDM [0]	06h	Amount of lower border lines by vertical compression master
LEBORDM [0]	03h	Amount of left border pixels by horizontal compression master
RIBORDM [0]	03h	Amount of right border pixels by horizontal compression master
UPBORDS [0]	28h	Amount of upper border lines by vertical compression slave
LWBORDS [0]	28h	Amount of lower border lines by vertical compression slave
LEBORDS [0]	25h	Amount of left border pixels by horizontal compression slave
RIBORDS [0]	25h	Amount of right border pixels by horizontal compression slave
IPOSXM [0]	02h	Horizontal picture position in the memory for master
IPOSXS [0]	24h	Horizontal picture position in the memory for slave
IPOSYM [0]	01h	Vertical Picture Position in the Memory for master
IPOSYS [0]	23h	Vertical Picture Position in the Memory for slave

Table 65Input write I²C Bus parameter

It is possible to write border colours instead of the master or slave channel in different areas. Therefore the I²C parameters FORCOLM and FORCOLS can be used.

l²C Bus parameter [Default]	Sub address	Description
YBORDERM [0001]	04h	Y border value (Yborder(3) Yborder(2) Yborder(1) Yborder(0) 0 0 0 0 = 00010000 = 16), YBORDERM defines the 4 MSB's of a 8 bit value
UBORDERM [1000]	05h	U border value (Uborder(3) Uborder(2) Uborder(1) Uborder(0) 0 0 0 0 = 10000000 = 128), UBORDERM defines the 4 MSB's of a 8 bit value
VBORDERM [1000]	05h	V border value (Vborder(3) Vborder(2) Vborder(1) Vborder(0) 0 0 0 0 = 10000000 = 128), VBORDERM defines the 4 MSB's of a 8 bit value
YBORDERS [0001]	26h	Y border value (Yborder(3) Yborder(2) Yborder(1) Yborder(0) 0 0 0 0 = 00010000 = 16), YBORDERS defines the 4 MSB's of a 8 bit value
UBORDERS [1000]	27h	U border value (Uborder(3) Uborder(2) Uborder(1) Uborder(0) 0 0 0 0 = 10000000 = 128), UBORDERS defines the 4 MSB's of a 8 bit value
VBORDERS [1000]	27h	V border value (Vborder(3) Vborder(2) Vborder(1) Vborder(0) 0 0 0 0 = 10000000 = 128), VBORDERS defines the 4 MSB's of a 8 bit value
FORCOLM [0]	04h	Force colour master channel 1: on 0: off
FORCOLS [0]	26h	Force colour slave channel 1: on 0: off

 Table 66
 Input write I²C Bus parameter

5.7 Output sync controller (OSCM/S)

Signals	Pin number	Description
HOUT	4	horizontal synchronization signal (polarity programmable, I ² C Bus parameter 4Ah HOUTPOL, default: high active)
VOUT	5	vertical synchronization signal (polarity programmable, I ² C Bus parameter 4Ah VOUTPOL, default: high active)
BLANK	7	free programmable horizontal blanking signal (polarity programmable, I ² C Bus parameter 49h BLANKPOL, default: high active)
INTERLACED	6	interlaced signal (can be used for AC coupled deflection circuits)

Table 67Output signals

The output sync controller generates horizontal and vertical synchronization signals for the scan rate converted output signal. The figure below shows the block diagram of the OSCM/S and the existing I²C Bus parameters.

Figure 34 Block diagram of OSCM/S

Furthermore the output sync controller derives framing signals from the generated HOUT and VOUT for the output data processing. The framing signals depend on different I²C Bus parameters. The whole output picture is a combination of three channels:

- 1: Background channel
- 2: Output channel master
- 3: Output channel slave

The background channel has always the lowest priority. The priority between output channel master and slave is defined by an I²C Bus parameter PRIORMS. The figure below shows an example for the combination of the three channels. The background colour black has lowest priority. The picture content of master channel is a phone and the picture content of slave channel is a airplane. In this case the slave channel has the highest priority. To enable or disable the display of the master or slave channel the I²C parameters MASTERON and SLAVEON can be used.

Figure 35 Output I²C Bus parameter

I ² C Bus parameter [Default value]	Sub address	Description		
NALOPD [22]	36h	Not Active Line OutPut Display defines the number of lines from the V-Sync to the first active line of the output frame		
ALPFOPD [144]	37h	Active Lines Per Field OutPut Display defines the number of active lines per output frame		
VERPOSM [0]	3Ch	VERtical POSition Master defines the number of lines from the first active line of the background channel to the first active line of the master channel		
VERWIDTHM [72]	40h	VERtical WIDTH Master defines the number of active lines of the master channel per output frame		
VERPOSS [0]	3Dh	VERtical POSition Slave defines the number of lines from the first active line of the background channel to the first active line of the slave channel		
VERWIDTHS [144]	41h	VERtical WIDTH Slave defines the number of active lines of the slave channel per output frame		
LPFOP [156]	38h	Lines Per Frame OutPut defines the number of lines per output frame (only valid for VOUTFR=1)		
NAPOPD [0]	39h	Not Active Pixel OutPut Display defines the number of pixels from the H-Sync to the first active pixel		
APPLOPD [90]	43h	Active Pixels Per Line OutPut Display defines the number of pixels per line (background, master and slave channel)		
HORPOSM [0]	3Ah	HORizontal POSition Master defines the number of pixels from the first active pixel of the background channel to the first active pixel of the master channel		
HORWIDTHM [90]	3Eh	HORizontal WIDTH Master defines the number of active pixels of the master channel		
HORPOSS [0]	3Bh	HORizontal POSition Slave defines the number of pixels from the first active pixel of the background channel to the first active pixel of the slave channel		
HORWIDTHS [180]	3Fh	HORizontal WIDTH Slave defines the number of active pixels of the slave channel		
PPLOP [432]	45h, 46h	Pixel Per Line OutPut defines the number of pixels between two consecutive H-Syncs (only valid for HOUTFR=1)		
BLANDEL [0]	42h	BLANk DELay defines the distance from the H-Sync to the active edge of the BLANK signal in number of CLKD clocks		
BLANLEN [180]	44h	BLANk LENgth defines the length of the BLANK signal in number of CLKD clocks		
HOUTDEL [0]	35h	Horizontal delay of HOUT and VOUT signal in clocks of CLKD		
PRIORMS [1]	43h	Priority of master or slave channel: 1: master channel priority 0: slave channel priority (SFCPR should be fixed to V_{SS}).		

I

I ² C Bus parameter [Default value]	Sub address	Description
MASTERON [1]	53h	Display of master channel: 1: enabled 0: disabled
SLAVEON [0]	53h	Display of slave channel: 1: enabled 0: disabled

Figure 36 Output write I²C Bus parameter

The next paragraphs describe the HOUT and VOUT generator in more detail. Both generators have a so called "locked-mode" and "freerunning-mode". Not all combinations of the modi make sense. The table below shows ingenious configurations.

Mode	HOUTFR	VOUTFR	CLKMDEN
"H-and-V-locked"	0	0	0
"H-freerunning-V-locked"	1	0	1
"H-and-V-freerunning"	1	1	1

Figure 37 Ingenious configurations of the HOUT and VOUT generator

5.7.1 HOUT generator

The HOUT generator has two operation modes, which can be selected by the I²C Bus parameter HOUTFR. The HOUT signal is active high (HOUTPOL=0) for 64 clock cycles (X1/CLKD). In the freerunning-mode the HOUT signal is generated depending on the PPLOP I²C Bus parameter. In the locked-mode the HOUT signal is locked on the incoming H-Sync signal HIN. The polarity of the HOUT signal is programmable by the I²C Bus parameter HOUTPOL. The BLANK signal can be used to mark the active part of a line. To avoid transition artifacts of digital filters the number of active pixels can be symmetrically reduced using the CAPPM and CAPPS I²C Bus parameter.

I ² C Bus parameter	Sub address	Description
HOUTFR 1: free run 0: locked mode	4Ah	HOUT generator mode select
CAPPM 00: k = 0 01: k = 8 10: k = 16 11: k = 24	46h	Reducing factor for the HORizontal WIDTH Master value of the master channel Number of active pixels per line = 8 * HORWIDTHM - 2*k
CAPPS 00: k = 0 01: k = 8 10: k = 16 11: k = 24	46h	Reducing factor for the HORizontal WIDTH Slave value of the master channel Number of active pixels per line = 8 * HORWIDTHM - 2*k

Table 68Output write I²C Bus parameter

5.7.2 VOUT generator

The VOUT generator has two operation modes, which can be selected by the I²C Bus parameter VOUTFR. The VOUT signal is active high (VOUTPOL=0) for two output lines. In the freerunning-mode the VOUT signal is generated depending on the LPFOP I²C Bus parameter.

In the locked-mode the VOUT signal is synchronized by the incoming V-Sync signal VIN (means the internal VIN delayed by the I²C Bus parameter OPDELM, compare **"Input sync controller (ISCM/ISCS)" on page 22**). The RMODE I²C Bus parameter (line-scanning pattern mode 1: progressive, 0: interlaced) determines the scan rate conversion mode. If RMODE=1, then for each incoming V-sync signal VIN an outgoing V-sync signal VOUT has to be generated (e.g. 50 Hz interlaced to 50 Hz progressive scan rate conversion). If RMODE=0, then during one incoming V-Sync signal, two VOUT pulses have to be generated (e.g. 50 Hz interlaced to 100 Hz interlaced scan rate conversion).

Figure 38 VOUT generation depending on I²C Bus parameter RMODE

The polarity of the VOUT signal is programmable by the I²C Bus parameter VOUTPOL.

The VOUT signal has a delay of two CLKOUT clocks to the HOUT signal or in case of interlaced a delay of a half line plus two CLKOUT clocks.

The INTERLACED signal can be used for AC-coupled deflections. Depending on the I²C Bus parameter INTMODE the value of this signal will be generated. The **Table 69** shows the definition of this signal (compare **"Operation mode generator" on page 83**).

	output field phase	output field phase	output field phase	output field phase
	0	1	2/0	3/1
INTMODE	INTMODE(0)	INTMODE(1)	INTMODE(2)	INTMODE(3)

Table 69 Output write I²C Bus parameter INTMODE

I ² C Bus parameter	Sub address	Description
VOUTFR 1: free run 0: locked mode	4Ah	VOUT generator mode select
RMODE 1: progressive 0: interlaced	48h	line-scanning pattern mode
INTMODE	49h	Free programmable INTERLACED signal for AC-coupled deflection stages

Table 70 Output write I²C Bus parameter INTMODE

5.7.3 Switching from H-and-V-freerunning to H-and-V-locked mode

In H-and-V-freerunning mode, generally, the phase of the generated synchronization line-scanning pattern has no correlation to the input line-scanning pattern. A hard switch from the H-and-V-freerunning mode to the H-and-V-locked mode therefore would cause visible synchronization artefacts. To avoid these problems the SDA 9410 enlarges the line and the field lengths of the output sync signals HOUT and VOUT in a defined procedure to enable an invisible synchronization of the freerunning output to the input.

For vertical synchronization the maximum synchronization time is 260 ms for interlaced and 520 ms for progressive display modes. Horizontal synchronization is performed in a maximum time of 50 ms. To get the best performance it is recommended to change at first the vertical and after the mentioned delay times the horizontal mode from free running to locked.

5.7.4 Operation mode generator

The VOUT generator determines the VOUT signal. For proper operation of the VOUT generator information about the line-scanning pattern sequence is necessary. The I²C Bus parameters STOPMOM (STatic OPeration MOde Master), STOPMOS (STatic OPeration MOde Slave) and the I²C Bus parameter ADOPMOM (ADaptive OPeration MOde Master) define the line-scanning pattern sequence and the scan rate conversion algorithms.

Figure 39 Explanation of field and display line-scanning pattern

The interlaced input signal (e.g. 50 Hz PAL or 60 Hz NTSC) is composed of a field A (odd lines) and a field B (even lines).

Aⁿ - Input signal, field A at time n,

Bⁿ - Input signal, field B at time n

The field information describes the picture content. The output signal, which could contain different picture contents (e.g. field A, field B) can be displayed with the display line-scanning pattern α or β .

 (A^{n},α) - Output signal, field A at time n, displayed as line-scanning pattern α ,

 (A^{n},β) - Output signal, field A at time n, displayed as line-scanning pattern β ,

 $((A^*)^n,\beta)$ - Output signal, field A line-scanning pattern interpolated into field B at time n, displayed as line-scanning pattern β

 $(A^n B^{n-1}, \alpha + \beta)$ – Output signal, frame AB at time n, progressive

The table below describes the different scan rate conversion algorithms and the corresponding line-scanning pattern sequences. The delay between the input field and the corresponding output fields depends on the OPDELM parameter and the default value for the delay is an half input field.

Figure 40 Explanation of operation mode timing

		Input field A		Input field B	
STOP- MOM	Scan rate conversion algorithm	Output field an phase 0	Output field bn phase 1	Output field cn phase 2/0	Output field dn phase 3/1
0000	VDU, camera mode	p(c) * ⁾ , α	p(d) , β	p(a) , α	p(b) , β
0001	VDU, film mode, phase 0, PAL	p(mc) , α	p(md) , β	p(ma), α	p(mb) , β
0010	VDU, film mode, phase 1, PAL	p(ma), α	p(mb) , β	p(mc) , α	p(md) , β
0011	Frame repetition, ABAB	A^n, α	B ⁿ⁻¹ , β	A ⁿ , α	B ⁿ , β
0100	FRAME repetition, BABA	B ⁿ⁻¹ , β	A ⁿ , α	B ⁿ , β	A^n, α
0101	Simple 100, AABB	A^n, α	A ⁿ , α	B ⁿ , β	Β ⁿ , β
0110	Simple 100, BBAA	B ⁿ⁻¹ , β	B ⁿ⁻¹ , β	A ⁿ , α	A ⁿ , α
0111	Field repetition, AAAA I	A^n, α	A ⁿ , β	A ⁿ , α	A ⁿ , β
1000	Field repetition, AAAA II	A^n, α	A ⁿ , α	A ⁿ , α	A ⁿ , α
1001	Field repetition, BBBB I	B ⁿ⁻¹ , α	B ⁿ⁻¹ , β	B ⁿ , α	B ⁿ , β
1010	Field repetition, BBBB II	B ⁿ⁻¹ , β	B ⁿ⁻¹ , β	B ⁿ , β	Β ⁿ , β
1100	Simple 100, AA*B*B	A^n, α	(A *) ⁿ , β	(B*) ⁿ , α	B ⁿ , β
1101	Simple 100, BB*A*A	B ⁿ⁻¹ , β	(B*) ⁿ⁻¹ , α	(A *) ⁿ , β	A^n, α
1110	VDU, film mode, phase 0, NTSC	p(ma), α	p(mb) , β	p(ma), α	p(mb) , β
1111	VDU, film mode, phase 1, NTSC	p(mc) , α	p(md) , β	p(mnc), α	p(mnd) , β

Table 71Static operation modes (only valid for ADOPMOM=0, RMODE=0)

*)p(a): a field - motion compensated; p(b): b field - motion compensated p(c): c field - motion compensated; p(d): d field - motion compensated p(ma): a field - motion compensated film mode; p(mb): b field - motion compensated film mode p(mc): c field - motion compensated film mode; p(md): d field - motion compensated film mode p(mnc): c field - motion compensated film mode for NTSC

p(mnd): d field - motion compensated film mode for $\ensuremath{\mathsf{NTSC}}$

		Input field A	Input field B
STOPMOM	Scan rate conversion algorithm	Output field phase 0	Output field phase 2/0
0000	VDU, camera mode	p(cd)* ⁾ , α+β	p(ab), α+β
0001	VDU, film mode, phase 0, PAL	p(mcd), $\alpha+\beta$	p(mab), α+β
0010	VDU, film mode, phase 1, PAL	p(mab), α+β	p(mcd), α + β
0011	Frame repetition, AB	(A ⁿ B ⁿ⁻¹), α+β	($A^n B^n$), $\alpha + \beta$
0100	Frame repetition, AB median	$(A^{n} (B^{*})^{n-1}), \alpha+\beta$	$((A^*)^{n} B^{n}), \\ \alpha + \beta$
0101	Simple 50, AA*, B*B	$(A^n (A^*)^n), \alpha+\beta$	$((B^*)^{n}B^{n}),\\\alpha+\beta$
1100	Field repetition, AA*	$(A^{n} (A^{*})^{n}), \alpha+\beta$	$(A^{n}(A^{*})^{n}),\\\alpha+\beta$
1101	Field repetion, BB*	((B*) ⁿ⁻¹ B ⁿ⁻¹), α+β	$((B^*)^{n-1} B^{n-1}), \alpha+\beta$
1110	VDU, film mode, phase 0, NTSC	p(mab), α+β	p(mab), α+β
1111	VDU, film mode, phase 1, NTSC	p(mcd), $\alpha+\beta$	p(mnc), α + β

Table 72Static operation modes (only valid for ADOPMOM=0, RMODE=1)

*)p(ab): a+b field - motion compensated

p(cd): c+d field - motion compensated

p(mab): a+b field - motion compensated film mode

p(mcd): c+d field - motion compensated film mode

p(mnc): c field - motion compensated film mode for NTSC

For STOPMOM=0000 (Micronas VDU) the high performance motion compensation algorithm is used for scan rate conversion which results in a high performance line flicker reduction, double contour elimination and perfect motion display.

The table **Table 73** "Special combinations of STOPMOM and ADOPMOM" on **page 88** explains some important combinations of both registers. It is possible to force some modes like VDU CAMERA, VDU PAL film mode and VDU NTSC film mode with manual or automatic phase detection in case of film mode.

STOPMOM	ADOPMOM	Description	
0000	000	force VDU CAMERA mode	
0001	000	force VDU PAL film mode Phase 0	
0010	000	force VDU PAL film mode Phase 1	
0001	100	force VDU PAL with automatic phase detection; PAL film mode is se only once, if it is detected; after that it will be fixed until another mode selected from the user; STOPMOM 0001 or 0010 is selected automatically	
0010	100	same as STOPMOM 0001 and ADOPMOM 100	
1110	100	force VDU NTSC film mode with automatic phase detection; NTSC film mode is set only once, if it is detected; after that it will be fixed until another mode is selected from the user; STOPMOM 1110 and STOPMOM 1111 is selected automatically	
1111	100	same as STOPMOM 1110 and ADOPMOM 100	
0001	101	force VDU PAL with automatic phase detection; PAL film mode is set only once, if it is detected; after that it will be fixed until another mode is selected from the user; in addition STOPMOM 0011 will be selected if GMOTION is zero; STOPMOM 0001 or 0010 or 0011 is selected automatically	
0010	101	same as STOPMOM 0001 and ADOPMOM 101	
1110	101	force VDU NTSC film mode with automatic phase detection; NTSC film mode is set only once, if it is detected; after that it will be fixed until another mode is selected from the user; in addition STOPMOM 0011 will be selected if GMOTION is zero;STOPMOM 1110 or STOPMOM 1111 or STOPMOM 0011 is selected automatically	
1111	101	same as STOPMOM 1110 and ADOPMOM 101	

Table 73Special combinations of STOPMOM and ADOPMOM

The table **Table 74** "**Display line-scanning pattern sequence**" on page 89 shows all possible display line-scanning pattern sequences for the different static operation modes and the lines per field value between two consecutive output V-Syncs. It is assumed, that in case of freerunning-mode LPFOP=156 and in locked-mode the number of lines of the incoming field is 312.5.

Display line-scanning pattern sequence	1. to 2.	2. to 3.	3. to 4.	4. to 5.(1.)
αααα	312	313	312	313
αβαβ	312.5	312.5	312.5	312.5
ββββ	313	312	313	312
βαβα	312.5	312.5	312.5	312.5
ααββ	312	312.5	313	312.5
ββαα	313	312.5	312	312.5

Table 74Display line-scanning pattern sequence

The table below defines the static operation modes for the slave channel. The slave channel is synchronized to the master channel. Therefore only modes with the same output line-scanning pattern as the chosen master channel mode are allowed. Several modes depend on the I²C Bus parameter MEMOP.

STOPMOS	Scan rate conversion algorithm	allowed for RMODE	allowed output line-scanning pattern	allowed MEMOP
000	Median, ABAB	0	αβαβ, βαβα	00 SRC
001	Frame repetition, ABAB	0	αβαβ, βαβα	00 SRC
010	Simple 100, AABB	0	ααββ, ββαα	all
011	Field repetition, AAAA I	0	αβαβ, βαβα	all
100	Field repetition, AAAA II	0	αααα, ββββ	all
101	Field repetition, BBBB I	0	αβαβ, βαβα	all
110	Field repetition, BBBB II	0	αααα, ββββ	all
111	not defined	0		
000	Median, AB	1	α+β	00 SRC
001	Frame repetition, AB	1	α+β	00 SRC
010	Line doubling, AB	1	α+β	all
011	Line doubling, AA	1	α+β	all
100	Intra field interpolation A+A*	1	α+β	01 SSC
101	Line doubling, BB	1	α+β	all
110	not defined	1		
111	Intra field interpolation A+A*, B*+B	1	α+β	01 SSC

Table 75Static operation modes slave

I

The adaptive operation modes (ADOPMOM) define a dynamic switch between different static operation modes controlled by several internal signals. The start point of all modes is the actual chosen STOPMOM as described before. The tables below shows the different adaptive operation modes. The internal used control signals are GMOTION, MOVTYP, MOVMO and MOVPH (compare "Global motion, film mode and phase detection" on page 104). Furthermore the internal control signal VTSEQ exists. In case of I²C Bus parameter VCRMODEM=1, VTSEQ is still zero. If VCRMODEM=0, VTSEQ can be equal one (compare "Input sync controller (ISCM/ISCS)" on page 22). In this cases the scan rate conversion is forced to a simple field based scan rate conversion algorithm. All internal control signals GMOTION, MOVTYP, MOVMO and MOVPH are also readable by the I²C Bus interface.

Basic adaptive operation modes (RMODE = 0 (interlaced)):

off: ADOPMOM=000/001

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
x	x	x	x	х	STOPMOM	STOPMOS

VCRMODE off: ADOPMOM=010

	ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
ĺ	х	х	х	0	х	STOPMOM	STOPMOS
	х	х	х	1	x	Simple 100, AABB, 0101	Simple 100, AABB, 010

Still picture mode: ADOPMOM=011

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
x	х	x	0	0	Frame repetition, ABAB, 0011	STOPMOS
х	х	х	0	1	STOPMOM	STOPMOS
x	x	x	1	x	Simple 100, AABB, 0101	Simple 100, AABB, 010

Film mode I; ADOPMOM=100

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
0	х	х	0	х	STOPMOM	STOPMOS
1	0	0	0	x	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	0	0	x	VDU, film mode, phase 1, PAL, 0010	STOPMOS
1	0	1	0	x	VDU, film mode, phase 0, NTSC, 1110	STOPMOS
1	1	1	0	x	VDU, film mode, phase 1, NTSC, 1111	STOPMOS
x	x	x	1	x	Simple 100, AABB, 0101	Simple 100, AABB, 010

Film mode II: ADOPMOM=101

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
x	x	х	0	0	Frame repetition, ABAB, 0011	STOPMOS
0	х	x	0	1	STOPMOM	STOPMOS
1	0	0	0	1	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	0	0	1	VDU, film mode, phase 1, PAL, 0010	STOPMOS
1	0	1	0	1	VDU, film mode, phase 0, NTSC, 1110	STOPMOS
1	1	1	0	1	VDU, film mode, phase 1, NTSC, 1111	STOPMOS
x	x	x	1	x	Simple 100, AABB, 0101	Simple 100, AABB, 010

Film mode III: ADOPMOM=110

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
0	х	х	0	х	STOPMOM	STOPMOS
1	0	x	0	x	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	x	0	x	VDU, film mode, phase 1, PAL, 0010	STOPMOS
x	x	x	1	x	Simple 100, AABB, 0101	Simple 100, AABB, 010

Film mode IV: ADOPMOM=111

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
x	x	x	0	0	Frame repetition, ABAB, 0011	STOPMOS
0	х	х	0	1	STOPMOM	STOPMOS
1	0	x	0	1	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	x	0	1	VDU, film mode, phase 1, PAL, 0010	STOPMOS
x	x	x	1	x	Simple 100, AABB, 0101	Simple 100, AABB, 010

Adaptive operation mode (RMODE = 1 (progressive)):

off: ADOPMOM=000/001

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
х	х	х	х	х	STOPMOM	STOPMOS

VCRMODE off: ADOPMOM=010

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
х	х	х	0	х	STOPMOM	STOPMOS
x	x	x	1	x	Simple 50, 0101	Line doubling, AB, 010

Still picture mode: ADOPMOM=011

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
x	х	x	0	0	Frame repetition, ABAB, 0011	STOPMOS
х	х	х	0	1	STOPMOM	STOPMOS
x	x	x	1	x	Simple 50, 0101	Line doubling, AB, 010

Film mode I: ADOPMOM=100

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
0	х	x	0	х	STOPMOM	STOPMOS
1	0	0	0	x	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	0	0	x	VDU, film mode, phase 1, PAL, 0010	STOPMOS
1	0	1	0	x	VDU, film mode, phase 0, NTSC, 1110	STOPMOS
1	1	1	0	x	VDU, film mode, phase 1, NTSC, 1111	STOPMOS
x	x	x	1	x	Simple 50, 0101	Line doubling, AB, 010

Film mode II: ADOPMOM=101

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
x	х	x	0	0	Frame repetition, ABAB, 0011	STOPMOS
0	х	х	0	1	STOPMOM	STOPMOS
1	0	0	0	1	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	0	0	1	VDU, film mode, phase 1, PAL, 0010	STOPMOS
1	0	1	0	1	VDU, film mode, phase 0, NTSC, 1110	STOPMOS
1	1	1	0	1	VDU, film mode, phase 1, NTSC, 1111	STOPMOS
x	x	x	1	x	Simple 50, 0101	Line doubling, AB, 010

Film mode III: ADOPMOM=110

MOVMO	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
0	х	х	0	х	STOPMOM	STOPMOS
1	0	x	0	x	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	x	0	x	VDU, film mode, phase 1, PAL, 0010	STOPMOS
x	x	x	1	x	Simple 50, 0101	Line doubling, AB, 010

ΜΟΥΜΟ	MOVPH	ΜΟΥΤΥΡ	VTSEQM	GMOTION	STOPMOMint	STOPMOSint
х	x	x	0	0	Frame repetition, ABAB, 0011	STOPMOS
0	x	х	0	1	STOPMOM	STOPMOS
1	0	x	0	1	VDU, film mode, phase 0, PAL, 0001	STOPMOS
1	1	x	0	1	VDU, film mode, phase 1, PAL, 0010	STOPMOS
х	x	x	1	x	Simple 50, 0101	Line doubling, AB, 010

Film mode IV: ADOPMOM=111

Table 76Adaptive operation modes

Example for explanation of the adaptive operation modes:

ADOPMOM = 4: Film mode I, RMODE=0

In this case the scan rate conversion algorithm is controlled by the signal MOVMO, MOVTYP and MOVPH. If MOVMO is equal 0 the scan rate conversion mode is defined by STOPMOM and STOPMOS (e.g. Micronas VDU). If MOVMO is equal 1 and MOVTYP is equal 0 the scan rate conversion algorithm is changed depending on the MOVPH signal to Micronas VDU, Film mode, PAL, phase 0 or 1. If MOVMO is equal 1 and MOVTYP is equal 1 the scan rate conversion algorithm is changed depending on the MOVPH signal to Micronas VDU, Film mode, NTSC, phase 0 or 1. In case of film mode PAL, the MOVPH signal is constant for the applied material. In case of Film mode NTSC, the MOVPH signal changes each 2th or 3th field, respectively.

I ² C Bus parameter	Sub address	Description
STOPMOM	48h	STatic OPeration MOdes Master
STOPMOS	4Ah	STatic OPeration MOdes Slave
ADOPMOM	49h	ADaptive OPeration MOdes Master

Table 77 Output write I²C Bus parameter

5.8 Motion estimation

The 3-D Recursive Search Block-Matching algorithm was introduced as a high performance low-cost motion estimation algorithm suitable for demanding scan rate conversion applications. The figure below explains the principle of the block matching algorithm. The result is a best matching vector, which contains information about velocity and direction of a block at position (x,y).

Figure 41 Principle of block matching

The main characteristics of the motion estimator inside of the SDA 9410 are listed in the table below.

I ² C Bus parameter		
Horizontal range	+/-32	pels
Vertical range	+/-24	lines
Block size	8x8 (HxV)	pels (frame grid)
Accuracy	+/- 1	pels
Candidates	8 (2x3 + 2)	
Amount of blocks	90*72 (HXV)	

Table 78 Key I²C Bus parameters of the 3-D RS motion estimation

The **Figure 42** shows the block diagram of the motion estimation and motion compensation block. The field information is read line-wise from the internal field store and written to a line-to-block converter. The motion estimation and the motion compensation block read the field information in parallel block wise from the line-to-block converter. The cache in front of the blocks enables a random access of the field information.

The result of the motion estimation is stored in the vector memory, which is also used as a vector field memory for the 3-D recursive block matching algorithm. At that time only vector information of block resolution is available. The post processing block computes a vector information of pixel resolution basis, which can be used from the motion compensation block for the up conversion process. Finally the results of the motion compensation block are written to the block-to-line converter block.

Figure 42 Block diagram of motion estimation and compensation

The **Figure 43** illustrates a more detailed block diagram of the motion estimation block. The motion estimation block is separated in two branches. The left one is only responsible for still area detection and the right one for all kind of areas. The additional left branch can be switched off or on by the I²C Bus parameter MENULLFUNON (I²C Bus parameter 4Bh). Different preprocessing blocks are located in both branches due to the different tasks of the branches. After preprocessing of the input data the main computation, the block matching, is executed.

For the right branch, the motion estimator applies two concurrent recursive block matchers, that individually check three candidate vectors with different convergence directions. Among the three candidates there is one spatial prediction vector taken from a previously processed block and a temporal prediction vector. The temporal prediction has the characteristic feature that its position is shifted with respect to the block currently processed in the opposite direction compared to the spatial prediction. The **Figure 44**

illustrates this feature, and shows that both types of predictions differ for the two estimators (Sa and Ta of the first estimator, Sb and Tb for the second). Both estimators further test one candidate that is found as the sum of their spatial prediction vector and an update vector. The last candidate is the null vector.

The left branch contains only a special null block matcher. The best matching null vector from either of the two branches is assigned to the current block.

The overall best vector is finally selected and used for scan rate conversion.

Different penalty mechanism exist to optimize the behaviour of the both branches of the motion estimation block.

Figure 43 Block diagram of motion estimation

Figure 44 Relative positions of the spatial predictors

The I²C Bus parameters below are used for optimization purposes of the motion estimation block and should not be changed by the customer.

I ² C Bus parameter	Sub address	Description
MEANBP	50h	Penalty for border lines in additional null dbd (dbd - displaced block difference)
MEANMP	50h	Penalty for middle lines in additional null dbd
MEANRG	51h	Range of middle lines in additional null dbd
MEHPERTH	51h	Threshold for horizontal periodicity detection
MEVPERTH	51h	Threshold for vertical periodicity detection
MEPERINF	50h	Defines influences of periodicity
BVMRES	52h	 Reset command for block vector memory Channel switch (on switching to a new channel by remote control, switch on BVMRES once and release; note: reset film mode detection too [RESMOV]) Freeze picture (on picture freeze switch on BVMRES and hold; alternative: switch to non motion compensated scan rate conversion [STOPMOM/ADOPMOM]) SSC or MUP mode (on multipicture on double window/split screen display switch on BVMRES and hold) Switch from SSC/MUP to SRC mode (switch to SRC mode, switch on BVMRES, change master channel display size to full screen [768x576], change back to normal master channel screen size and release BVMRES) Vector memory reset takes place only on the active master channel output size; to reset the whole vector memory switch to maximum master channel size (768x576) Minimum hold time for BVMRES to have an effect: on CAMERA MODE: 1 input field, on PAL FILM MODE: 2 input fields; on NTSC FILM MODE 3 input fields
PERPEN	52h	Penalty for periodic structures
MENPTH	50h	Minimum vector length for null dbd penalty
MENVRTH	59h	Null vector reliability threshold, makes detection of null vector in homogenous areas more reliable. Threshold value to adjust sensibility of null vector reliability: 1111: insensible : 0001: sensible to motion and noise <u>0000: off</u>
MENULLPEN	4Fh	Additional penalty for null vector, if vector length exceeds length given by MENPTH and dbd of null vector is greater as a given threshold, which is defined by MENVRTH
MEPENUP	4Ch	Penalty for update vectors
MEADDPEN	4Ch	Additional penalty for non-null vectors
MESMOOTHON	4Bh	Vector smoothing on/off
MENULLUNFON	4Bh	Unfiltered null dbd on/off
BVMCON	4Eh	Vector correction on/off

Table 79Output write I²C Bus parameter

5.9 Motion compensation

In the SDA 9410 the motion estimation algorithm is combined with an advanced scan rate conversion algorithm. The **Figure 45** shows the position of the fields as a function of the time for a 50 Hz sequence and a 100 Hz sequence. The information of the motion estimation (vector field) can be used for the generation of the additional fields. The A field is directly used as "a" field. The B field has the right position, but the wrong phase. The line-scanning pattern interpolation into a A field can be used as "c" field. The "b" and "d" field has to be generated using the vector field of the motion estimation.

Figure 45 Timing of 100 Hz scan rate conversion

The **Figure 46** shows a moving object as a function of the time. The position of the object in the b field is exactly half the position of the object in the A and B field. That's why no double contours are visible.

Figure 46 Principles of motion compensation

The principle of the up conversion process is illustrated in the **Figure 47** in case of the b field. Motion compensated pixels are fed to a 5-tap median filter. The background is that in case of correct motion vector, it can be expected that the two motion compensated pixels from both neighboring fields are identical. Consequently, either of the two is selected and a correctly motion compensated intermediate field results. In the figure below the vector ends on a non existing line. Therefore the pixels of the line before and after the non existing line are taken. Is the vector unreliable for the current pixel, the two

motion compensated pixels will be different, and the chance that the non-motion compensated field average at the output increases. The result is a graceful degradation of picture material in case of vector failure ("local fall back mode").

Figure 47 Principles of motion compensation for the β field (FILSEL=0)

To generate an output sequence with a good motion portrayal the estimated vectors and the actual film mode information are used. Dependent on the film mode different output sequences are generated. The standard mode is camera mode. In this mode the input source provides a new motion phase on every field. The two other modes are called film mode PAL and NTSC, respectively. The arise from scanning cinematic source material for which only 24 frames per second are available. For film mode material scanned for 50 Hz standards always two successive fields have the same motion phase. The film source is reproduced with 25 Hz and each image is scanned twice to get an interlaced video signal. On NTSC film mode the 24 frames are scanned using the 2-3 pulldown method resulting in sequences, which contain alternating two and three successive fields with the same motion phase. In the next figures the three modes are illustrated for a one-dimensional motion.

The aim on motion compensation is to create an output field or frame sequence, which has a good motion portrayal. In the **Figure 48**, **Figure 49** and **Figure 50** the ideal motion portrayal is displayed as a dashed line. The output motion (solid line) should approach this ideal case. The deviation is marked as shadowed area. On camera mode no motion blurring occurs on source material (**Figure 48**: square curve). A simple non motion compensated scan rate conversion repeats previous motion phases and causes a motion blurring on 100/120 Hz output dependent on motion speed (**Figure 48**: triangle

curve). With motion compensation (**Figure 48**: rhomb curve) intermediate motion phases are calculated and the ideal curve is obtained, no motion blurring occurs.

Figure 48 Output sequence generation: Camera mode

A 50 Hz film mode input sequence already shows a motion blur (**Figure 49**: square curve). This artifact increases on higher velocities. Motion compensation techniques can reduce this effect under a visible threshold. Now the deviation from the ideal curve is minimized (**Figure 49**; rhomb curve). The result is an output motion potrayal, which is visibly smoother compared with the original input sequence.

A 60 Hz input field sequence has motion artifacts on higher velocities (**Figure 50**: square curve) like the 50 Hz film mode but the blur is much more irregular caused by the 2-3 pulldown. The preferred application in this case is a 60 Hz progressive conversion. Here also the motion portrayal can be improved by creating a new motion phases (**Figure 50**: circle curve). Also this conversion results in an clearly improved motion potrayal.

Evaluation shows a very large improvement of the Film motion portrayal.

Figure 49 Output sequence generation: PAL film mode

Figure 50 Output sequence generation: NTSC film mode

Global motion, film mode and phase detection

 Original B field information Motion compensated field Real motion course Ideal motion course Deviation between real ideal motion course 	🗆 Origi	nal A field information		50/60Hz interlaced input
Real motion course O 50/60Hz motion compensated progressive output	Origi	nal B field information	\triangle	100/120Hz non motion compensated interlaced output
	💻 Motic	on compensated field	\bigcirc	100/120Hz motion compensated interlaced output
— — — Ideal motion course		Real motion course	Ŏ	50/60Hz motion compensated progressive output
		Ideal motion course		Deviation between real ideal motion course

The scan rate conversion of the colour difference signals is also vector based. As it was experimentally found that the dynamic resolution of the colour is not masked completely by the luminance, motion compensated chrominance processing is implemented. The chrominance motion compensation uses the vector results of the luminance motion estimation.

The characteristic of the median filter can be changed by the I²C Bus parameter FILSEL.

I²C Bus parameter	Sub address	Description
FILSEL	4B	 Filter select for VDU interpolation Improved median based interfield interpolation: for use in SRC mode and for use with frame based upconversion or field based upconversion with two field memories (STOPMOM 0000, 0001, 0010, 1011, 1100, 1110, 1111 for RMODE 0 or 1) 10: median based interfield interpolation: [not recommended] 01: linear INTRAFIELD interpolation: interpolation (a0+a1)/2 or (b0+b1)/2 for use in SSC and MUP mode or for use with field based scan rate conversion and only one field memory (STOPMOM 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100 for RMODE 0 or 1) 00: linear INTERFIELD interpolation: (a0+a1+b0+b1)/4 [not recommended]

Table 80Output write I²C Bus parameter

5.10 Global motion, film mode and phase detection

For camera mode and film mode different scan rate conversion algorithms and motion estimation processes are valid. Therefore the information about camera mode or film mode and the corresponding phase are necessary to adapt the processing. In the SDA 9410 the film mode, film type and phase detection is based on the analysis of the motion

I

Global motion, film mode and phase detection

vectors from the estimator or the analysis of the field difference. It is expected that with film material broadcast in the 50 Hz television standard, motion will occur only every second field. Therefore the "vector activity" (VAC) in the SDA 9410 as sum of the absolute vector components which are larger as a threshold defined by the I²C parameter MEMMINMOT (I²C Bus sub address 4Bh) is accumulated. Depending on the sum, the actual detected mode (MOVMO, MOVTYP) and several I²C Bus parameters (MEMINTH, MEMAXTH, SFMINTH, SFMAXTH) the actual field is decided to have motion or not. The table below explains the decision of the detection:

Actual field has	lf
motion	[VAC > scmax * (MEMAXTH+1)] or [(VAC > scmin * (MEMINTH+1)) and (VAC <= scmax * (MEMAXTH+1)) and MOVMO=0]
no motion	[VAC <= scmin * (MEMINTH+1)] or [(VAC > scmin * (MEMINTH+1)) and (VAC <= scmax * (MEMAXTH+1)) and MOVMO=1]

Table 81Principles of global motion and film mode detection

The values scmin and scmax are scale factors which are defined by the table below:

SFMINTH/SFMAXTH	scmin/scmax
00	8
01	16
10	32
11	64

Table 82 Definition of scmin/scmax depending on SFMINTH/SFMAXTH

To avoid switching artifacts a temporal hysteresis is implemented. Temporal hysteresis means, that at least a certain number of fields defined by the I²C Bus parameter MEMOHIST must fulfill the conditions for switching from camera mode to film mode or vice versa. The number of fields (NoFields) defined by the I²C Bus parameter MEMOHIST can be calculated by the equation below:

NoFields =
$$2 \bullet (MEMOHIST + 1)$$

Global motion, film mode and phase detection

Furthermore a global motion flag GMOTION is derived and the value MEMSTAT, which is proportional to the amount of blocks, which fulfill the condition mentioned above.

Sub address	Description
4Bh	Inversion of the Film phase signal
4Bh	Minimum vector threshold for film mode and global motion detection
4Dh	Threshold for detection of motion in camera mode
4Eh	Threshold for detection of motion in film mode
4Fh	History length of Film mode and global motion detection
4Dh	Scale factor for MEMINTH
4Dh	Scale factor for MEMAXTH
59h	Threshold for switching between the vector activity or the field difference as input for the film mode detection Use field difference as film mode detection input 1111: insensible to motion : 0001: sensible to motion 0000: use vector activity as film mode detection input
	4Bh 4Bh 4Dh 4Eh 4Fh 4Dh 4Dh 4Dh

Table 83Output write I²C Bus parameter

Vertical expansion

I ² C Bus parameter	Sub address	Description	
MOVMO	7Eh	1: Film mode 0: camera mode	
MOVPH	7Eh	Film mode phase: 1: B ⁿ and A ⁿ⁺¹ has the same phase 0: A ⁿ and B ⁿ has the same phase	
GMOTION	7Eh	Global motion detection 1: if no STILL scene is detected (minimum is: 1 field in motion of 32 fields in order) 0: if STILL scene is detected (32 fields in order without motion)	
MOVTYP	7Eh	Film mode type 1: NTSC film mode source with 24 motion phases per second (2-3 pull down) 0: PAL film mode source with 25 motion phases per second	
MEMSTAT	7Eh	Statistic about motion blocks	

Table 84 Output read I²C Bus parameter

5.11 Vertical expansion

For every output field, the scan rate converter generates a progressive frame. Thus for every output field period, a progressively scanned frame compensated to the correct motion is used for vertical expansion in case of Micronas VDU. This yields a highly improved performance compared with an intra-field zoom.

The table below defines the internal expansion factor ZOOM depending on the RMODE and VERINT I²C Bus parameter.

VERINT	RMODE	ZOOM
I ² C Bus parameter	0	2*(VERINT+1)
I ² C Bus parameter	1	(VERINT+1)

Table 85 Output write I²C Bus parameter VERINT

The available expansion factors are listed in the table below.

Vertical expansion

	100/120 Hz interlaced RMODE=0	50/60 Hz progressive RMODE=1	real vertical expansion factor
VERINT	ZOOM	ZOOM	
127	256	128	1.00
:	:	:	:
95	192	96	1.33
:	:	:	:
84	170	85	1.50
:	:	:	:
63	128	64	2.00

Table 86Examples of reachable expansion factors

The I²C Bus parameter VPAN can be used to select the start line of the expansion. To expand the upper part of the incoming signal with the factor 2.0, VPAN should be set to zero. To expand the lower part, VPAN should be equal to 143. That means in case of VPAN=0 the first used line is line 1 and in case of VPAN=143 the first used line is line 144.

Dependent on the I²C Bus parameter VERINT a certain number of input lines of the input field is required. Therefore not all VPAN values are allowed. The formula below can be used to calculate the maximum allowed VPAN value depending on the chosen VERINT value.

$$VPANmax = \left| 4 \bullet VERWIDTHM \bullet \left(1 - \frac{(VERINT + 1)}{128} \right) \right|$$

Floor symbol means: take only integer part of x

X

Figure 51 Calculation of maximum VPAN value
I ² C Bus parameter	Sub address	Description
VERINT	47h	Vertical expansion factor for master channel
VPAN	54h	Vertical adjustment of the output picture for master channel

Table 87 Output write I²C Bus parameter

5.12 Display processing

Signals	Pin number	Description
IY_O	87	Analog Y (luminance) output signal
IU_O	84	Analog U (chrominance) output signal
IV_O	90	Analog V (chrominance) output signal

Table 88Output signals

The display processing part contains an integrated triple 9-bit DAC and performs digital enhancements and manipulations of the digital video component signal. The figure below shows the block diagram of the display processing part and the existing I²C Bus parameters.

Figure 52Block diagram of display processing

5.12.1 Peaking

The luminance peaking filter improves the over all frequency response of the luminance channel. It consists of two filters working in parallel. They have high pass (HP) and band pass (BP) characteristics. Their gain factors are separately programmable (I²C Bus parameters BCOF 5Dh, HCOF 5Dh). The high pass and the band pass filters are equipped with a common coring algorithm. It is optimized to achieve a smooth display of grey scales, not to improve the signal-to-noise ratio. Therefore no artifacts are produced. Coring can be switched off (I²C Bus parameter CORING, 5Ah). The figure below shows the block diagram of the peaking block.

Figure 53 Block diagram peaking

The transfer functions of the separate filters are listed below:

High pass Transfer function: HHP(z) = $1/16 (1-z^{-1})^4$ Band pass Transfer function: HBP(z) = $-1/8 (1-z^{-2})^2$

BCOF	gain_bp	HCOF	gain_hp
0	0	0	0
1	0.25	1	0.25
2	0.5	2	0.5
3	0.75	3	0.75
4	1	4	1
5	1.25	5	1.25
6	1.5	6	1.5
7	1.75	7	1.75
8	2	8	2
9	2.25	9	2.25
10	2.5	10	2.5
11	2.75	11	2.75
12	3	12	3
13	3.5	13	3.5
14	4	14	4
15	5	15	5

All pass Transfer function: $HAP(z) = z^{-2}$

Table 89 Conversion table BCOF/HCOF to gain_bp/gain_hp

I ² C Bus parameter	Sub address	Description
BCOF	5Dh	Gain of band pass filter
HCOF	5Dh	Gain of high pass filter
CORING	5Ah	Coring for high- and band pass filter: 1: on 0: off

Table 90Output write I²C Bus parameters

5.12.2 Digital luminance transition improvement

A new digital algorithm is implemented to improve horizontal transitions of the luminance signals resulting in a better picture sharpness. A correction signal proportional to the slope of the detected horizontal transition of the input signal is added to the original input

signal. The amplitude of the correction signal is adjustable by the I²C Bus parameter ASCENTLTI.

The exact position of a luminance transition is calculated by detecting the corresponding zero transition of the second derivative of the luminance signal. Low pass filtering is performed to avoid noise sensitivity. The I²C Bus parameter THRESY and THRESY_UP defines the sensitivity of the DLTI circuit. High values cause that only significant luminance transitions are improved. Small luminance variations remain unchanged.

THRESY	Sensitivity
000	DLTI off
001	4
010	8
011	12
100	16
101	20
110	24
111	28

Table 91 I²C Bus parameter THRESY

THRESHY_UP	Amplitude
00	off
01	32
10	128
11	64

Table 92 I²C Bus parameter THRESY_UP

ASCENTLTI	Amplitude
00	0.5
01	1
10	2
11	4

Table 93 I²C Bus parameter ASCENTLTI

I ² C Bus parameter	Sub address	Description
THRESY	5Eh	Defines lower sensitivity threshold of DLTI
THRESY_UP	5Eh	Defines upper sensitivity threshold of DLTI
ASCENTLTI	5Ch	Defines amplitude of correction signal

Table 94Output write I²C Bus parameters

5.12.3 Digital colour transition improvement

A new digital algorithm is implemented to improve horizontal transitions of the chrominance signals resulting in a better picture sharpness. A correction signal proportional to the slope of the detected horizontal transition of the input signal is added to the original input signal. Different correction signals according to the bandwidth of the input signal are selected. The amplitude of the correction signal is adjustable by the I²C Bus parameter ASCENTCTI.

The exact position of a colour transition is calculated by detecting the corresponding zero transition of the second derivative of both chrominance signals. Low pass filtering is performed to avoid noise sensitivity. The I²C Bus parameter THRESC modifies the sensitivity of the DCTI circuit. High values cause that only significant colour transitions are improved. Small colour variations remain unchanged.

To eliminate "wrong colours" transitions, which are caused by over and undershoots at the chroma transition, the sharpened chroma signals are limited to a proper value automatically.

THRESC	Sensitivity
00	DCTI off
01	4
10	8
11	12

Table 95 I²C Bus parameter THRESC

ASCENTCTI	Amplitude
00	0.5
01	1
10	2
11	4

Table 96 I²C Bus parameter ASCENTCTI

I ² C Bus parameter	Sub address	Description
THRESC	5Eh	Defines sensitivity of DCTI
ASCENTCTI	5Ch	Defines amplitude of correction signal

Table 97Output write I²C Bus parameters

5.12.4 Insertion facilities

Two different values are inserted into the video signal: black level and coloured background area. The black level insertion is done automatically in the SDA 9410. The black level is inserted in the horizontal and vertical blanking period.

The second insertion facility produces a coloured background area on the display controlled by the I²C Bus parameters YBORDERD, UBORDERD and VBORDERD.

I ² C Bus parameter	Sub address	Description
YBORDERD	5Ah	Y border value of display (Yborderd(3) Yborderd(2) Yborderd(1) Yborderd(0) 0 0 0 0 = 00010000 = 16), YBORDERD defines the 4 MSB's of a 8 bit value
UBORDERD	5Bh	U border value of display (Uborderd(3) Uborderd(2) Uborderd(1) Uborderd(0) 0 0 0 0 = 10000000 = 128), UBORDERD defines the 4 MSB's of a 8 bit value
VBORDERD	5Bh	V border value of display (Vborderd(3) Vborderd(2) Vborderd(1) Vborderd(0) 0 0 0 0 = 10000000 = 128), VBORDERD defines the 4 MSB's of a 8 bit value

Table 98Output write I²C Bus parameters

5.12.5 Coarse delay

Before Digital-to-Analog conversion an adjustment of the phase of the luminance signal can be performed (I²C Bus parameter COARSDEL, 5Ch). The delay of the luminance can be varied by periods (-8, ...[1]..., +7) of the DAC clock (2*CLKD). This can be used to compensate different delay times of external analog filters.

I ² C Bus parameter	Sub address	Description
COARSDEL	5Ch	Delay of the luminance signal in relation to the chrominance signal in 2*CLKD clocks

Table 99 Output write I²C Bus parameter

5.12.6 Digital-to-Analog conversion

Three 9-bit Digital-to-Analog converters are implemented. The DACs are short-circuit protected converters with current outputs. The full range output current of the IY_O, IU_O, IV_O channels (I_{OFR}) is determined by the current I_{REF} at the pin RREF_I by $I_{OFR} \sim 10 I_{REF}$. The voltage at the pin RREF_I is generated via pin UREF_I by an internal operational amplifier and follows the voltage at the pin UREF_I. Thus I_{REF} is given by $I_{REF} \sim V_{UREF}/R_{REF}$ where R_{REF} is a resistor between RREF_I and analog ground. Another way to define I_{REF} is the application of a current sink at the RREF_I point. For recommended values of V_{UREF} and I_{REF} compare "**Operating range**" on page 171. For applications with lower requirements there is still another way to define I_{OFR} : Connect pin UREF_I to the positive supply and apply a resistor against ground. Since in this operation mode the internal reference amplifier reaches saturation, the exact value of I_{REF} is not exactly predictable.

I ² C Bus parameter	Sub address	Description
CHROM_AMP	5Eh	Chrominance amplification factor adjustment for DAC output 1: amplification factor 2 0: amplification factor 1

Table 100Output write I²C Bus parameter

I

5.13 I²C Bus

5.13.1 I²C Bus slave address

Write Address: BCh

Read Address: BDh

5.13.2 I²C Bus format

The SDA 9410 I²C Bus interface acts as a slave receiver and a slave transmitter and provides two different access modes (write, read). All modes run with a sub address auto increment. The interface supports the normal 100 kHz transmission speed as well as the high speed 400 kHz transmission.

write:

S: Start condition

A: Acknowledge

P: Stop condition

NA: Not Acknowledge

read:

S	1	0	1	1	1	1	0	0	Α	Sub address	Α	S	1	0	1	1	1	1	0	1	Α

Data Byte	Α	Data Byte	NA	Ρ	
-----------	---	-----------	----	---	--

The transmitted data are internally stored in registers. The master has to write a don't care byte to the sub address FFh (store command) to make the register values available for the SDA 9410. To have a defined time step, where the data will be available, the data are made valid with the incoming V-sync VINM or VINS or with the next OPSTARTM pulse, which is an internal signal and indicates the start of a new output cycle. The sub addresses, where the data are made valid with the VINM signal are indicated in the overview of the sub addresses with "VIM", where the data are made valid with the VINS are indicated with "VIS" and where the data are made valid with the OPSTARTM are indicated with "OS". The I²C parameter VIMSTATUS, VISSTATUS and OSSTATUS (sub address 80h, 81h, 82h) reflect the state of the register values. If these bits are read as

'1', then the store command was sent, but the data aren't made available yet. If these bits are '0' then the data were made valid and a new write or read cycle can start. The bits VIMSTATUS, VISSTATUS and OSSTATUS may be checked before writing or reading new data, otherwise data can be lost by overwriting.

Furthermore the bits NMSTATUS (status of noise measurement: NOISEME) and LBDSTATUS (status of letter box I²C Bus parameters: SLAA, ELAA, STATUS_SLAA, STATUS_ELAA, RELY) exist. NMSTATUS signalizes a new value for NOISEME. So if NMSTATUS is read as '0' the current noise measurement has not been updated. If the NMSTATUS is read as '1' a new noise measurement value can be read. LBSTATUS signalizes at least a change of one of the I²C Bus parameters: SLAA, ELAA, STATUS_SLAA, STATUS_SLAA, STATUS_ELAA, RELY. If the LBDSTATUS is read as '0' none of the

I²C Bus parameters has changed its value. If the LBDSTATUS is read as '1' at least one of the I²C Bus parameters has changed its value.

The transmitted data are internally stored in registers. Writing or reading from a not existing register is permitted and does not generate a fault by the IC.

Sub address	Default value	R/W	Take over	Sub address	Default value	R/W	Take over
00	00h	W	VIM	37	48h	W	OS
01	00h	W	VIM	38	9Ch	W	OS
02	00h	W	VIM	39	00h	W	OS
03	00h	W	VIM	3A	00h	W	OS
04	61h	W	VIM	3B	00h	W	OS
05	88h	W	VIM	3C	00h	W	OS
06	00h	W	VIM	3D	00h	W	OS
07	40h	W	VIM	3E	5Ah	W	OS
08	00h	W	VIM	3F	B4h	W	OS
09	00h	W	VIM	40	48h	W	OS
0A	00h	W	VIM	41	90h	W	OS
0B	69h	W	VIM	42	00h	W	OS
0C	00h	W	VIM	43	5Ah	W	OS
0D	90h	W	VIM	44	B4h	W	OS
0E	B4h	W	VIM	45	B0h	W	OS
0F	B4h	W	VIM	46	10h	W	OS
10	90h	W	VIM	47	7Fh	W	OS
11	00h	W	VIM	48	00h	W	OS
12	50h	W	VIM	49	00h	W	OS

After switching on the IC (after reset), all bits of the SDA 9410 are set to defined states. Particularly :

I

I²C Bus

Sub address	Default value	R/W	Take over	Sub address	Default value	R/W	Take over
13	not used			4A	00h	W	OS
14	09h	W	VIM	4B	8Dh	W	OS
15	FFh	W	VIM	4C	88h	W	OS
16	00h	W	VIM	4D	87h	W	OS
17	FFh	W	VIM	4E	3Fh	W	OS
18	81h	W	VIM	4F	38h	W	OS
19	01h	W	VIM	50	56h	W	OS
1A	1Ch	W	VIM	51	64h	W	OS
1B	AAh	W	VIM	52	3Ah	W	OS
1C	78h	W	VIM	53	08h	W	OS
1D	C6h	W	VIM	54	00h	W	OS
1E	32h	W	VIM	55	08h	W	OS
1F	57h	W	VIM	56	78h	W	OS
20	1Ch	W	VIM	57	02h	W	OS
21	not used			58	02h	W	OS
22	00h	W	VIS	59	00h	W	OS
23	00h	W	VIS	5A	21h	W	OS
24	00h	W	VIS	5B	88h	W	OS
25	00h	W	VIS	5C	58h	W	OS
26	61h	W	VIS	5D	44h	W	OS
27	88h	W	VIS	5E	73h	W	OS
28	00h	W	VIS	5F	20h	W	OS
29	40h	W	VIS	60-77	not used		
2A	00h	W	VIS	78		R	
2B	00h	W	VIS	79		R	
2C	00h	W	VIS	7A		R	
2D	E9h	W	VIS	7B		R	
2E	00h	W	VIS	7C		R	
2F	90h	W	VIS	7D		R	
30	B4h	W	VIS	7E		R	
31	B4h	W	VIS	7F		R	
32	90h	W	VIS	80		R	
33	00h	W	VIS	81		R	
34	28h	W	VIS	82		R	

I

I

I²C Bus

Sub address	Default value	R/W	Take over	Sub address	Default value	R/W	Take over
35	00h	W	OS	83-FE	not used		
36	16h	W	OS	FF		W	

R/W: R - Read register; W - Write Register; R/W - Read and Write Register; Take over: VIM - take over with VINM; VIS - take over with VINS; OS - take over with OPSTARTM

5.13.3 I²C Bus commands

Subado (Hex.)	Data Byte												
	D7	D6	D5	D4	D3	D2	D1	D0					
00	x	x	x	PLLMOFF PLLM	PLLMRA3 PLLM	PLLMRA2 PLLM	PLLMRA1 PLLM	PLLMRA0 PLLM					
01	IPOSYM7	IPOSYM6	IPOSYM5	IPOSYM4	IPOSYM3	IPOSYM2	IPOSYM1	IPOSYM0					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
02	IPOSXM7	IPOSXM6	IPOSXM5	IPOSXM4	IPOSXM3	IPOSXM2	IPOSXM1	IPOSXM0					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
03	LEBORDM2	LEBORDM1	LEBORDM0	RIBORDM2	RIBORDM1	RIBORDM0	CHFILM1	CHFILM0					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
04	DELM2	DELM1	DELM0	FORCOLM	YBORDERM3	YBORDERM2	YBORDERM1	YBORDERM0					
	IFC	IFC	IFC	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
05	UBORDERM3	UBORDERM2	UBORDERM1	UBORDEM0	VBORDERM3	VBORDERM2	VBORDERM1	VBORDERM0					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
06	UPBORDM3	UPBORDM2	UPBORDM1	UPBORDM0	LWBORDM3	LWBORDM2	LWBORDM1	LWBORDM0					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
07	INTHM12	INTHM11	INTHM10	INTHM9	INTHM8	INTHM7	INTHM6	INTHM5					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
08	INTHM4	INTHM3	INTHM2	INTHM1	INTHM0	DEZHM2	DEZHM1	DEZHM0					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					
09	INTVM8	INTVM7	INTVM6	INTVM5	INTVM4	INTVM3	INTVM2	INTVM1					
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM					

0A	INTVM0	DEZVM2	DEZVM1	DEZVM0	YPEAKM1	YPEAKM0	CPEAKM1	CPEAKM0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
0B	x	FORMATM1 IFC	FORMATM0 IFC	FIEINVM ISC	VCRMODEM ISC	NAPIPPHM1 ISC	NAPIPPHM0 ISC	TWOINM IFC
0C	NAPIPDLM7	NAPIPDLM6	NAPIPDLM5	NAPIPDLM4	NAPIPDLM3	NAPIPDLM2	NAPIPDLM1	NAPIPDLM0
	ISC	ISC	ISC	ISC	ISC	ISC	ISC	ISC
0D	ALPFM7	ALPFM6	ALPFM5	ALPFM4	ALPFM3	ALPFM2	ALPFM1	ALPFM0
	ISC	ISC	ISC	ISC	ISC	ISC	ISC	ISC
0E	APPLM7	APPLM6	APPLM5	APPLM4	APPLM3	APPLM2	APPLM1	APPLM0
	ISC	ISC	ISC	ISC	ISC	ISC	ISC	ISC
0F	APPLIPM7	APPLIPM6	APPLIPM5	APPLIPM4	APPLIPM3	APPLIPM2	APPLIPM1	APPLIPM0
	ISC	ISC	ISC	ISC	ISC	ISC	ISC	ISC
10	ALPFIPM7	ALPFIPM6	ALPFIPM5	ALPFIPM4	ALPFIPM3	ALPFIPM2	ALPFIPM1	ALPFIPM0
	ISC	ISC	ISC	ISC	ISC	ISC	ISC	ISC
11	VINDELM5	VINDELM4	VINDELM3	VINDELM2	VINDELM1	VINDELM0	VINPOLM	HINPOLM
	ISC	ISC	ISC	ISC	ISC	ISC	ISC	ISC
12	x	NALIPM4 ISC	NALIPM3 ISC	NALIPM2 ISC	NALIPM1 ISC	NALIPM0 ISC	CHRFORM1 VHCOM	CHRFORM0 VHCOM
13	x	x	x	x	x	x	x	x
14	x	x	NMLINE4 TSNR	NMLINE3 TSNR	NMLINE2 TSNR	NMLINE1 TSNR	NMLINE0 TSNR	NMALG TSNR
15	TNRCLY3	TNRCLY2	TNRCLY1	TNRCLY0	TNRCLC3	TNRCLC2	TNRCLC1	TNRCLC0
	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR
16	TNRKOY3	TNRKOY2	TNRKOY1	TNRKOY0	TNRKOC3	TNRKOC2	TNRKOC1	TNRKOC0
	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR
17	TNRVAY3	TNRVAY2	TNRVAY1	TNRVAY0	TNRVAC3	TNRVAC2	TNRVAC1	TNRVAC0
	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR
18	TNRSEL	TNRHOY5	TNRHOY4	TNRHOY3	TNRHOY2	TNRHOY1	TNRHOY0	TNRFIY
	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR
19	x	TNRHOC5 TSNR	TNRHOC4 TSNR	TNRHOC3 TSNR	TNRHOC2 TSNR	TNRHOC1 TSNR	TNRHOC0 TSNR	TNRFIC TSNR
1A	SNRON	PANAON	PANAST3	PANAST2	PANAST1	PANAST0	NRON	DTNRON
	TSNR	VHCOM	TSNR	TSNR	TSNR	TSNR	TSNR	TSNR
1B	OPDELM7	OPDELM6	OPDELM5	OPDELM4	OPDELM3	OPDELM2	OPDELM1	OPDELM0
	ISC	ISC	ISC	ISC	ISC	ISC	ISC	ISC

1C	TH_DN_BN5	TH_DN_BN4	TH_DN_BN3	TH_DN_BN2	TH_DN_BN1	TH_DN_BN0	TH_LB5	TH_LB4
	LBD	LBD	LBD	LBD	LBD	LBD	LBD	LBD
1D	TH_LB3	TH_LB2	TH_LB1	TH_LB0	TH_ALB3	TH_ALB2	TH_ALB1	TH_ALB0
	LBD	LBD	LBD	LBD	LBD	LBD	LBD	LBD
1E	x	TH_AA6 LBD	TH_AA5 LBD	TH_AA4 LBD	TH_AA3 LBD	TH_AA2 LBD	TH_AA1 LBD	TH_AA0 LBD
1F	TH_MUNSL3	TH_MUNSL2	TH_MUNSL1	TH_MUNSL0	TH_AUNS3	TH_AUNS2	TH_AUNS1	TH_AUNS0
	LBD	LBD	LBD	LBD	LBD	LBD	LBD	LBD
20	x	x	x	TH_MA_AA3 LBD	TH_MA_AA2 LBD	TH_MA_AA1 LBD	TH_MA_AA0 LBD	VOLBD LBD
21	x	x	x	x	x	x	x	x
22	x	x	x	PLLSOFF PLLS	PLLSRA3 PLLS	PLLSRA2 PLLS	PLLSRA1 PLLS	PLLSRA0 PLLS
23	IPOSYS7	IPOSYS6	IPOSYS5	IPOSYS4	IPOSYS3	IPOSYS2	IPOSYS1	IPOSYS0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
24	IPOSXS7	IPOSXS6	IPOSXS5	IPOSXS4	IPOSXS3	IPOSXS2	IPOSXS1	IPOSXS0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
25	LEBORDS2	LEBORDS1	LEBORDS0	RIBORDS2	RIBORDS1	RIBORDS0	CHFILS1	CHFILS0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
26	DELS2	DELS1	DELS0	FORCOLS	YBORDERS3	YBORDERS2	YBORDERS1	YBORDERS0
	IFC	IFC	IFC	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
27	UBORDERS3	UBORDERS2	UBORDERS1	UBORDERS0	VBORDERS3	VBORDERS2	VBORDERS1	VBORDERS0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
28	UPBORDS3	UPBORDS2	UPBORDS1	UPBORDS0	LWBORDS3	LWBORDS2	LWBORDS1	LWBORDS0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
29	INTHS12	INTHS11	INTHS10	INTHS9	INTHS8	INTHS7	INTHS6	INTHS5
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
2A	INTHS4	INTHS3	INTHS2	INTHS1	INTHS0	DEZHS2	DEZHS1	DEZHS0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
2B	INTVS8	INTVS7	INTVS6	INTVS5	INTVS4	INTVS3	INTVS2	INTVS1
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
2C	INTVS0	DEZVS2	DEZVS1	DEZVS0	YPEAKS1	YPEAKS0	CPEAKS1	CPEAKS0
	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM	VHCOM
2D	SLAVECON	FORMATS1	FORMATS0	FIEINVS	VCRMODES	NAPIPPHS1	NAPIPPHS0	TWOINS
	IFC	IFC	IFC	ISC	ISC	ISC	ISC	IFC

I

2E	NAPIPDLS7	NAPIPDLS6	NAPIPDLS5	NAPIPDLS4	NAPIPDLS3	NAPIPDLS2	NAPIPDLS1	NAPIPDLS0
	ISC							
2F	ALPFS7	ALPFS6	ALPFS5	ALPFS4	ALPFS3	ALPFS2	ALPFS1	ALPFS0
	ISC							
30	APPLS7	APPLS6	APPLS5	APPLS4	APPLS3	APPLS2	APPLS1	APPLS0
	ISC							
31	APPLIPS7 ISC	APPLIPS6 ISC	APPLIPS5 ISC	APPLIPS4 ISC	APPLIPS3 ISC	APPLIPS2 ISC	APPLIPS1 ISC	APPLIPS0 ISC
32	ALPFIPS7	ALPFIPS6	ALPFIPS5	ALPFIPS4	ALPFIPS3	ALPFIPS2	ALPFIPS1	ALPFIPS0
	ISC							
33	VINDELS5	VINDELS4	VINDELS3	VINDELS2	VINDELS1	VINDELS0	VINPOLS	HINPOLS
	ISC							
34	NALIPS6	NALIPS5	NALIPS4	NALIPS3	NALIPS2	NALIPS1	NALIPS0	CHRFORS
	ISC	VHCOM						
35	HOUTDEL7	HOUTDEL6	HOUTDEL5	HOUTDEL4	HOUTDEL3	HOUTDEL2	HOUTDEL1	HOUTDEL0
	OSC							
36	NALOPD7	NALOPD6	NALOPD5	NALOPD4	NALOPD3	NALOPD2	NALOPD1	NALOPD0
	OSC							
37	x	ALPFOPD6	ALPFOPD5	ALPFOPD4	ALPFOPD3	ALPFOPD2	ALPFOPD1	ALPFOPD0
		OSC						
38	LPFOP7	LPFOP6	LPFOP5	LPFOP4	LPFOP3	LPFOP2	LPFOP1	LPFOP0
	OSC							
39	NAPOPD7	NAPOPD6	NAPOPD5	NAPOPD4	NAPOPD3	NAPOPD2	NAPOPD1	NAPOPD0
	OSC							
3A	HORPOSM7	HORPOSM6	HORPOSM5	HORPOSM4	HORPOSM3	HORPOSM2	HORPOSM1	HORPOSM0
	OSC							
3B	HORPOSS7	HORPOSS6	HORPOSS5	HORPOSS4	HORPOSS3	HORPOSS2	HORPOSS1	HORPOSS0
	OSC							
3C	VERPOSM7	VERPOSM6	VERPOSM5	VERPOSM4	VERPOSM3	VERPOSM2	VERPOSM1	VERPOSM0
	OSC							
3D	VERPOSS7	VERPOSS6	VERPOSS5	VERPOSS4	VERPOSS3	VERPOSS2	VERPOSS1	VERPOSS0
	OSC							
3E	x							HORWIDTHM0
		OSC						
3F		7 HORWIDTHS6						
	OSC							
J	1			1	1	1	1	I

40	х							VERWIDTHM0
		OSC						
41	VERWIDTHS7	VERWIDTHS6	VERWIDTHS5	VERWIDTHS4	VERWIDTHS3	VERWIDTHS2	VERWIDTHS1	VERWIDTHS0
	OSC							
42	BLANDEL7	BLANDEL6	BLANDEL5	BLANDEL4	BLANDEL3	BLANDEL2	BLANDEL1	BLANDEL0
	OSC							
43	X	APPLOPD6	APPLOPD5	APPLOPD4	APPLOPD3	APPLOPD2	APPLOPD1	APPLOPD0
		OSC						
44	BLANLEN7	BLANLEN6	BLANLEN5	BLANLEN4	BLANLEN3	BLANLEN2	BLANLEN1	BLANLEN0
	OSC							
45	PPLOP7	PPLOP6	PPLOP5	PPLOP4	PPLOP3	PPLOP2	PPLOP1	PPLOP0
	OSC							
46	x	x	х	PPLOP8	CAPPM1	CAPPM0	CAPPS1	CAPPS0
				OSC	OSC	OSC	OSC	OSC
47	X	VERINT6	VERINT5	VERINT4	VERINT3	VERINT2	VERINT1	VERINT0
		OSC						
48	x	x	x	STOPMOM3	STOPMOM2	STOPMOM1	STOPMOM0	RMODE
				OSC	OSC	OSC	OSC	OSC
49	INTMODE3	INTMODE2	INTMODE1	INTMODE0	BLANKPOL	ADOPMOM2	ADOPMOM1	ADOPMOM0
	OSC							
4A	x	VOUTFR	HOUTFR	VOUTPOL	HOUTPOL	STOPMOS2	STOPMOS1	STOPMOS0
		OSC						
4B	PRIORMS	FILSEL1	FILSEL0	MOVPHINV		MENULLUN-	MEMINMOT1	MEMINMOT0
	MUX	SRCM	SRCM	ME	ON ME	FON ME	ME	ME
4C	MEPENUP3	MEPENUP2	MEPENUP1	MEPENUP0	-	MEADDPEN2	MEADDPEN1	MEADDPEN0
	ME							
4D	SFMAXTH1	SFMAXTH0	SFMINTH1	SFMINTH0	MEMINTH3	MEMINTH2	MEMINTH1	MEMINTH0
	ME							
4E	x	x	BVMCON	MEMAXTH4	MEMMAXTH3	MEMMAXTH2	MEMMAXTH1	MEMMAXTH0
			ME	ME	ME	ME	ME	ME
4F	MEMOHIST3		MEMOHIST1	MEMOHIST0				MENULLPEN0
	ME							
50	MEANBP1	MEANBP0	MEANMP1	MEANMP0	MENPTH2	MENPTH1	MENPTH0	MEPERINF
	ME							
51	MEANRG1	MEANRG0	MEHPERTH2	MEHPERTH1	MEHPERTH0	MEVPERTH2	MEVPERTH1	MEVPERTH0
	ME							

I

I

52	X	BVMRES ME	PERPEN2 ME	PERPEN1 ME	PERPEN0 ME	VECDISON SRCM	THYON ME	RESMOV ME
53	REFRPER1	REFRPER0	MEMOP1	MEMOP0	MASTERON	SLAVEON	MEMRDM	MEMRDS
	MC	MC	MC	MC	MC	MC	MC	MC
54	VPAN7	VPAN6	VPAN5	VPAN4	VPAN3	VPAN2	VPAN1	VPAN0
	MC	MC	MC	MC	MC	MC	MC	MC
55	REFRON	RSHFTM	RSHFTS	SHFTSTEP3	SHFTSTEP2	SHFTSTEP1	SHFTSTEP0	MASTSLA
	MC	MC	MC	MC	MC	MC	MC	MC
56	PROG_THRES6	PROG_THRES5	PROG_THRES4	PROG_THRES3	PROG_THRES2	PROG_THRES1	PROG_THRES(MASLSHFT
	MC	MC	MC	MC	MC	MC	MC	MC
57	x	x	x	MEMWRS MC	FREEZES MC	WRFLDS MC	ORGMEMS MC	VERRESS MC
58	x	x	x	MEMWRM MC	FREEZEM MC	WRFLDM MC	ORGMEMM MC	VERRESM MC
59	MEMMNDTH3	MEMMNDTH2	MEMMNDTH1	MEMMNDTH0	MENVRTH3	MENVRTH2	MENVRTH1	MENVRTH0
	ME	ME	ME	ME	ME	ME	ME	ME
5A	0	TWOOUT OFC	DACEN DAC	CORING PK	YBORDERD3 OFC	YBORDERD2 OFC	YBORDERD1 OFC	YBORDERD0 OFC
5B	UBORDERD3	UBORDERD2	UBORDERD1	UBORDERD0	VBORDERD3	VBORDERD2	VBORDERD1	VBORDERD0
	OFC	OFC	OFC	OFC	OFC	OFC	OFC	OFC
5C	ASCENTLTI1	ASCENTLTI0	ASCENTCTI1	ASCENTCTI0	COARSDEL3	COARSDEL2	COARSDEL1	COARSDEL0
	LTI	LTI	CTI	CTI	CD	CD	CD	CD
5D	BCOF3	BCOF2	BCOF1	BCOF0	HCOF3	HCOF2	HCOF1	HCOF0
	PK	PK	PK	PK	PK	PK	PK	PK
5E	CHROM_AMP DAC	THRESY_UP1	THRESY_UP0 LTI	THRESC1 CTI	THRESC0 CTI	THRESY2 LTI	THRESY1 LTI	THRESY0 LTI
5F	x	CLKMDEN PLLD	CLKOUTON PLLD	PLLDOFF PLLD	PLLDRA3 PLLD	PLLDRA2 PLLD	PLLDRA1 PLLD	PLLDRA0 PLLD
60-77	x	x	x	x	x	x	x	x
78	SLAA7	SLAA6	SLAA5	SLAA4	SLAA3	SLAA2	SLAA1	SLAA0
	LBD	LBD	LBD	LBD	LBD	LBD	LBD	LBD
79	ELAA7	ELAA6	ELAA5	ELAA4	ELAA3	ELAA2	ELAA1	ELAA0
	LBD	LBD	LBD	LBD	LBD	LBD	LBD	LBD
7A	NOISEME4	NOISEME3	NOISEME2	NOISEME1	NOISEME0	VERSION2	VERSION1	VERSION0
	TSNR	TSNR	TSNR	TSNR	TSNR	I²C	I ² C	I ² C

7B	х	х	х	х	STATUS_SLA A LBD	STATUS_ELA A LBD	RELY LBD	TVMODEM ISC
7C	x	х	х	х	х	х	NMSTATUS TSNR	LBDSTATUS LBD
7D	x	х	x	х	х	х	х	TVMODES ISC
7E	MOVMO ME	MOVPH ME	GMOTION ME	MOVTYP ME	MEMSTAT3 ME	MEMSTAT2 ME	MEMSTAT1 ME	MEMSTAT0 ME
7F	x	х	х	х	х	х	х	SHIFTACT MC
80	x	х	x	х	х	х	х	VIMSTATUS I²C
81	x	х	х	х	x	x	х	VISSTATUS I²C
82	х	х	х	х	х	х	х	OSSTATUS I²C

- x = don't care
- ISC Input sync controller block
- IFC Input format conversion block
- OSC Output sync controller block
- OFC Output format conversion block
- LBD Letter box detection block
- VHCOM Vertical-horizontal compression/expansion block
- TSNR Temporal noise reduction block
- ME Motion estimation block
- PK Peaking
- LTI Luminance transition improvement block
- CTI Chrominance transition improvement block
- CD Coarse Delay block
- MC Memory controller
- PLLM Clock doubling block master
- PLLS Clock doubling block slave
- PLLD Clock doubling block display
- I²C Bus block

5.13.4 Detailed description

Default values are underlined.

Sub add	Sub address 00			
Bit	Name	Function		
D7D5	х	xxx		
D4	PLLMOFF	Only for test purposes, do not use in normal mode PLLM (Clock doubling): 1: off <u>0: on</u>		
D3D0	PLLMRA	Only for test purposes, do not use in normal mode PLLM range, only for test purposes [PPLMRA=0]		

Sub address 01				
Bit	Name	Function		
D7D0	IPOSYM	Vertical Picture Position in the Memory for Master Picture resolution: 1 line [IPOSYM=0] - upper position		

Sub address 02				
Bit	Name	Function		
D7D0	IPOSXM	Horizontal Picture Position in the Memory for Master Picture resolution: 4 pixel [IPOSXM=0] - left position		

Sub add	Sub address 03				
Bit	Name	Function			
D7D5	LEBORDM	Amount of left border pixels by horizontal compression master: 4*LEBORDM [<u>LEBORDM=0</u>]			

Sub add	Sub address 03				
Bit	Name	Function			
D4D2	RIBORDM	Amount of right border pixels by horizontal compression master: 4*RIBORDM [<u>RIBORDM=0</u>]			
D1D0	CHFILM	Chrominance Filter Master channel on/off 11: vertical and horizontal filter on (only valid for DEZHM=DEZVM=0) 10: horizontal filter on (only valid for DEZHM=0) 01: vertical filter on (only valid for DEZVM=0) <u>00: off</u>			

Sub add	ress 04	
Bit	Name	Function
D7D5	DELM	Adjustable delay between luminance and chrominance data master channel: 111:+4 110:+3 101:+2 100:+1 011: 0 010: -1 001: -2 000: -3
D4	FORCOLM	Force colour master channel 1: on <u>0: off</u>
D3D0	YBORDERM	Y border value (Yborder(3) Yborder(2) Yborder(1) Yborder(0) 0 0 0 0 = $00010000 = 16$), YBORDERM defines the 4 MSB's of a 8 bit value

Sub add	Sub address 05			
Bit	Name	Function		
D7D4	UBORDERM	U border value (Uborder(3) Uborder(2) Uborder(1) Uborder(0) 0 0 0 0 = $\frac{10000000 = 128}{000000000000000000000000000000000000$		
D3D0	VBORDERM	V border value (Vborder(3) Vborder(2) Vborder(1) Vborder(0) 0 0 0 0 = $10000000 = 128$), VBORDERM defines the 4 MSB's of a 8 bit value		

Sub add	Sub address 06				
Bit	Name	Function			
D7D4	UPBORDM	Amount of upper border lines by vertical compression master: [UPBORDM=0]			
D3D0	LWBORDM	Amount of lower border lines by vertical compression master: [LWBORDM=0]			

Sub add	Sub address 07				
Bit	Name	Function			
D7D0	INTHM	Interpolation factor for horizontal compression/expansion master: [INTHM(125)=64]			

Sub address 08		
Bit	Name	Function
D7D3	INTHM	Interpolation factor for horizontal compression/expansion master: INTHM(40)=0

Sub add	Sub address 08		
Bit	Name	Function	
D2D0	DEZHM	Decimation factor for horizontal compression/expansion master: 111: Factor 16 110: Factor 8 101: Factor 4 100: Factor 2 011: not defined 010: not defined 001: Factor 1 <u>000: Bypass</u>	

Sub address 09		
Bit	Name	Function
D7D0	INTVM	Interpolation factor for vertical compression master: INTVM+512 [INTVM(81)=0]

Sub add	Sub address 0A		
Bit	Name	Function	
D7	INTVM	Interpolation factor for vertical compression master: INTVM+512 [INTVM(0)=0]	
D6D4	DEZVM	Decimation factor for vertical compression master: 111: Factor 16 110: Factor 8 101: Factor 4 100: Factor 2 011: not defined 010: not defined 001: Factor 1 <u>000: Bypass</u>	

Sub add	Sub address 0A		
Bit	Name	Function	
D3D2	YPEAKM	Vertical peaking factor for luminance signal master: 11: Factor 4 10: Factor 2 01: Factor 1 <u>00: off</u>	
D1D0	CPEAKM	Vertical peaking factor for chrominance signal master: 11: Factor 4 10: Factor 2 01: Factor 1 <u>00: off</u>	

Sub add	Sub address 0B		
Bit	Name	Function	
D7	х	x	
D6D5	FORMATM	Input format master: <u>11: full CCIR 656</u> 10: CCIR 656 only data, H- and V-sync according CCIR656 01: CCIR 656 only data, H- and V-sync according PAL/NTSC 00: 4:2:2	
D4	FIEINVM	Field polarity inversion master: 1: Field A=1, Field B=0 <u>0: Field A=0, Field B=1</u>	
D3	VCRMODEM	Input filtering of the incoming field signal master: <u>1: on</u> 0: off	
D2D1	NAPIPPHM (LSBs of NAPLIPM)	Number of not active pixels from external HINM to the input data in system clocks of CLKM: Distance(HINM to input data) = (NAPIPDLM*4+NAPIPPHM+8) [NAPIPPHM = 0]	
DO	TWOINM	Chrominance input format master: <u>1: 2's complement input (-128127)</u> 0: unsigned input (0255) inside the SDA 9410 the data are always processed as unsigned data	

Sub address 0C		
Bit	Name	Function
D7D0	NAPIPDLM (MSBs of NAPLIPM)	Number of not active pixels from HINM to the input data in system clocks of CLKM: Distance(HINM to input data) = (4 * NAPIPDLM + NAPIPPHM + 8) [NAPIPDLM= 0]

Sub address 0D		
Bit	Name	Function
D7D0	ALPFM	Number of active lines per field after vertical compression master: Active lines = ALPFM * 2 [<u>ALPFM=144</u>]

Sub address 0E		
Bit	Name	Function
D7D0	APPLM	Number of active pixels per line in the input data stream after horizontal expansion/compression in system clocks of CLKM: Active pixels = APPLM*8 [<u>APPLM = 180</u>]

Sub address 0F		
Bit	Name	Function
D7D0	APPLIPM	Number of active pixels per line in the input data stream in system clocks of CLKM: Active pixels = APPLIPM*8 [<u>APPLIPM = 180]</u>

Sub address 10		
Bit	Name	Function
D7D0	ALPFIPM	Number of active lines per field in the input data stream master: Active lines = ALPFIPM * 2 [ALPFIPM=144]

Sub add	Sub address 11		
Bit	Name	Function	
D7D2	VINDELM	VINM input delay: Delay(VINM to internal V-sync) = (128 * VINDELM + 1)*Tclkm [VINDELM = 0]	
D1	VINPOLM	VINM polarity: 1: low active <u>0: high active</u>	
D0	HINPOLM	HINM polarity: 1: low active <u>0: high active</u>	

Sub add	Sub address 12		
Bit	Name	Function	
D7	х	X	
D6D2	NALIPM	Number of not active lines per field in the input data stream master: Not active lines = NALIPM+3 [NALIPM= 20]	
D1D0	CHRFOR M	Chrominance Format Master Channel: 11: not defined 10: reserved 01: 4:2:0 <u>00: 4:1:1</u>	

Sub add	Sub address 14		
Bit	Name	Function	
D7D6	x	XX	
D5D1	NMLINE	Line for noise measurement (only valid for NMALG=1) [NMLINE $= 4$]	
D0	NMALG	Noise measurement algorithm: <u>1: measurement during vertical blanking period (line can be</u> <u>defined by NMLINE)</u> 0: measurement in the active picture	

Sub add	Sub address 15		
Bit	Name	Function	
D7D4	TNRCLY	Temporal noise reduction of luminance: classification <u>1111: slight noise reduction</u> : 0000: strong noise reduction	
D3D0	TNRCLC	Temporal noise reduction of chrominance: classification <u>1111: slight noise reduction</u> : 0000: strong noise reduction	

Sub address 16		
Bit	Name	Function
D7D4	TNRKOY	Temporal noise reduction of luminance: Vertical shift of the motion detector characteristic [<u>TNRKOY=0</u>]
D3D0	TNRKOC	Temporal noise reduction of chrominance: Vertical shift of the motion detector characteristic [<u>TNRKOC=0</u>]

Sub address 17		
Bit	Name	Function
D7D4	TNRVAY	Fixed K-factor for temporal noise reduction of luminance [TNRVAY = 15]
D3D0	TNRVAC	Fixed K-factor for temporal noise reduction of chrominance $[\underline{TNRVAC} = 15]$

Sub add	Sub address 18		
Bit	Name	Function	
D7	TNRSEL	Motion detection of temporal noise reduction of chrominance: <u>1: separate motion detector</u> 0: luminance motion detector	
D6D1	TNRHOY	Temporal noise reduction of luminance: Horizontal shift of the motion detector characteristic [TNRHOY=0]	
D0	TNRFIY	Fixed K-factor switch for temporal noise reduction of luminance: <u>1: off</u> 0: on	

Sub address 19		
Bit	Name	Function
D7	х	x
D6D1	TNRHOC	Temporal noise reduction of chrominance: Horizontal shift of the motion detector characteristic [TNRHOC=0]
D0	TNRFIC	Fixed K-factor switch for temporal noise reduction of chrominance: <u>1: off</u> 0: on

Sub add	Sub address 1A		
Bit	Name	Function	
D7	SNRON	Spatial noise reduction of luminance: 1: enabled <u>0: disabled</u>	
D6	PANAON	Horizontal panorama mode: 1: on <u>0: off</u>	
D5D2	PANAST	Gradient of horizontal panorama mode: PANAST+1 [PANAST=7]	
D1	NRON	Temporal Noise Reduction of Luminance and Chrominance On (SRC-Mode) 1: enabled <u>0: disabled</u>	
D0	DTNRON	Temporal Noise Reduction of Luminance (SRC-Mode) 1: field based <u>0: frame based</u>	

Sub address 1B		
Bit	Name	Function
D7D0	OPDELM	Output processing delay master: Delay(VINM to OPSTARTM) = (OPDELM + 1) * Tline [OPDELM = 170]

Sub address 1C		
Bit	Name	Function
D7D2	TH_DN_BN	Letter Box Detection: Darkness Brightness threshold [TH_DN_BN = 15]
D1D0	TH_LB	Letter Box Detection: Letter Box threshold (MSBs) [<u>TH_LB(54) = 0]</u>

Sub address 1D		
Bit	Name	Function
D7D4	TH_LB	Letter Box Detection: Letter Box threshold (LSBs) [TH_LB(30) = 12]
D3D0	TH_ALB	Letter Box Detection: Amount of letter box threshold [TH ALB = 6]

Sub add	Sub address 1E		
Bit	Name	Function	
D7	x	x	
D6D0	TH_AA	Letter Box Detection: Active Area threshold [TH_AA = 50]	

Sub add	Sub address 1F		
Bit	Name	Function	
D7D4	TH_MUNSL	Letter Box Detection: Maximum length of insecure threshold [TH_MUNSL = 5]	
D3D0	TH_AUNS	Letter Box Detection: Amount of letter box and insecure threshold [<u>TH_AUNS = 7]</u>	

Sub address 20		
Bit	Name	Function
D7D5	х	XXX
D4D1	TH_MA_AA	Letter Box Detection: Maximum amount of active area threshold $[TH MA AA = 14]$

I

I

Sub address 20		
Bit	Name	Function
D0	VOLBD	Letter Box Detection: Makes the result of letter box detection visible on screen 1: on <u>0: off</u>

Sub address 22		
Bit	Name	Function
D7D5	х	xxx
D4	PLLSOFF	Only for test purposes, do not use in normal mode PLLS (Clock doubling): 1: off <u>0: on</u>
D3D0	PLLSRA	Only for test purposes, do not use in normal mode PLLS range, only for test purposes [PPLSRA=0]

Sub address 23		
Bit	Name	Function
D7D0	IPOSYS	Vertical Picture Position in the Memory for Slave Picture resolution: 1 line [IPOSYS=0] - upper position

Sub address 24		
Bit	Name	Function
D7D0	IPOSXS	Horizontal Picture Position in the Memory for Slave Picture resolution: 4 pixel [IPOSXS=0] - left position

Sub add	Sub address 25		
Bit	Name	Function	
D7D5	LEBORDS	Amount of left border pixels by horizontal compression slave: 4*LEBORDS [LEBORDS=0]	
D4D2	RIBORDS	Amount of right border pixels by horizontal compression slave: 4*RIBORDS [<u>RIBORDS=0</u>]	
D1D0	CHFILS	Chrominance Filter Slave channel on/off 11: vertical and horizontal filter on (only valid for DEZHS=DEZVS=0) 10: horizontal filter on (only valid for DEZHS=0) 01: vertical filter on (only valid for DEZVS=0) <u>00: off</u>	

Sub add	Sub address 26		
Bit	Name	Function	
D7D5	DELS	Adjustable delay between luminance and chrominance data slave channel: 111:+4 110:+3 101:+2 100:+1 011: 0 010: -1 001: -2 000: -3	
D4	FORCOLS	Force colour slave channel 1: on <u>0: off</u>	
D3D0	YBORDERS	Y border value (Yborder(3) Yborder(2) Yborder(1) Yborder(0) 0 0 0 0 = $00010000 = 16$), YBORDERS defines the 4 MSB's of a 8 bit value	

Sub add	Sub address 27		
Bit	Name	Function	
D7D4	UBORDERS	U border value (Uborder(3) Uborder(2) Uborder(1) Uborder(0) $0 \ 0 \ 0 \ 0 = \frac{10000000 = 128}{0}$, UBORDERS defines the 4 MSB's of a 8 bit value	
D3D0	VBORDERS	V border value (Vborder(3) Vborder(2) Vborder(1) Vborder(0) 0 0 0 0 = $10000000 = 128$), VBORDERS defines the 4 MSB's of a 8 bit value	

Sub address 28		
Bit	Name	Function
D7D4	UPBORDS	Amount of upper border lines by vertical compression master: [UPBORDS=0]
D3D0	LWBORDS	Amount of lower border lines by vertical compression master: [LWBORDS=0]

Sub address 29		
Bit	Name	Function
D7D0	INTHS	Interpolation factor for horizontal compression/expansion slave: [INTHS(125)=64]

Sub address 2A		
Bit	Name	Function
D7D3	INTHS	Interpolation factor for horizontal compression/expansion slave: [INTHS(40)=0]

Sub add	Sub address 2A		
Bit	Name	Function	
D2D0	DEZHS	Decimation factor for horizontal compression/expansion slave: 111: Factor 16 110: Factor 8 101: Factor 4 100: Factor 2 011: not defined 010: not defined 001: Factor 1 <u>000: Bypass</u>	

Sub address 2B		
Bit	Name	Function
D7D0	INTVS	Interpolation factor for vertical compression slave: INTVS+512 [INTVS(81)=0]

Sub add	Sub address 2C		
Bit	Name	Function	
D7	INTVS	Interpolation factor for vertical compression slave: INTVS+512 [INTVS(0)=0]	
D6D4	DEZVS	Decimation factor for vertical compression slave: 111: Factor 16 110: Factor 8 101: Factor 4 100: Factor 2 011: not defined 010: not defined 001: Factor 1 000: Bypass	

Sub add	Sub address 2C		
Bit	Name	Function	
D3D2	YPEAKS	Vertical peaking factor for luminance signal slave: 11: Factor 4 10: Factor 2 01: Factor 1 <u>00: off</u>	
D1D0	CPEAKS	Vertical peaking factor for chrominance signal slave: 11: Factor 4 10: Factor 2 01: Factor 1 <u>00: off</u>	

Sub add	Sub address 2D		
Bit	Name	Function	
D7	SLAVECON	Slave channel connection: 1: Slave channel connected <u>0: Slave channel not connected</u>	
D6D5	FORMATS	Input format slave: <u>11: full CCIR 656</u> 10: CCIR 656 only data, H- and V-sync according CCIR656 01: CCIR 656 only data, H- and V-sync according PAL/NTSC 00: 4:2:2	
D4	FIEINVS	Field polarity inversion slave: 1: Field A=1, Field B=0 <u>0: Field A=0, Field B=1</u>	
D3	VCRMODES	Input filtering of the incoming field signal slave: <u>1: on</u> 0: off	

D2D1	NAPIPPHS (LSBs of NAPLIPS)	Number of not active pixels from external HINS to the input data in system clocks of CLKS: Distance(HINS to input data) = (NAPIPDLS*4+NAPIPPHS+8) [NAPIPPHS = 0]
D0	TWOINS	Chrominance input format slave: <u>1: 2's complement input (-128127)</u> 0: unsigned input (0255) inside the SDA 9410 the data are always processed as unsigned data

Sub address 2E		
Bit	Name	Function
D7D0	NAPIPDLS (MSBs of NAPLIPS)	Number of not active pixels from HINS to the input data in system clocks of CLKS: Distance(HINS to input data) = (4 * NAPIPDLS + NAPIPPHS + 8) [NAPIPDLS= 0]

Sub address 2F		
Bit	Name	Function
D7D0	ALPFS	Number of active lines per field after vertical compression slave: Active lines = ALPFS * 2 [ALPFS=144]

Sub address 30		
Bit	Name	Function
D7D0	APPLS	Number of active pixels per line in the input data stream after horizontal expansion/compression in system clocks of CLKS: Active pixels = APPLS*8 [<u>APPLS = 180</u>]

Sub address 31		
Bit	Name	Function
D7D0	APPLIPS	Number of active pixels per line in the input data stream in system clocks of CLKS: Active pixels = APPLIPS*8 [<u>APPLIPS = 180]</u>

Sub address 32		
Bit	Name	Function
D7D0	ALPFIPS	Number of active lines per field in the input data stream slave: Active lines = ALPFIPS * 2 [ALPFIPS=144]

Sub add	Sub address 33		
Bit	Name	Function	
D7D2	VINDELS	VINS input delay: Delay(VINS to internal V-sync) = (128 * VINDELS + 1)*Tclks [VINDELS = 0]	
D1	VINPOLS	VINS polarity: 1: low active <u>0: high active</u>	
D0	HINPOLS	HINS polarity: 1: low active <u>0: high active</u>	

Sub address 34		
Bit	Name	Function
D7D6	x	XX
I

Sub add	Sub address 34		
Bit	Name	Function	
D7D1	NALIPS	Number of not active lines per field in the input data stream slave: Not active lines = NALIPS+PD [<u>NALIPS= 20</u>] Enables 16x9 format adjustment for PIP display	
D0	CHRFORS	Chrominance format slave channel: 1: 4:2:0 0: 4:1:1	

Sub address 35		
Bit	Name	Function
D7D0	HOUTDEL	Horizontal delay of HOUT and VOUT signal in clocks of CLKD: Delay = 4*HOUTDEL [HOUTDEL = 0]

Sub address 36		
Bit	Name	Function
D7D0	NALOPD	Number of not active lines per output frame in the output data stream: Not active lines = 2*(NALOPD+1) [<u>NALOPD = 22</u>]

Sub address 37		
Bit	Name	Function
D7		X
D6D0	ALPFOPD	Number of active lines per output frame: Active lines = 8 * ALPFOPD [<u>ALPFOPD= 72]</u>

Sub address 38		
Bit	Name	Function
D7D0	LPFOP	Number of lines per output frame (only valid for VOUTFR=1): Number of lines = 4 * LPFOP + 1 [LPFOP = 156]

Sub address 39		
Bit	Name	Function
D7D0	NAPOPD	Number of not active pixels from external HOUT to the first active pixel of the output data stream (when HOUTDEL = 0) in system clocks of X1/CLKD: Distance(HOUT to output data) = (4 * NAPOPD) [NAPOPD = 0]

Sub address 3A		
Bit	Name	Function
D7D0	HORPOSM	Number of pixels from the first active pixel of the main channel to the first active pixel of the master channel in system clocks of X1/CLKD: Number of pixels = (4 * HORPOSM) [HORPOSM = 0]

Sub address 3B		
Bit	Name	Function
D7D0	HORPOSS	Number of pixels from the first active pixel of the main channel to the first active pixel of the slave channel in system clocks of X1/CLKD: Number of pixels = (4 * HORPOSS) [HORPOSS = 0]

Sub address 3C		
Bit	Name	Function
D7D0	VERPOSM	Number of lines from the first active line of the main channel to the first active line of the master channel per output frame: Number of lines = VERPOSM [VERPOSM = 0]

Sub address 3D		
Bit	Name	Function
D7D0	VERPOSS	Number of lines from the first active line of the main channel to the first active line of the slave channel per output frame: Number of lines = VERPOSS [VERPOSS = 0]

Sub address 3E		
Bit	Name	Function
D7	x	x
D6D0	HORWIDTHM	Number of active pixels per line of the master channel in system clocks of X1/CLKD: Active pixels = 8 * HORWIDTHM [<u>HORWIDTHM = 90</u>]

Sub address 3F		
Bit	Name	Function
D7D0	HORWIDTHS	Number of active pixels per line of the slave channel in system clocks of X1/CLKD: Active pixels = 4 * HORWIDTHS [HORWIDTHS = 180]

Sub address 40		
Bit	Name	Function
D7		x
D6D0	VERWIDTHM	Number of active lines per field of the master channel per output frame: Active lines = 8 * VERWIDTHM [<u>VERWIDTHM = 72</u>]

Sub address 41		
Bit	Name	Function
D7D0	VERWIDTHS	Number of active lines per field of the master channel per output frame: Active lines = 4 * VERWIDTHS [<u>VERWIDTHS = 144</u>]

Sub address 42		
Bit	Name	Function
D7D0	BLANDEL	Number of pixels from external HOUT to the active edge of the BLANK signal in system clocks of X1/CLKD: Number of pixels = (8 * (BLANDEL div 4) + BLANDEL mod 3) [BLANDEL = 0]

Sub add	Sub address 43		
Bit	Name	Function	
D7		x	
D6D0	APPLOPD	Number of active pixels per line (including coloured border values and data) in the output data stream in system clocks of X1/CLKD: Active pixels = 8 * APPLOPD [<u>APPLOPD = 90</u>]	

Sub address 44		
Bit	Name	Function
D7D0	BLANLEN	Length of the signal BLANK in system clocks of X1/CLKD: Length = 4 * BLANLEN [BLANLEN = 180]

Sub address 45		
Bit	Name	Function
D7D0	PPLOP(70)	Number of pixels between two output H-syncs HOUT (only valid for HOUTFR=1) in system clocks of X1/CLKD (Bit 7 to 0): Number of pixels = $2 * PPLOP [PPLOP(70) = 176]$

Sub add	Sub address 46		
Bit	Name	Function	
D7D5	x	xxx	
D4	PPLOP(8)	Number of pixels between two output H-syncs HOUT (only valid for HOUTFR=1) in system clocks of X1/CLKD (Bit 8): Number of pixels = $2 * PPLOP [PPLOP(8) = 1]$	
D3D2	CAPPM	Reduces the active pixels per line of the master channel (HORWIDTHM) at the output side = $8 \times \text{HORWIDTHM} - 2 \times \text{k}$: k = 24: CAPPM = 11 16: CAPPM = 10 8: CAPPM = 01 <u>0: CAPPM = 00</u>	
D1D0	CAPPS	Reduces the active pixels per line of the slave channel (HORWIDTHS) at the output side = 4 * HORWIDTHS - 2 * k: k = 24: CAPPS = 11 16: CAPPS = 10 8: CAPPS = 01 <u>0: CAPPS = 00</u>	

Sub add	Sub address 47		
Bit	Name	Function	
D7		x	
D6D0	VERINT	Vertical expansion factor: <u>127: no vertical expansion</u> : 85: vertical expansion with factor 1.5 : 63: vertical expansion with factor 2 :	

Sub add	Sub address 48		
Bit	Name	Function	
D7D5	x	XXX	
D4D1	STOPMOM	Static operation mode for master channel [STOPMOM = 0]	
D0	RMODE	Raster mode: 1: progressive <u>0: interlaced</u>	

Sub add	Sub address 49		
Bit	Name	Function	
D7D4	INTMODE	Free programmable INTERLACED signal for AC coupled deflections [INTMODE = 0]	
D3	BLANKPOL	BLANK polarity: 1: low active <u>0: high active</u>	
D2D0	ADOPMOM	Adaptive operation mode of master channel [ADOPMOM=0]	

Sub add	Sub address 4A		
Bit	Name	Function	
D7	х	x	
D6	VOUTFR	VOUT generator: 1: freerunning-mode <u>0: locked-mode</u>	
D5	HOUTFR	HOUT generator 1: freerunning-mode <u>0: locked-mode</u>	
D4	VOUTPOL	VOUT polarity: 1: low active <u>0: high active</u>	
D3	HOUTPOL	HOUT polarity: 1: low active <u>0: high active</u>	
D2D0	STOPMOS	Static operation mode for slave channel [STOPMOS = 0]	

Sub add	Sub address 4B		
Bit	Name	Function	
D7	PRIORMS	Priority of master or slave channel: <u>1: Master channel priority</u> 0: Slave channel priority	
D6D5	FILSEL	Filter select for VDU interpolation 11: Improved median based interfield interpolation (SRC) 10: median based interfield interpolation 01: linear INTRAFIELD interpolation (SSC and MUP mode) 00: linear INTERFIELD interpolation	
D4	MOVPHINV	Inversion of internal MOVPH signal 1: enabled <u>0: disabled</u>	
D3	ME- SMOOTHON	Vector smoothing <u>1: on</u> 0: off	

Sub add	Sub address 4B		
Bit	Name	Function	
D2	MENULL- UNFON	Unfiltered null DBD <u>1: on</u> 0: off	
D1D0	MEMINMOT	Minimum vector threshold for film mode and global motion detection 11: 3 10: 2 <u>01: 1</u> 00 :0	

Sub add	Sub address 4C		
Bit	Name	Function	
D7D4	MEPENUP	Penalty for update vectors 1111: 15 1110: 14 : <u>1000: 8</u> : 0001: 1 0000: 0	
D3D0	MEADDPEN	Additional penalty for non-null vectors 1111: 15 1110: 14 : <u>1000: 8</u> : 0001: 1 0000: 0	

Sub address 4D		
Bit	Name	Function
D7D6	SFMAXTH	Scale factor for MEMAXTH 11: *64 <u>10: *32</u> 01: *16 00: *8
D5D4	SFMINTH	Scale factor for MEMINTH 11: *64 10: *32 01: *16 <u>00: *8</u>
D3D0	MEMINTH	Threshold for detection of motion in camera mode 1111 : 15 1110 : 14 : <u>0111 : 7</u> : 0001: 1 0000: 0

Sub add	Sub address 4E		
Bit	Name	Function	
D7D6	xx	XX	
D5	BVMCON	Vector correction <u>1: on</u> 0: off	
D4D0	MEMAXTH	Threshold for detection of motion in film mode <u>11111 : 31</u> 11110 : 30 : <u>0</u> 0001: 1 00000: 0	

Sub add	Sub address 4F		
Bit	Name	Function	
D7D4	MEMOHIST	History length of film mode and global motion detection 1111 : 15 1110 : 14 : <u>0011: 3</u> : 0001: 1 0000: 0	
D3D0	MENULLPEN	Additional penalty for null vector, if vector length of predictor is greater as MENPTH 1111: 15 1110: 14 : <u>1000: 8</u> : 0001: 1 0000: 0	

Sub add	Sub address 50		
Bit	Name	Function	
D7D6	MEANBP	Penalty for border lines in additional null dbd 11: *4 10: *2 <u>01: *1</u> 00: *0	
D5D4	MEANMP	Penalty for middle lines in additional null dbd 11: *8 10: *4 <u>01: *2</u> 00: *1	

Sub add	Sub address 50		
Bit	Name	Function	
D3D1	MENPTH	Minimum vector length for null dbd penalty 111: off 110: 24 101: 20 100: 16 011: 12 010: 8 001: 4 000: 0	
D0	MEPERINF	Influence of periodicity on 1: update vector length 0: update vector penalty	

Sub address 51		
Bit	Name	Function
D7D6	MEANRG	Range of middle lines in additional null dbd 11: 10 lines 10: 8 lines <u>01: 6 lines</u> 00: 4 lines
D5D3	MEHPERTH	Threshold for horizontal periodicity detection 111: 112 110: 96 101: 80 <u>100: 64</u> 011: 48 010: 32 001: 16 000: off

Sub add	Sub address 51		
Bit	Name	Function	
D2D0	MEVPERTH	Threshold for vertical periodicity detection 111: 112 110: 96 101: 80 <u>100: 64</u> 011: 48 010: 32 001: 16 000: off	

Sub add	Sub address 52		
Bit	Name	Function	
D7	Х	x	
D6	BVMRES	Block vector memory reset 1: All vector memory output values are set to null vector (for scan rate conversion and vector estimation). Corrupt vectors are avoided, suppressed or deleted. This is equal to a reset of the vector memory. <u>0: Use vectors stored in vector memory</u>	
D5D3	PERPEN	Penalty for periodic structures. Reduces estimation errors inside horizontal periodic structures. <u>111: off</u> 110: strong : 011: recommended : 000: slight	

Sub add	Sub address 52		
Bit	Name	Function	
D2	VECDISON	Display of vector estimation results in chrominance channel 1: on 0: off If VECDISON is on, the I ² C Bus parameter FILSEL can be used to choose between different display modi: FILSEL: 11: x-vector: v-component; y-vector: u-component 10: x-vector: u-component; y-vector: v-component 01: y-vector: u- and v-component <u>00: x-vector: u- and v-component</u>	
D1	THYON	Time hysteresis for film mode detection on/off: <u>1: on (camera->film: 2*(MEMOHIST+1); film->camera:</u> <u>(MEMOHIST+1)</u> 0: off (2*(MEMOHIST+1))	
D0	RESMOV	Reset of film detection time hysteresis queue 1: Reset: MOVMO=0 (camera mode) <u>0: no reset</u>	

Sub add	Sub address 53		
Bit	Name	Function	
D7D6	REFRPER	Refresh Period of the Memory (REFRON=1; 50 Hz, 625 lines standard) 11: ~4 ms 10: ~5.5 ms 01: ~7 ms <u>00: ~10 ms</u>	
D5D4	MEMOP	Memory Operation Mode 11:not defined 10:MUP-Mode (Multi-Picture) 01:SSC-Mode (Split Screen) <u>00:SRC-Mode (Sample Rate Conversion)</u>	
D3	MASTERON	Reading Data of Master Channel <u>1: enabled (master picture is displayed)</u> 0: disabled	

Sub add	Sub address 53		
Bit	Name	Function	
D2	SLAVEON	Reading Data of Slave Channel 1: enabled (slave picture is displayed) <u>0: disabled</u>	
D1	MEMRDM	Memory Read Mode Master Channel (SRC-Mode) 1:reading only 1 field memory area for AABB conversion 0:reading both field memory areas for ABAB conversion	
D0	MEMRDS	Memory Read Mode Slave Channel (SRC-Mode) 1:reading data in SSC-configuration, 1 or 2 decimated fields, AABB 0:reading data in PIP-configuration (joint line free, ABAB)	

Sub address 54		
Bit	Name	Function
D7D0	VPAN	Vertical Panning -line number indicating the start line of reading for the master channel -defines the displayed part of the picture with activated vertical interpolation [VPAN=0]

Sub add	Sub address 55		
Bit	Name	Function	
D7	REFRON	Refresh On 1: memory refresh activated <u>0: no memory refresh</u>	
D6	RSHFTM	Joint Line Free Display of Master Channel by Shifting the Output Raster Phase (SSC-Mode): <u>Should be set in all</u> <u>operation modes to 1</u> 1: enabled <u>0: disabled</u>	

Sub add	Sub address 55		
Bit	Name	Function	
D5	RSHFTS	Joint Line Free Display of Master and Slave Channel by Shifting the Output Raster Phase (SSC-Mode, RSHFTM=1): <u>Should be</u> <u>set in all operation modes to 1</u> 1: enabled <u>0: disabled</u>	
D4D1	SHFTSTEP	Increment for Raster Phase Shift per Output Frame (lines) [SHFTSTEP=0100]	
DO	MASTSLA	Master / Slave Switch 1: master and slave input signals are exchanged, reset of display raster shift <u>0: display raster is synchronized to input Master Channel</u> (vertical Sync)	

Sub add	Sub address 56		
Bit	Name	Function	
D7D1	PROG_ THRES	Threshold to display progressive PIP without joint lines [PROG_THRES=60]	
DO	MASLSHFT	Master / Slave Shift 1: display raster is shifted slave phase to prepare a master/ slave switch <u>0: display raster is synchronized to input Master Channel</u> <u>(vertical Sync)</u>	

Sub address 57		
Bit	Name	Function
D7D5	ХХХ	XXX

Sub add	Sub address 57		
Bit	Name	Function	
D4	MEMWRS	Memory Write Mode Slave Channel (SRC-Mode) - SRC-Mode: 1:writing data in PIP-configuration <u>and</u> additionally in SSC- configuration <u>0:writing data in PIP-configuration</u> - SSC- and MUP-Mode: 1:768 pixel/line <u>0:512 pixel/line</u>	
D3	FREEZES	Freeze Picture Slave 1: freezed (no writing of slave data) <u>0: live</u>	
D2	WRFLDS	Write Field Slave Channel (only MUP Mode) 1: only A fields are written 0: all fields are written corresponding on actual mode	
D1	ORGMEMS	Data Configuration of the Memory (Slave Channel) 0:slave channel blocked (SRC-Mode, ORGMEMM=1) 1 field (SSC- and MUP-Mode; SRC-Mode, ORGMEMM=0) <u>1:3 fields PIP (SRC), 2 fields (restricted picture size, SSC and MUP)</u>	
D0	VERRESS	Vertical Resolution Slave Channel (only MUP Mode) (ORGMEMS=1 and WRFLDS=1) 1: frame resolution <u>0: field resolution</u>	

Sub address 58		
Bit	Name	Function
D7D5	ххх	XXX
D4	MEMWRM	Memory Write Mode Master Channel - SRC-Mode: no meaning, should be set to '0' - SSC- and MUP-Mode:
		<u>0:512 pixel/line</u> 1:768 pixel/line

Sub add	Sub address 58		
Bit	Name	Function	
D3	FREEZEM	Freeze Picture Master 1: freezed (no writing of master data) <u>0: live</u>	
D2	WRFLDM	Write Field Master Channel (only MUP Mode) 1: only A fields are written 0: all fields are written corresponding on actual mode	
D1	ORGMEMM	Data Configuration of the Memory (Master Channel) <u>1:2 fields (restricted picture size in SSC- and MUP-Mode)</u> 0:1 field	
D0	VERRESM	Vertical Resolution Master Channel (MUP Mode) (ORGMEMM=1 and WRFLDM=1) 1: frame resolution <u>0: field resolution</u>	

Sub add	Sub address 59		
Bit	Name	Function	
D7D4	MEMMNDTH	Threshold for switching between the vector activity or the field difference as input for the film mode detection Use field difference as film mode detection input 1111: insensible to motion : 0001: sensible to motion <u>0000: use vector activity as film mode detection input</u>	
D3D0	MENVRTH	Null vector reliability threshold, makes detection of null vector in homegenous areas more reliable. Threshold value to adjust sensibility of null vector reliability: 1111: insensible : 0001: sensible to motion and noise <u>0000: off</u>	

Sub add	Sub address 5A		
Bit	Name	Function	
D7	DOUTEN	Only for test purposes, do not use in normal mode Set to 0	
D6	TWOOUT	Chrominance output format: 1: 2's complement output (-128127) <u>0: unsigned output (0255)</u> inside the SDA 9410 the data are always processed as unsigned data, used in DP, makes only sense for digital output	
D5	DACEN	Only for test purposes, do not use in normal mode <u>1: DAC enabled</u> 0: DAC disabled	
D4	CORING	1: coring on <u>0: coring off</u>	
D3D0	YBORDERD	Y border value of display (Yborderd(3) Yborderd(2) Yborderd(1) Yborderd(0) $0 \ 0 \ 0 = 00010000 = 16$), YBORDERD defines the 4 MSB's of a 8 bit value	

Sub address 5B		
Bit	Name	Function
D7D4	UBORDERD	U border value of display (Uborderd(3) Uborderd(2) Uborderd(1) Uborderd(0) 0 0 0 0 = $\frac{10000000 = 128}{000000000000000000000000000000000000$
D3D0	VBORDERD	V border value of display (Vborderd(3) Vborderd(2) Vborderd(1) Vborderd(0) 0 0 0 = $\frac{10000000 = 128}{0}$, VBORDERD defines the 4 MSB's of a 8 bit value

Sub add	Sub address 5C		
Bit	Name	Function	
D7D6	ASCENTLTI	Defines slope of DLTI gain function 00: 1/2 01: 1 10: 2 11: 4	
D5D4	ASCENTCTI	Defines slope of DCTI gain function 00: 1/2 01: 1 10: 2 11: 4	
D3D0	COARSDEL	Delay of the luminance signal in relation to the chrominance signal in 2*CLKD clocks: 1111: +7 1110: +6 : <u>1000: +0</u> : 0001: -7 0000: -8	

Sub add	ress 5D	
Bit	Name	Function
D7D4	BCOF	Defines the band pass filter adjustments 0000: 0 0001: 1/4 : 0100: 1 : 1100 12/4 1101 14/4 1110 16/4 1111 20/4
D3D0	HCOF	Defines the high pass filter adjustments 0000: 0 0001: 1/4 : 0100: 1 : 1100 12/4 1101 14/4 1110 16/4 1111 20/4

Sub address 5E		
Bit	Name	Function
D7	CHROM_ AMP	Chrominance amplification factor adjustment for DAC output 1: amplification factor 2 <u>0: amplification factor 1</u>

Sub add	Sub address 5E		
Bit	Name	Function	
D6D5	THRESY_UP	Defines the upper threshold for luminance 00: 255 (no upper threshold) 01: 32 10: 128 <u>11: 64</u>	
D4D3	THRESC	Defines the threshold for chrominance 00: 255 (DCTI OFF) 01: 4 <u>10: 8</u> 11: 12	
D2D0	THRESY	defines the threshold for luminance 000: 255 (DLTI OFF) 001: 4 010: 8 011: 12 100: 16 : 111: 28	

Sub add	Sub address 5F		
Bit	Name	Function	
D7	х	x	
D6	CLKMDEN	CLKMDEN 1: X1/CLKD <u>0: CLKM</u>	
D5	CLKOUTON	CLKOUTON <u>1: enabled</u> 0: disabled	
D4	PLLDOFF	Only for test purposes, do not use in normal mode PLLM (Clock doubling): 1: off <u>0: on</u>	
D3D0	PLLDRA	Only for test purposes, do not use in normal mode PLLM range, only for test purposes [PPLDRA=0]	

I

I

Sub address 78		
Bit	Name	Function
D7D0	SLAA	Letter box detection: First Line of Active Area = 2 * SLAA

Sub address 79		
Bit	Name	Function
D7D0	ELAA	Letter box detection: End Line of Active Area = 2 * ELAA

Sub add	Sub address 7A		
Bit	Name	Function	
D7D3	NOISEME	Noise level of the input signal: 0 (no noise),, 30 (strong noise) [31 (strong noise or measurement failed)]	
D2D0	VERSION	Version of SDA 94XX family: 000: SDA 9400 001: SDA 9401 010: SDA 9402 <u>100: SDA 9410</u>	

Sub address 7B		
Bit	Name	Function
D7D4	xxxx	XXXX
D3	Status_SLAA	Letter box detection: Status of SLAA 1: SLAA is reliable 0: SLAA is not reliable
D2	Status_ELAA	Letter box detection: Status of ELAA 1: ELAA is reliable 0: ELAA is not reliable

Sub add	Sub address 7B		
Bit	Name	Function	
D1	RELY	Letter box detection: Reliability signal 1: All values determined by the Letter Box detection algorithm are reliable 0: One or more values determined by the Letter Box detection are not reliable	
D0	TVMODEM	TV mode of the input signal master 1: NTSC 0: PAL	

Sub add	Sub address 7C		
Bit	Name	Function	
D7D2	XXXXXX	XXXXXX	
D1	NMSTATUS	Status bit for noise measurement I ² C Bus parameter 1: New value of NOISEME available 0: NOISEME has not been updated	
D0	LBDSTATUS	Status bit for letter box detection I ² C Bus parameter 1: New values of Letter Box Detection algorithm available 0: Values of Letter Box Detection has not been updated	

Sub address 7D		
Bit	Name	Function
D7D1	XXXXXXX	xxxxxxx
D0	TVMODES	TV mode of the input signal slave 1: NTSC 0: PAL

Sub add	ress 7E	
Bit	Name	Function
D7	MOVMO	Film mode 1: film mode 0: camera mode
D6	MOVPH	Film mode phase 1 - An+1 and Bn has the same phase 0 - An and Bn has the same phase
D5	GMOTION	Global motion detection 1: if no STILL scene is detected (minimum is: 1 field in motion of 32 fields in order) 0: if STILL scene is detected (32 fields in order without motion)
D4	MOVTYP	Film mode type 1: NTSC film mode source with 24 motion phases per second (2-3 pull down) 0: PAL film mode source with 25 motion phases per second
D30	MEMSTAT	Statistics about motion blocks

Sub address 7F					
Bit	Name	Function			
D7D1	XXXXXXX	XXXXXXX			
D0	SHIFTACT	Shifting of Display Raster Phase Active 1: phase shift in progress 0: phase shift not active			

Sub address 80					
Bit	Name	Function			
D7D1	XXXXXXX	XXXXXXX			

Sub address 80						
Bit	Name	Function				
D0	VIMSTATUS	Status bit for sub addresses, which will be made valid by VINM 0: New write or read cycle can start 1: No new write or read cycle can start				

Sub address 81							
Bit	Name	Function					
D7D1	XXXXXXX	xxxxxxx					
D0	VISSTATUS	Status bit for sub addresses, which will be made valid by VINS 0: New write or read cycle can start 1: No new write or read cycle can start					

Sub address 82							
Bit	Name	Function					
D7D1	XXXXXXX	XXXXXXX					
D0	OSSTATUS	Status bit for sub addresses, which will be made valid by OPSTARTM 0: New write or read cycle can start 1: No new write or read cycle can start					

Absolute maximum ratings

6.1 Absolute maximum ratings

Parameter	Symbol	Min	Мах	Unit	Remark
Operating Temperature	T _A	0	70	°C	
Storage Temperature	T _{stg}	-65	125	°C	
Junction Temperature	TJ		125	°C	
Soldering Temperature	Τ _S		260	°C	
Soldering Time	t _s		10	s	
Input Voltage	V	-0.3	V _{DD} +0.3	V	not valid for I ² C Bus pins
Output Voltage	V _Q	-0.3	V _{DD} +0.3	V	not valid for I ² C Bus pins
Input Voltage	V	-0.3	5.5	V	I ² C Bus pins only
Output Voltage	Vo	-0.3	5.5	V	I ² C Bus pins only
Supply Voltages	V _{DD}	-0.3	3.8	V	
Supply voltage differentials	V _{DD}	-0.25	0.25	V	between any internally non-connected supply pins of the same kind, see Pin Configuration
DAC output current	I _o	-30		mA	for any single output
DAC output voltage		-0.3	V _{DD} +0.3	mA	for any single output
RREF_I output current	I _o	-5		mA	for any single output
Total Power Dissipation	THD		1.8	W	
ESD Protection	ESD	-2,0	2,0	kV	MIL STD 883C method 3015.6, 100pF, 1500Ω (HBM)
ESD Protection	ESD	-1,5	1,5	kV	EOS/ESD Assn. Standard DS 5.3-1993 (CDM)
Latch-Up Protection		-100	100	mA	all inputs/outputs

All voltages listed are referenced to ground (0V, V_{SS}) except where noted.

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions or at any other condition beyond those indicated in the operational sections of this specification is not implied.

Operating range

6.2 Operating range

Parameter	Symbol	Min	Nom	Max	Unit	Remark
Supply Voltages	V _{DD}	3.15	3.3	3.45	V	
Ambient Temperature	T _A	0	25	70	°C	
All TTL Inputs						
High-Level Input Voltage	V _{IH}	2.0V		V _{DD} +0.2	V	
Low-Level Input Voltage	V _{IL}	-0.2		0.8	V	
Input Current	I _{IN}			+/- 5	μA	
All TTL Outputs						•
High-Level Output Voltage	V _{OH}	2.4			V	I _{OH} = -2.0 mA
Low-Level Output Voltage	V _{OL}			0.4	V	I _{OL} = 2.0 mA
INPUT/OUTPUT: SDA	·	_	_			
Low-Level Output Voltage	V _{OL}			0.5	V	at I _{OL} = max
Clock TTL Input CLKM		•				
Clock frequency	1/T		27		MHz	see "Timing diagram clock" or page 177
Low time	t _{WL}	10			ns	
High time	t _{WH}	10			ns	
Rise time	t _{TLH}			10	ns	
Fall time	t _{THL}			10	ns	
Input SYNCENM						·
Low time	t _{wL}	22			ns	see "Timing diagram clock" or page 177
High time	t _{WH}	22			ns	
Rise time	t _{TLH}			10	ns	
Fall time	t _{THL}			10	ns	
Clock TTL Input CLKS	·					
Clock frequency	1/T		27		MHz	see "Timing diagram clock" or page 177
Low time	t _{WL}	10			ns	
High time	t _{WH}	10			ns	
Rise time	t _{TLH}			10	ns	
Fall time	t _{THL}			10	ns	

171

I

Operating range

Parameter	Symbol	Min	Nom	Max	Unit	Remark
Input SYNCENS						
Low time	t _{WL}	22			ns	see "Timing diagram clock" on page 177
High time	t _{wH}	22			ns	
Rise time	t _{TLH}			10	ns	
Fall time	t _{THL}			10	ns	
Clock TTL Input X1/CLKD					-	
Clock frequency	1/T		27		MHz	see "Timing diagram clock" on page 177
Low time	t _{WL}	10			ns	
High time	t _{wH}	10			ns	
Rise time	t _{TLH}			5	ns	
Fall time	t _{THL}			5	ns	
I²C Bus (All Values Are Referred To $min(V_{IH})$ A	nd max(V _{IL}))), f _{SCL} =	= 400 KH	lz		
High-Level Input Voltage	V _{IH}	3		5.25	V	see "I ² C Bus timing START/STOP" on page 176
Low-Level Input Voltage	V _{IL}	0		1.5	V	see "I ² C Bus timing DATA" on page 176
SCL Clock Frequency	f _{SCL}	0		400	kHz	
Inactive Time Before Start Of Transmission	t _{BUF}	1.3			μs	
Set-Up Time Start Condition	t _{SU;STA}	0.6			μs	
Hold Time Start Condition	t _{HD;STA}	0.6			μs	
SCL Low Time	t _{LOW}	1.3			μs	
SCL High Time	t _{HIGH}	0.6			μs	
Set-Up Time DATA	t _{SU;DAT}	100			ns	
Hold Time DATA	t _{HD;DAT}	0			μs	
SDA/SCL Rise Times	t _R			300	ns	
SDA/SCL Fall Times	t _F			300	ns	
Set-Up Time Stop Condition	t _{su;sto}	0.6			μs	
Output valid from clock	t _{AA}			900	ns	
Input filter spike suppression (SDA and SCL pins)	t _{SP}			50	ns	
Low-Level Output Current	I _{OL}			3	mA	

| |

Characteristics (Under operating range conditions)

Parameter	Symbol	Min	Nom	Max	Unit	Remark
Inputs crystal connections X1/CLKD, X2	see "Clock circuit diagram" on page 177					
Crystal frequency	X _{tal}		27.0		MHz	fundamental crystal
Equivalent parallel Capacitance	C _{in}			27	pF	
Equivalent parallel Capacitance	C _{out}			27	pF	
Resonance impedance	ZR		40		Ω	
Digital-To-Analog-Conversion						
DAC sample rate	f _s	4.5	54.0	60	MHz	
RREF_I output current	I _{ref}	-1.3	-1.9	-2.5	mA	
UREF_I input voltage	U _{ref}	0.8	0.9	1.0	V	

6.3 **Characteristics** (Under operating range conditions)

Parameter	Symbol	Min	Max	Unit	Remark
Average Supply Current		t.b.d.	t.b.d.	mA	All V _{DD} pins, typ. t.b.d.mA
All Digital Inputs (Including I/O Inputs)					
Input Capacitance			10	pF	
Input Leakage Current		-5	5	μA	
TTL Inputs: YINM, UVINM, HINM, VINM	I (Referenc	ed To C	LKM)		
Set-Up Time	t _{SU}	7		ns	see "Timing diagram clock" on page 177
Input Hold Time	t _{IH}	6		ns	
TTL Inputs: YINS, UVINS, HINS, VINS	(Reference	d To CL	KS)	•	
Set-Up Time	t _{SU}	7		ns	see "Timing diagram clock" on page 177
Input Hold Time	t _{IH}	6		ns	
TTL Outputs: HOUT, VOUT, BLANK (F	Referenced	To CLK	OUT)	•	
Hold time	t _{OH}	6		ns	see "Timing diagram clock" on page 177
Delay time	t _{op}		25	ns	CL = 50 pF, 27 MHz
TTL Inputs: SYNCENM (Referenced To	CLKM)				
Set-Up Time	t _{su}	25		ns	see "Timing diagram clock" on page 177
Input Hold Time	t _{IH}	0		ns	
TTL Inputs: SYNCENS (Referenced To	CLKS)	•	•		
Set-Up Time	t _{su}	25		ns	see "Timing diagram clock" on page 177

Micronas

Characteristics (Under operating range conditions)

		,	,	,	·,				
Input Hold Time	t _{IH}	0		ns					
Digital-To-Analog Conversion (9 bit): Current Source Outputs IY_O, IU_O, IV_O									
Full range output current	I _{OFR}	-19	-17	mA	Uref=typ., T_A =nom., I_{REF} =typ., R_L =75 Ω				
Full range output matching	DDLOUT	-3%	3%		DAC output U and V to each other				
Full range output accuracy	DLOUT	-3%	3%		within operating range				
Current source output resistance	R _o	20		kΩ	Uref=nom., T _A =nom., I _{REF} =nom.				
Supply voltage dependency of I _{OFR}	dl/dV _{DD}	- 0.015	0.01 5	mA/ V	$\begin{array}{l} \text{Uref=nom., } T_{\text{A}} = \text{nom.,} \\ I_{\text{REF}} = \text{nom., } R_{\text{L}} = 75\Omega \end{array}$				
Temperature dependency of I _{OFR}	dl _{OFR}	-10	10	µA/ °C	Uref=nom., I _{REF} =nom., R _L =75Ω				
Full range output voltage	Vo		1.5	V	Uref=nom., T _A =nom., I _{REF} =nom.				
DC differential non-linearity	DNL	-1	1	LSB					
DC differential integral non-linearity	INL	-2	2	LSB					
DAC Reference Pins: UREF_I, RREF_I	(analog)								
Offset voltage between UREF_I and RREF_I	U _{OFFSET}	-40	40	mV					
UREF_I input current	I _{UREF}	-10	10	μA					

Characteristics (Under operating range conditions)

7 Application information

Figure 55 Application for SDA 9410

I²C Bus timing START/STOP

8 Wave forms

8.1 I²C Bus timing START/STOP

8.2 I²C Bus timing DATA

Timing diagram clock

8.3 Timing diagram clock

8.4 Clock circuit diagram

Clock circuit diagram

9 Package Outlines

P-MQFP-100

[all dimensions in mm]

Micronas GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@micronas.com Internet: www.micronas.com

Printed in Germany Order No. 6251-553-1PD All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

any person or entity of such revisions or changes. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.