SIEMENS

ICs for Communications

Digital Answering Machine with Full Duplex Speakerphone SAM EC PSB 4860 Version 2.1

Delta Sheet 07.97

T4860-XV21-L1-7600

Previous Version:

Edition 07.97 This edition was realized using the software system FrameMaker®. Published by Siemens AG, HL IT © Siemens AG 1997. All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

- 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
- 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

SIEMENS

Table of Contents

Ρ	ad	e

1	Supported Memory Devices
2	DTMF Detector
3	Audio Data over SCI
4 4.1 4.2 4.3 4.4	Direct Memory Access.8Set Address.8DMA Read.8DMA Write.9Block Erase.9
5	Voice Prompt EPROM10
6	Register CCTL (Chip Control)11
7	Register SPSCTL

Digital Answering Machine with Full Duplex Speakerphone SAM EC

PSB 4860

Delta Sheet for Target Specification 03.97

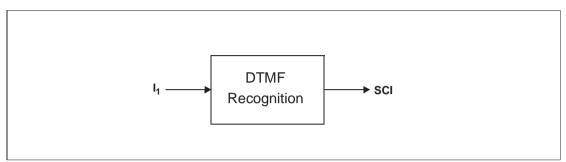
This Delta Sheet describes modifications of the PSB 4860 Version 2.1 as described by the Target Specification 03.97. The next Target Specification for the PSB 4860 Version 2.1 will incorporate the modifications described in this document.

1 Supported Memory Devices

The following memory devices are no longer supported:

- KM29N32000 (32 MBit flash)
- Intel type.

Therfore table 69 (page 88) must read as follows:


Table 69

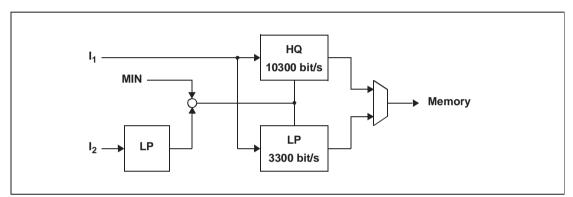
Mbit	Туре	Bank 0 (D ₀ -D ₃)	Bank 1 (D ₄ -D ₇)	Comment
1	ARAM/DRAM	256kx4		
2	ARAM/DRAM	256kx4	256kx4	
4	ARAM/DRAM	1Mx4	-	
4	ARAM/DRAM	512	2kx8	
8	ARAM/DRAM	1Mx4	1Mx4	
16	ARAM/DRAM	4Mx4	-	2k or 4k refresh
16	ARAM/DRAM	2Mx8		2k refresh
32	ARAM/DRAM	4Mx4	4Mx4	2k or 4k refresh
32	ARAM/DRAM	2x2	Mx8	2k refresh
64	ARAM/DRAM	16Mx4	-	4k or 8k refresh
64	ARAM/DRAM	A8	lx8	4k or 8k refresh
128	ARAM/DRAM	16Mx4	16Mx4	4k or 8k refresh
4-128	FLASH	512kx8 devices		KM29N040
8-128	FLASH	1Mx8	KM29W8000	
16-128	FLASH	2Mx8	KM29N16000	

Please refer to section 6 for an updated description of register CCTL.

2 DTMF Detector

The dial tone filter has been removed. Therefore the block diagram of the DTMF detector (figure 22, page 40) is replaced by the following figure:

Figure 22 DTMF Detector - Block Diagram


As the dial tone filter has been removed the bit ENF (Dial tone filter enable) in register DDCTL no longer exists.

Note: The performance of the DTMF receiver is not affected by the deletion of the dial tone filter.

3 Audio Data over SCI

According to the Target Specification 03.97 the microcontroller can send compressed audio data to the decoder over the serial control interface (SCI). Furthermore the coder can send compressed audio data to the microcontroller over the serial control interface. This option is no longer present. Therefore both the coder and the decoder have only an interface to the memory connected to the PSB 4860.

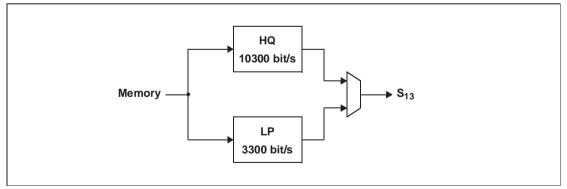

The block diagram of the coder (figure 29, page 49) must be replaced by the following figure:

Figure 29 Speech Coder - Block Diagram

The register SCDATA and the bit DST in register SCCTL do not exist any more.

The block diagram of the decoder (figure 30, page 51) must be replaced by the following figure:

Figure 30 Speech Decoder - Block Diagram

The register SDDATA and the bit SRC in register SDCTL do not exist any more.

4 Direct Memory Access

In addition to the file commands already described in the Target Specification 03.97 four new commands have been defined for direct memory access. These commands are:

- 1. Set Address
- 2. DMA Read
- 3. DMA Write
- 4. Erase Block (flash memory only)

These commands can be used only when no file is open. With these commands the microcontroller can access any location of the memory connected to the PSB 4860 Version 2.1. As an example the microcontroller can upload a phrase file (for voice prompt generation) into a flash memory from some ROM connected to the microcontroller.

4.1 Set Address

This command sets the 24 bit address pointer APTR. Only the address bits A_8 - A_{23} are set, the address bits A_0 - A_7 are automatically cleared. Table 1 shows the parameters for this command.

Table 1

Set Address Parameters

Register	# of Bits	Name	Comment
FCMD	5	CMD	Set Address command code
FDATA	16	ADR	Address bits A ₈ -A ₂₃ of adress pointer APTR

Possible error conditions:

• file open

4.2 DMA Read

This command reads a single word adressed by APTR. After the read access APTR is automatically incremented by one. Table 2 shows the parameters for this command.

Table 2 DMA Read Parameters

Register	# of Bits	Name	Comment			
FCMD	5	CMD	DMA Read command code			

Table 3 DMA Read Results

Register	# of Bits	Name	Comment
FDATA	16	DATA	Data read from address APTR.

Possible error conditions:

• file open

4.3 DMA Write

This command writes a single word to the location addressed by APTR. After the write access APTR is automatically incremented by one. Table 4 shows the parameters for this command.

Table 4 DMA Write Parameters

Register	# of Bits	Name	Comment
FCMD	5	CMD	DMA Write command code
FDATA	16	DATA	Data to be written to APTR

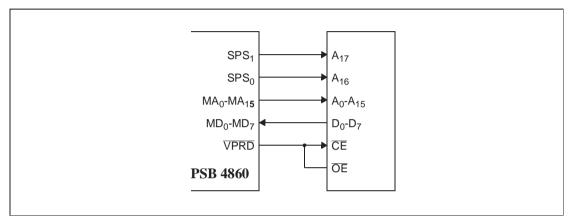
Possible error conditions:

• file open

4.4 Block Erase

This command erases the physical block which includes the address given by APTR. The actual amount of memory erased by this command depends on the block size of the flash device. Table 5 shows the parameters for this command.

Table 5Block Erase Parameters


Register	# of Bits	Name	Comment
FCMD	5	CMD	Block Erase command code

Possible error conditions:

• file open

5 Voice Prompt EPROM

According to the Target Specification 03.97 the maximum size of the voice prompt EPROM is 512kBit (64kx8). The PSB 4860 Version 2.1 can now support up to 2MBit (256kx8). The necessary address lines A_{16} and A_{17} are provided by the pins SPS₀ and SPS₁. The EPROM interface (figure 61, page 93) should be replaced by the following figure:

Figure 61 EPROM Interface - Connection Diagram

In order to enable this feature an additional mode has been defined for the SPS pins. Please refer to section 7 for programming details.

6 Register CCTL (Chip Control)

The corrected description of this register is given below. Bit RFM has changed position, bit CS9 is flipped, bit MQ is now described and the Intel type flash has been removed.

15														0
0	0	0	0	MV	0	0	PD	0	0	RFM	MQ	MT	CS9	SAS
ΜV	0:	Voice Prompt EPROM 0: not available 1: available												
PD	0:	Power Down0: PSB 4860 is in active mode1: enter power-down mode												
RFM	0:	Refresh Mode 0: normal 1: battery backup												
MQ	0:	Memory Quality 0: ARAM 1: DRAM												
МТ	M	Memory Type												
	_	3	2	Descrip	tion									
		0	0	ARAM/D	RAM									
	_	1 1 Samsung flash memory												
CS9	0:	CAS selection 0: other memory 1: 256kx4 or 512kx8 memory												

SAS Split Address Space

- 0: other ARAM/DRAM
- 1: two 2Mx8 devices

7 Register SPSCTL

The correct description of this register is given below. A new mode for expanded voice EPROM addressing has been added.

15										0	
POS	0	0	0	0	0	0	0	MODE	SP1	SP0	

POS Position of Status Register Window

15	14	13	12	SPS0	SPS ₁
0	0	0	0	Bit 0	Bit 1
0	0	0	1	Bit 1	Bit 2
1	1	1	0	Bit 14	Bit 15

MODE Mode of SPS Interface

4	3	2	Description
0	0	0	Disabled (SPS ₀ and SPS ₁ zero)
0	0	1	Output of SP1 and SP0
1	0	1	Expanded address output
1	1	0	Output of STATUS register

SP1 Direct Control for SPS₁

- 0: SPS₁ set to 0
- 1: SPS₁ set to 1

SP0 Direct Control for SPS₀

- 0: SPS₀ set to 0
- 1: SPS₀ set to 1