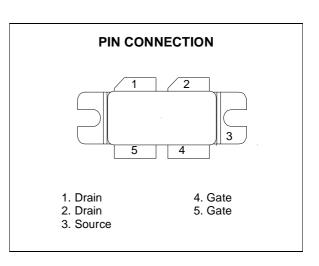

SD56150

RF POWER TRANSISTORS The *LdmoST* FAMILY

ADVANCE DATA


N-CHANNEL ENHANCEMENT-MODE LATERAL MOSFETs

- EXCELLENT THERMAL STABILITY
- COMMON SOURCE CONFIGURATION, PUSH-PULL
- P_{OUT} = 150 W WITH 13 dB gain @ 860 MHz/32V
- BeO FREE PACKAGE
- INTERNAL INPUT MATCHING

DESCRIPTION

The SD56150 is a common source N-Channel enhancement-mode lateral Field-Effect RF power transistor designed for broadband commercial and industrial applications at frequencies up to 1.0 GHz. The SD56150 is designed for high gain and broadband performance operating in common source mode at 32 V. Its internal matching makes it ideal for TV broadcast applications requiring high linearity.

ABSOLUTE MAXIMUM RATINGS (T_{CASE} = 25 °C)

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Voltage	65	V
V_{GS}	Gate-Source Voltage	± 20	V
I _D	Drain Current	17	А
P _{DISS}	Power Dissipation (@ Tc = 70 °C)	236	W
Tj	Max. Operating Junction Temperature	200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

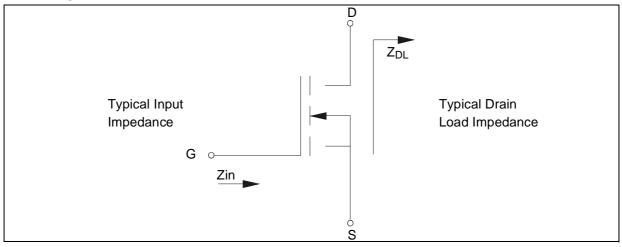
THERMAL DATA

R _{th(j-c)}	Junction -Case Thermal Resistance	0.55	°C/W

September, 12 2003 1/8

ELECTRICAL SPECIFICATION (T_{CASE} = 25 °C)

STATIC (Per Section)

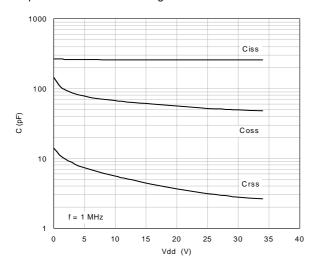

Symbol	Test Conditions			Min.	Тур.	Max.	Unit
V _{(BR)DSS}	V _{GS} = 0 V	I _{DS} = 10 mA		65			V
I _{DSS}	V _{GS} = 0 V	V _{DS} = 28 V				1	μΑ
I _{GSS}	V _{GS} = 20 V	V _{DS} = 0 V				1	μΑ
V _{GS(Q)}	V _{DS} = 28 V	$I_D = 100 \text{ mA}$		2.0		5.0	V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 3 A			0.5	0.8	V
G _{FS}	V _{DS} = 10 V	I _D = 3 A		2.5		4	mho
C _{ISS} *	V _{GS} = 0 V	V _{DS} = 28 V	f = 1 MHz		255		pF
Coss	V _{GS} = 0 V	V _{DS} = 28 V	f = 1 MHz		50		pF
C _{RSS}	V _{GS} = 0 V	V _{DS} = 28 V	f = 1 MHz		2.9		pF

^{*} Includes Internal Input Moscap.

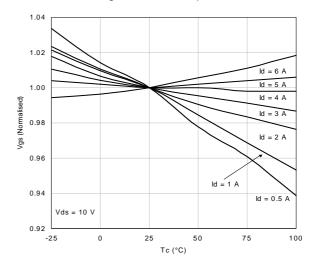
DYNAMIC

Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Pout	V _{DD} = 32 V I _{DQ} = 500 mA	f = 860 MHz	150			W
G _{PS}	V _{DD} = 32 V I _{DQ} = 500 mA P _{OUT} = 150 W	f = 860 MHz	13	16.5		dB
η_{D}	V _{DD} = 32 V I _{DQ} = 500 mA P _{OUT} = 150 W	f = 860 MHz	50	60		%
Load mismatch	$V_{DD} = 32 \text{ V}$ $I_{DQ} = 500 \text{ mA}$ $P_{OUT} = 150 \text{ W}$ ALL PHASE ANGLES	f = 860 MHz	10:1			VSWR

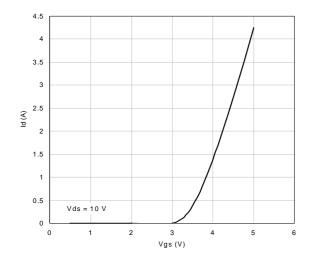
IMPEDANCE DATA



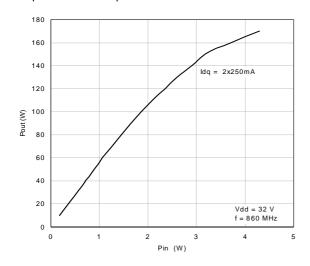
FREQ.	Z _{IN} (Ω)	$Z_{DL}(\Omega)$
860 MHz	4.7 - j 5.5	3.6 + j 6.5
880 MHz	4.3 - j 6.9	3.9 + j 7.4
900 MHz	4.5 - j 8.8	4.4 + j 7.8


Measured drain to drain and gate to gate respectively.

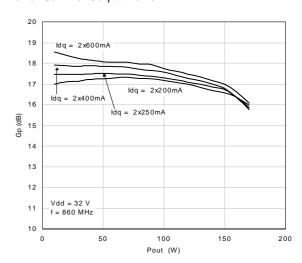
TYPICAL PERFORMANCE


Capacitance vs. Drain Voltage

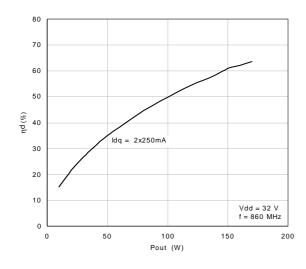
Gate Source Voltage vs. Case Temperature

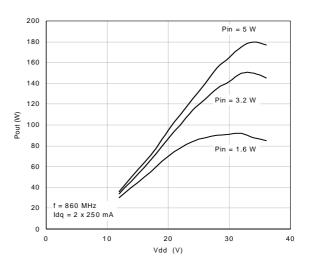


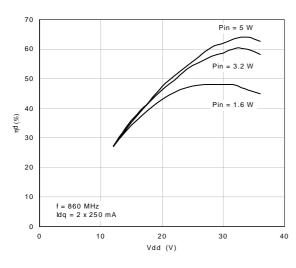
Drain Current vs. Gate-Source Voltage

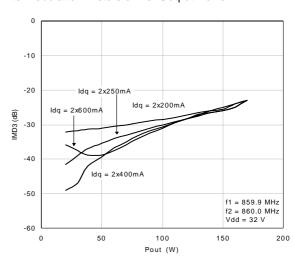


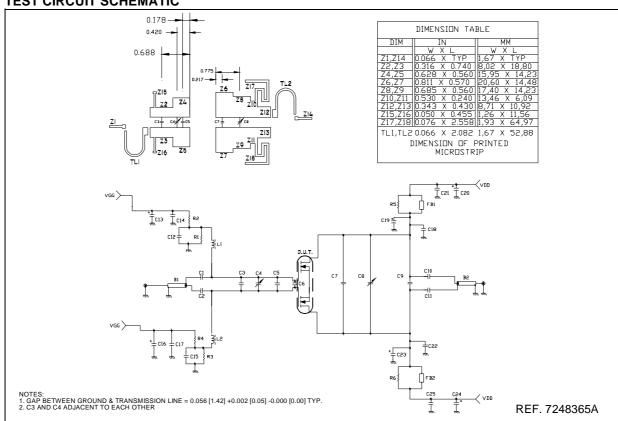
TYPICAL PERFORMANCE


Output Power vs. Input Power

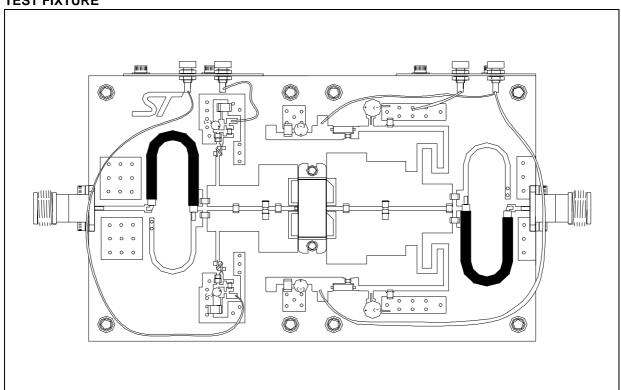

Power Gain vs. Output Power

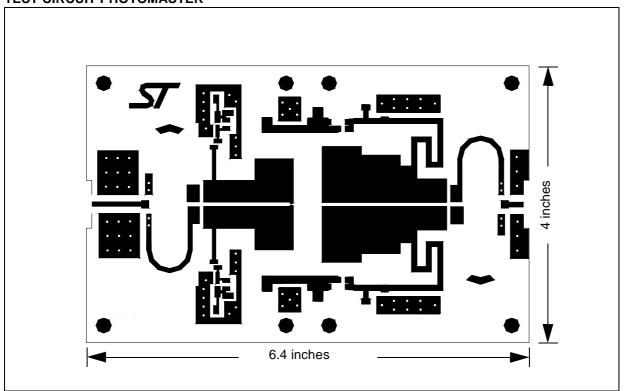

Efficiency vs. Output Power


Output Power vs. Supply Voltage


Efficiency vs. Supply Voltage

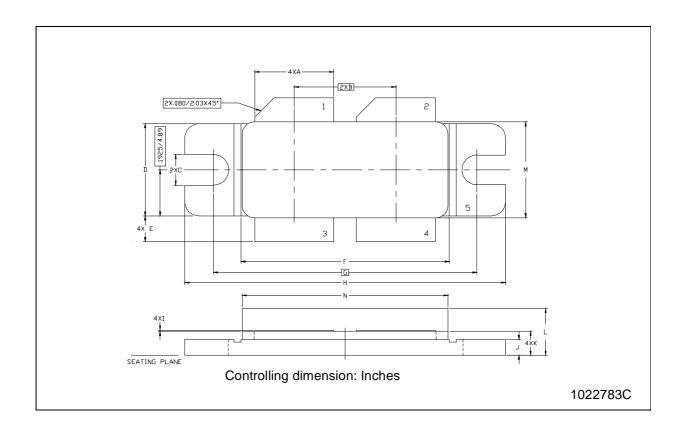
Intermodulation Distorsion vs. Output Power


TEST CIRCUIT SCHEMATIC


TEST CIRCUIT COMPONENT PART LIST

	DESCRIPTION
C1,C2, C10, C11	51 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C3	9.1 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C4, C8	0.6 - 4.5 pF GIGATRIM VARIABLE CAPACITOR
C5	10 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C6	4.7 pF ATC 100A SURFACE MOUNT CERAMIC CHIP CAPACITOR
C7	13 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C9	6.2 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C12, C15, C18, C22	91 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C13, C16, C20, C24	10 μF 50V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR
C14, C17, C21, C25	0.1 μF 500V SURFACE MOUNT CERAMIC CHIP CAPACITOR
C19, C23	100 μF 63V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR
R1, R2, R3, R4	200 OHM 1/4 W SURFACE MOUNT CHIP RESISTOR
R5, R6	1.8 OHM 1/4 W SURFACE MOUNT CHIP RESISTOR
L1, L2	CHIP INDUCTOR 10 nH SURFACE MOUNT COIL
FB1, FB2	SURFACE MOUNT EMI SHIELD BEAD
B2, B1	BALUN, 25 OHM, SEMI-RIDGE OD 0.141 2.365 LG COAXIAL CABLE OR EQUIVALENT
РСВ	WOVEN GLASS REINFORCED / CERAMIC FILLED 0.030" THK & = 3.48, 2 Oz ED CU BOTH SIDES

TEST FIXTURE



TEST CIRCUIT PHOTOMASTER

M252 (.400 x .860 4L BAL N/HERM W/FLG) MECHANICAL DATA

DIM.		mm			Inch	
	MIN.	TYP.	MAX	MIN.	TYP.	MAX
А	8.13		8.64	.320		.340
В		10.80			.425	
С	3.00		3.30	.118		.130
D	9.65		9.91	.380		.390
E	2.16		2.92	.085		.115
F	21.97		22.23	.865		.875
G		27.94			1.100	
Н	33.91		34.16	1.335		1.345
I	0.10		0.15	.004		.006
J	1.52		1.78	.060		.070
K	2.36		2.74	.093		.108
L	4.57		5.33	.180		.210
М	9.96		10.34	.392		.407
N	21.64		22.05	.852		.868

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2002 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com