

RHRD640, RHRD650, RHRD660, SEMICONDUCTOR RHRD640S, RHRD650S, RHRD660S

April 1995

6A, 400V - 600V Hyperfast Diodes

Features

- Hyperfast with Soft Recovery.....<30ns
- · Avalanche Energy Rated
- Planar Construction

Applications

- Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Description

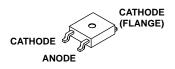
RHRD640, RHRD650, RHRD660, RHRD640S, RHRD650S and RHRD660S are hyperfast diodes with soft recovery characteristics (t_{RR} < 30ns). They have half the recovery time of ultrafast diodes and are sil icon nitride passivated ion-implanted epitaxial planar construction.

These devices are intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

PACKAGE AVAILABILITY

PART NUMBER	PACKAGE	BRAND
RHRD640	TO-251	RHR640
RHRD650	TO-251	RHR650
RHRD660	TO-251	RHR660
RHRD640S	TO-252	RHR640
RHRD650S	TO-252	RHR650
RHRD660S	TO-252	RHR660

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252 variant in tape and reel, e.g. RHRD660S9A.


Formerly developmental type TA49057.

Package

JEDEC STYLE TO-251

JEDEC STYLE TO-252

Symbol

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

	RHRD640 RHRD640S	RHRD650 RHRD650S	RHRD660 RHRD660S	UNITS
Peak Repetitive Reverse VoltageV _{RRM}	400	500	600	V
Working Peak Reverse Voltage V _{RWM}	400	500	600	V
DC Blocking VoltageV _R	400	500	600	V
Average Rectified Forward Current $I_{F(AV)}$ ($T_C = +152^{\circ}C$)	6	6	6	Α
Repetitive Peak Surge CurrentI _{FSM} (Square Wave, 20kHz)	12	12	12	Α
Nonrepetitive Peak Surge Current	60	60	60	Α
Maximum Power Dissipation	50	50	50	W
Avalanche Energy (See Figures 10 and 11) E _{AVL}	10	10	10	mj
Operating and Storage Temperature	-65 to +175	-65 to +175	-65 to +175	°C

Specifications RHRD640, RHRD650, RHRD660, RHRD640S, RHRD650S, RHRD660S

Electrical Specifications $T_C = +25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	RHRD640, RHRD640S		RHRD650, RHRD650S		RHRD660, RHRD660S					
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V_{F}	$I_F = 6A, T_C = +25^{\circ}C$	-	-	2.1	-	-	2.1	-	-	2.1	V
	$I_F = 6A, T_C = +150^{\circ}C$	-	-	1.7	-	-	1.7	-	-	1.7	V
I _R	$V_R = 400V, T_C = +25^{\circ}C$	-	-	100	-	-	-	-	-	-	μΑ
	$V_R = 500V, T_C = +25^{\circ}C$	-	-	-	-	-	100	-	-	-	μΑ
	$V_R = 600V, T_C = +25^{\circ}C$	-	-	-	-	-	-	-	-	100	μΑ
I _R	$V_R = 400V, T_C = +150^{\circ}C$	-	-	500	-	-	-	-	-	-	μΑ
	$V_R = 500V, T_C = +150^{\circ}C$	-	-	-	-	-	500	-	-	-	μΑ
	$V_R = 600V, T_C = +150^{\circ}C$	-	-	-	-	-	-	-	-	500	μΑ
t _{RR}	$I_F = 1A$, $dI_F/dt = 200A/\mu s$	-	-	30	-	-	30	-	-	30	ns
	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	-	35	-	-	35	-	-	35	ns
t _A	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	16	-	-	16	-	-	16	-	ns
t _B	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	8.5	-	-	8.5	-	-	8.5	-	ns
Q _{RR}	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	45	-	-	45	-	-	45	-	nC
СЈ	V _R = 10V, I _F = 0A	-	20	-	-	20	-	-	20	-	pF
$R_{ heta JC}$		-	-	3	-	-	3	-	-	3	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

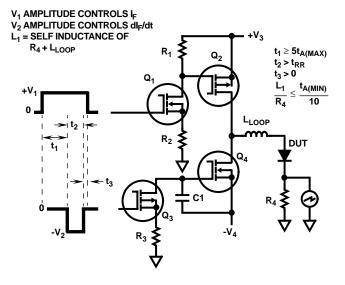
I_R = Instantaneous reverse current.

 t_{RR} = Reverse recovery time (See Figure 2), summation of t_A + t_B .

 t_A = Time to reach peak reverse current (See Figure 2).

 t_B = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 2).

 Q_{RR} = Reverse recovery charge.


 C_J = Junction capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

 E_{AVL} = Controlled avalanche energy. (See Figures 10 and 11).

pw = pulse width.

D = duty cycle.

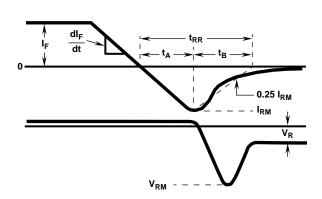
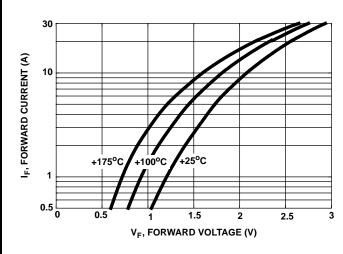
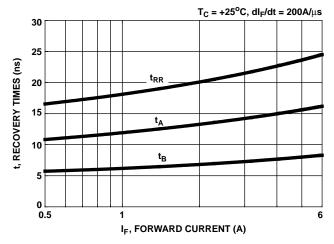



FIGURE 2. t_{RR} WAVEFORMS AND DEFINITIONS


Typical Performance Curves

1000 +175°C +100°C +100°C +100°C +100°C +25°C 0.01 0 100 200 300 400 500 600 V_R, REVERSE VOLTAGE (V)

FIGURE 3. TYPICAL FORWARD CURRENT vs FORWARD VOLTAGE DROP

FIGURE 4. TYPICAL REVERSE CURRENT vs REVERSE VOLTAGE

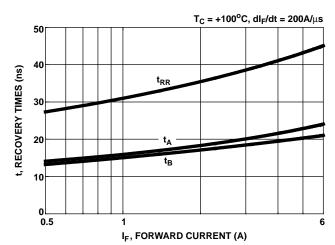
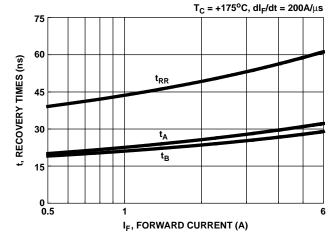



FIGURE 5. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT AT +25°C

FIGURE 6. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT AT +100 $^{\circ}$ C

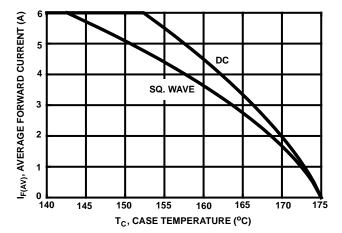


FIGURE 7. TYPICAL t_{RR} , t_{A} AND t_{B} CURVES vs FORWARD CURRENT AT +175°C

FIGURE 8. CURRENT DERATING CURVE FOR ALL TYPES

Typical Performance Curves (Continued)

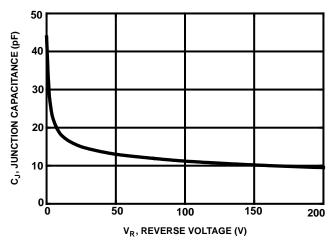


FIGURE 9. TYPICAL JUNCTION CAPACITANCE vs REVERSE VOLTAGE

Test Circuit and Waveforms

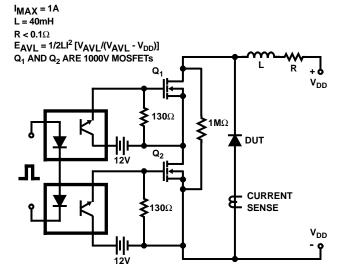


FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

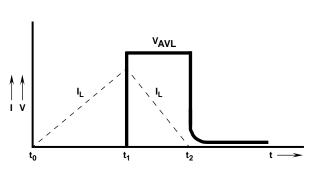


FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS