GENERAL DESCRIPTION

The S-2444R is a 256-bit Non Volatile CMOS Memory, one to one combination of static CMOS RAM and Non Volatile Electric Erasable Programmable Read Only Memory (E²PROM) as a back up. The device is organized as 16 words of 16 bits each. Serial access allows the use of a cost-effective 8-pin package, making the S2444R ideal for cost sensitive and compact design applications.

STORE signal, RECALL signal and instructions sent from the processor transfer data between RAM and E²PROM. Non Volatile data is retained in the E²PROM while data in the RAM can be accessed and updated.

There is no need of high voltage pulses and supplies. A signal 5V supply is the only power source needed, and all I/O are TTL compatible.

The S-2444R offers many modes to minimize the current consumption. When it is deselected, the chip is placed in the STANDBY mode. And when the sleep instruction is carried out, the chip is placed in the SLEEP mode. The chip will automatically return active from STANDBY mode when selected by CE, and will exit the SLEEP mode when the next RECALL operation is performed, either by the RCL instruction or by taking the RECALL input low.

FEATURES

Ideal use for Periphery of Microcomputers.

Static Timing Minimum I/O Interface Serial Port Compatible (8051) **Minimum Support Circuits**

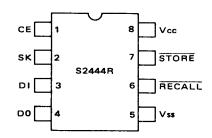
• Software and Hardware Control of Nonvolatile Functions

False Store Protection

TTL Compatible

High Drive Ability Output

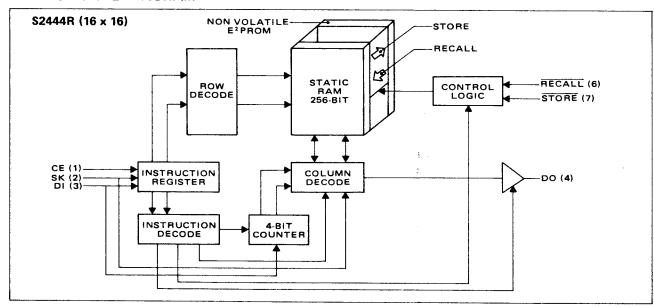
- Constitution 16 words x 16 bits
- CMOS Floating Gate Process
- 5V Single Power Supply (5V±10%)


Low Current Consumption

Power Supply Current 10mA TYP Store Current 8mA TYP Standby Current 5μA TYP Sleep Current **5μΑ ΤΥΡ**

8 Pin-Dip

Low Cost, Compact


PIN CONFIGURATION

PIN NAMES

CE	CHIP ENABLE	
SK	SERIAL CLOCK	
D1	SERIAL DATA IN	
D0	SERIAL DATA OUT	
RECALL	RECALL	
STORE	STORE	
Vcc	+5V	
Vss	GROUND	
L		

FUNCTIONAL DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Condition	Unit
TSTG	Storage Temperature -65 to +125		°C
TOPR	TOPR Operating Temperature -10 to +85		°C
Vcc	Power Supply Voltage	-0.3 to +6.0	V
VIN	Input Voltage	-0.3 to Vcc +0.3	V
Vout	Output Voltage	-0.0 to VCC	V

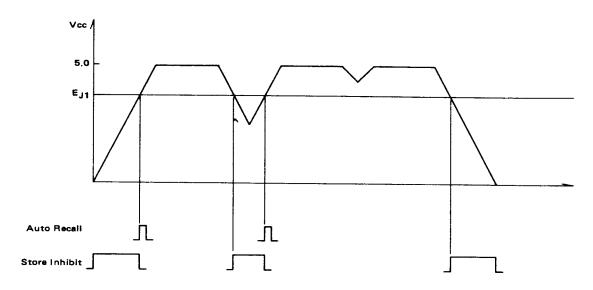
■ D.C. ELECTRIC CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V CC = +5V $\pm 10\%$)

Symbol	İtem	Condition	MIN	TYP	MAX	Unit
Vcc	Operating Voltage		4.5		5.5	V
Icc	Power Supply Current	11/0 = 0mA		10	20	mΑ
ISL	Sleep Current		_	5	30	μA
ISB	Standby Current	CE = VIL	_	5	30	μΑ
ISTO	Store Current		_	8	15	mA
ILI	Input Load Current	VIN = 5.5V	-	0.1	10	μΑ
1LO	Output Leakage Current	Vout = 5.5V	-	0.1	10	μΑ
VIL	Input Low Voltage		0.0	_	0.8	V
VIH	Input High Voltage		2.0		Vcc	V
VOL	Output Low Voltage	10L = 4.2mA	_	-	0.4	V
Voн	Output High Voltage	IOH = -2.0mA	2.4	_	-	V
VDH	Data Holding Voltage		1.5		5.5	V

■ CAPACITANCE (Ta = 25°C, f = 1.0MHz, VCC = 5V)

Symbol	Item	Condition	MIN	TYP	MAX	Unit
Co	Output Capacitance	Vo = 0V			8	pF
CIN	Input Capacitance	VIN = 0V			6	pF

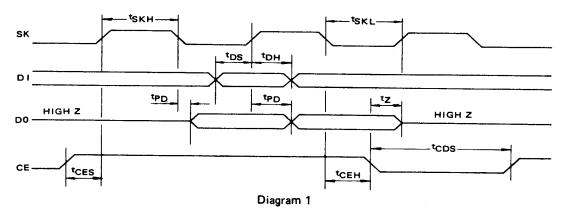
■ A.C. CONDITIONS OF TEST


Input Pulse Levels	VIL = 0.65V, VIH = 2.2V
Input Rise and Fall Times	10ns
Input and Output Timing Levels	Vol = 0.65V, VoH = 2.2V
Output Load	1 TTL + 100PF

OPERATING MODE

MODE	STORE	RECALL	INST.	WRITE ENABLE LATCH	PREVIOUS RECALL LATCH
Hardware Recall	1	0	NOP	×	×
Software Recall	1	1	RCL	×	×
Hardware Store	0	1	NOP	SET	TRUE
Software Store	1	1	STO	SET	TRUE

■ AUTO RECALL AND FALSE STORE PROTECTION ARE TRIGGERED ON POWER UP AND POWER DOWN RESPECTIVELY.


Conditions Vcc Rise and Fall times should be between 10ms and 1000ms.

■ A.C. ELECTRIC CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 5V ±10%)

Symbol	Item	MIN	TYP	MAX	Unit
Fsk	SK Frequency	1		1.0	MHz
^t SKH	SK Positive Pulse Width	0.4			μs
tskL	SK Negative Pulse Width	0.4			μs
t _{DS}	Data Setup Time	0.4			μs
t _{DH}	Data Hold Time	0.08			μs
tPD	SK to Data Valid Time			0.75	μs
tz	Chip Disable Time			1.0	μs
tces	Chip Enable Setup Time	0.8			μs
tCEH	Chip Enable Hold Time	0.4			μs
tcds	Chip De-select Time	0.8			μs

■ CONTROL/DATA TIMING

- CE must be taken high between instructions.
- Once the chip has been selected with CE, the first logic "1" clocked by the rising edge of SK into the DI input marks the beginning of an instruction. All previous logic "0" is ignored.

	INSTRUCTION SET				
Instruction	Format, I ₂ I ₁ I ₀	Operation			
WRDS (Diagram 5)	1XXXX000	Reset Write Enable Latch (Disables writes and stores)			
STO (Diagram 5)	1XXXX001	Store RAM data in E ² PROM			
SLEEP (Diagram 5)	1XXXX010	Enter SLEEP Mode			
WRITE (Diagram 3)	1AAAA011	Write Data into RAM Address AAAA			
WREN (Diagram 5)	1XXXX100	Set Write Enable Latch (Enables writes and stores)			
RCL (Diagram 5)	1XXXX101	Recall E ² PROM Data into RAM			
READ (Diagram 2)	1AAAA11X	Read Data from RAM Address AAAA			

X = Don't Care

■ DATA OPERATIONS

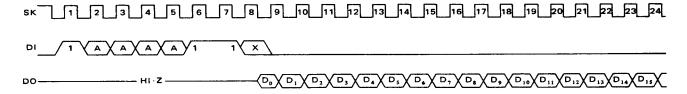


Diagram 2. RAM Read

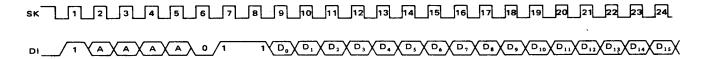


Diagram 3. RAM Write

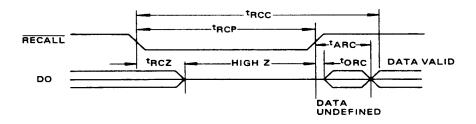


Diagram 4. Hardware Recall

A = Address Bit

^{*} Bit 8 of Read Instruction is Don't Care.

ARRAY RECALL CYCLE

Symbol	Item	MIN	TYP	MAX	Unit	
[†] RCC	CC Recall Cycle Time 2.5				μs	
tRCP	Recall Pulse Width	0.5			μs	
[†] RCZ	Recall to Output High Z			0.5	μs	
torc	Recall Enable Time	0.01			μs	
tARC	Recall Data Access Time			1.5	μs	

Recall Time is not limited.

Diagram 5. Non-Data Operations

Diagram 6. Hardware Store

STORE CYCLE

Symbol	Item	MIN	TYP	MAX	Unit
tsT	Store Time			10	ms
tstp	Store Pulse Width	0.2			μs
tstz	Store to Output High Z			1.0	μs

Minimum store cycle is 10,000.

10,000 data change per bit.

10 years' Data Retention.

■ RECALL OPERATIONS

RECALL operation transfers the data currently in the nonvolatile E²PROM into the RAM section of the S2444R. RECALL operation can be initiated either from the RECALL input driven low, or the execution of the RCL instruction. Once operated, all other operations are inhibited, and the previous data in the RAM is overwritten. If the chip had been already placed in SLEEP mode, the RECALL operation will put the chip in Active mode. The first Recall after power-on will set the previous latch, which must be set in order to do set STORE operations.

STORE OPERATION

STORE operation transfers the data currently in the RAM to E²PROM. The data currently in the E²PROM is overwritten. The STORE operation can be initiated from either the STORE input being driven low, or the execution of a STO instruction in order to protect against inadvertent stores which destroy important information in the E²PROM, several conditions must be true in order to perform the STORE OPERATION.

- 1. STO Command issued or STORE driven low
- 2. Write Enable Latch must be set.
- 3. Privious Recall Latch must be set.

STORE operation inhibits all other operations, and any data spread the part during a STORE operation will result in the output remaining in the high impedance state. The STORE operation clears the Write Enable latch. If the S2444R is performing a WRITE operation, the STORE input is ignored until CE is taken low.

WRITE/STORE PROTECTION

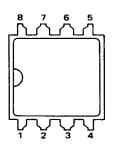
WRITE/STORE protection is provided by the S2444R internal Write Enable Latch. This latch must be set in order to do the WRITE or STORE operation. The latch can be set with the WREN instruction and reset with the WRDS instruction. The Write Enable latch is automatically reset after a STORE operation is performed.

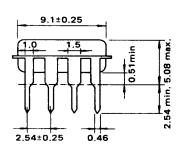
READ/WRITE MEMORY

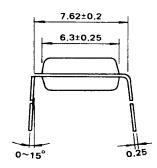
The RAM in the chip is accessed by the READ and WRITE instructions. These instructions include a 4-bit address, which selects which word is to be written or read. After the instruction and address have been sent, serial data (16-bits) will be either output on the DO pin in the case of a read, or input through the DI pin in the case of a write. S2444R design allows the connection of the DI and DO lines together form a bi-directional serial interface.

The least significant bit of the READ instruction is a don't care to enhance the use of the shared I/O capability of the DI and DO lines.

SLEEP MODE


The SLEEP mode places the S2444 into a low power quiescent mode. Internal RAM is turned off, and any data currently in RAM becomes invalid. Data is maintained in E²PROM, as it was saved in the last STORE operation. The SLEEP mode can only be exited by a hardware or software initiated Recall operation.


ORDERING INFORMATION


Model	Overwrite Times	Overwrite Times/Bit	Temperature Range	Package
S2444R01	10 ⁴	10 ⁴	0°C ~ +70°C	Plastic
S2444R10	10 ⁵	10 ⁵	0°C ~ +70°C	Plastic

Note: All values are typical.

■ DIMENSIONS (Unit: mm)

(Specifications subject to change without notice.)

Seiko Instruments Inc.

31-1, 6-chome, Kameido, Koto-ku, Tokyo 136, Japan Telex: 2622162 DSEIKO J

IC Sales Section Phone: (03) 636-3821

Seiko Instruments U.S.A. Inc.:

2990 W. Lomita Blvd., Torrance Calif. 90505 Phone: 213-530-8777 Telex: 910 - 347 - 7307 Fax: (213) 539 - 8621

Seiko Instruments GmbH:

Arabella Center 13 OG Lyoner Strasse 44-48, 6000 Frankfurt/Main 71 W. Germany

Phone: 069-6666971 Telex: 413045 SIG D

Precision Engineering Ltd. Sales Division:

7th, 9th Fl., Koon Wah Industrial Building, 40-46 Lam Tin Street, Kwai Chung, N.T., Kowloon, Hong Kong Phone: 0-218611 Telex: 40211 PELSD HX

7