ICs for Communications

Subscriber Access Controller for U_{pn}-Interface Terminals SmartLink-P

PSB 2197

Addendum to User's Manual 08.95

Edition 08.95

This edition was realized using the software system FrameMaker[®].

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, 81541 München

© Siemens AG 1995.

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

- 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
- 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

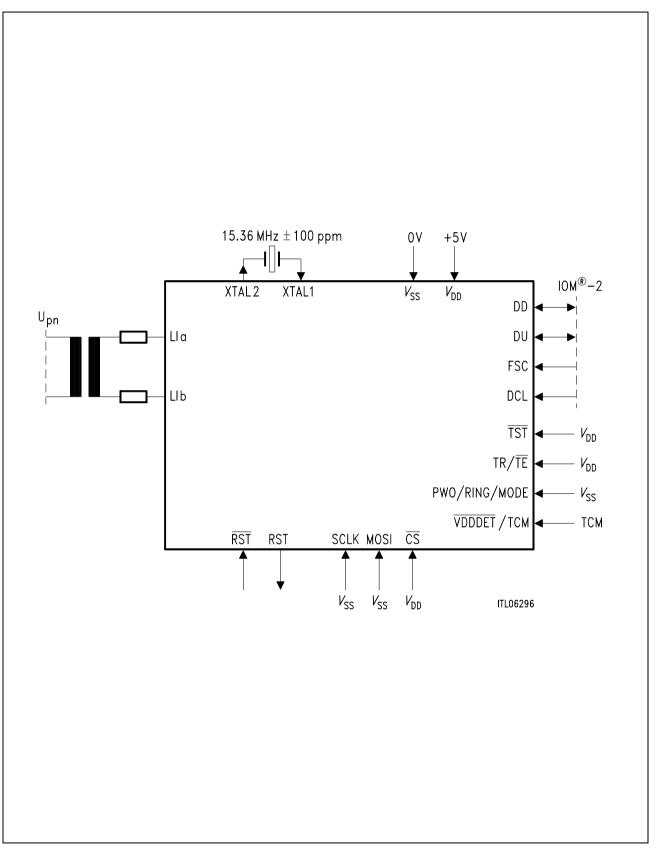
Subscriber Access Controller for U_{pn}-Interface Terminals SmartLink-P

This addendum contains additions to the User's Manual 02.95, Ordering No. B115-H6826-X-X-7600

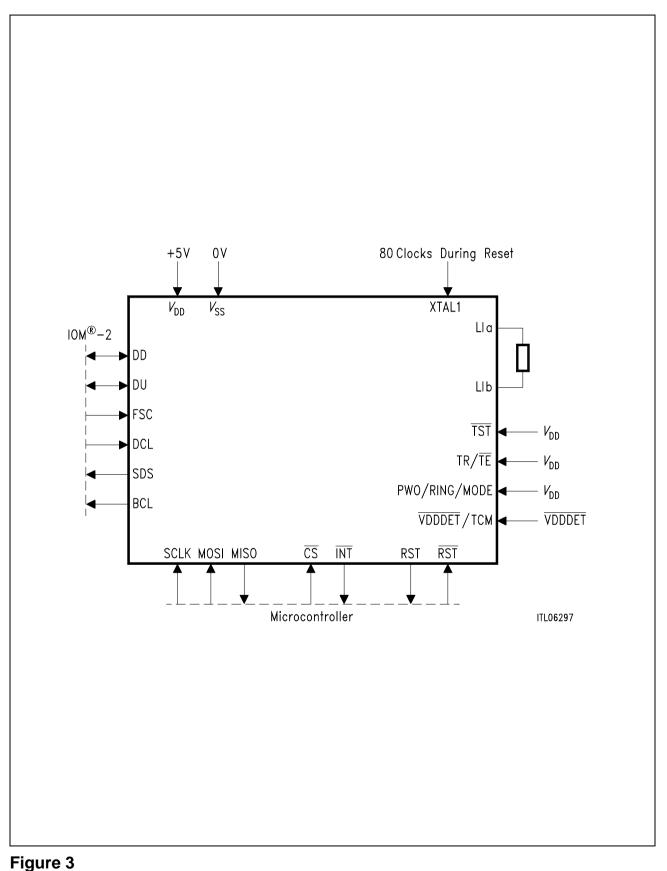
Page (in User's Manual)	Page (in Addendum)	Subjects (major changes since last revision)
9	4	Pin Definitions and Functions
16	5	Logic Symbol of the SmartLink-P TR-Mode
17	6	Logic Symbol of the SmartLink-P HDLC-Controller Mode
57	7	Device Architecture in TR Mode
64	8	Device Architecture of the SmartLink-P in HDLC-Controller Mode
67	9	Reset
	9	Jitter (TE Mode)
	9	Jitter (TR Mode)
71	10	TE-Mode State Description
73	11	State Diagram TE-Mode
76	10	Operation of the Serial Control Interface
87	12	Transmit Data Underrun
88	13	Reception of Frames
96	14	Reset
98	14	Layer-1 Command/Indication Codes in TR Mode
101	15	State Diagram TR-Mode
120	16	Electrical Characteristics
122	17	Capacitances
124	18	AC Characteristics
124	18	SCI-Switching Characteristics
126	19	IOM®-2 Bus Switching Characteristics
129	19	MCLK-Timing
130	19	Reset Timings

PSB 2197

Pin No. TE-Mode		TR-Mo	de HDLC- Controll Mode		ler	Function	
P-DSO-28	Symbol	Input (I) Output (O) Open Drain (OD)	Symbol	Input (I) Output (O) Open Drain (OD)	Symbol	Input (I) Output (O) Open Drain (OD)	
2	RST	I/O(OD)	RST	I	RST	I/O(OD)	RESET. Low active reset output and input (TE, HDLC, open drain output), low active reset input in TR mode.

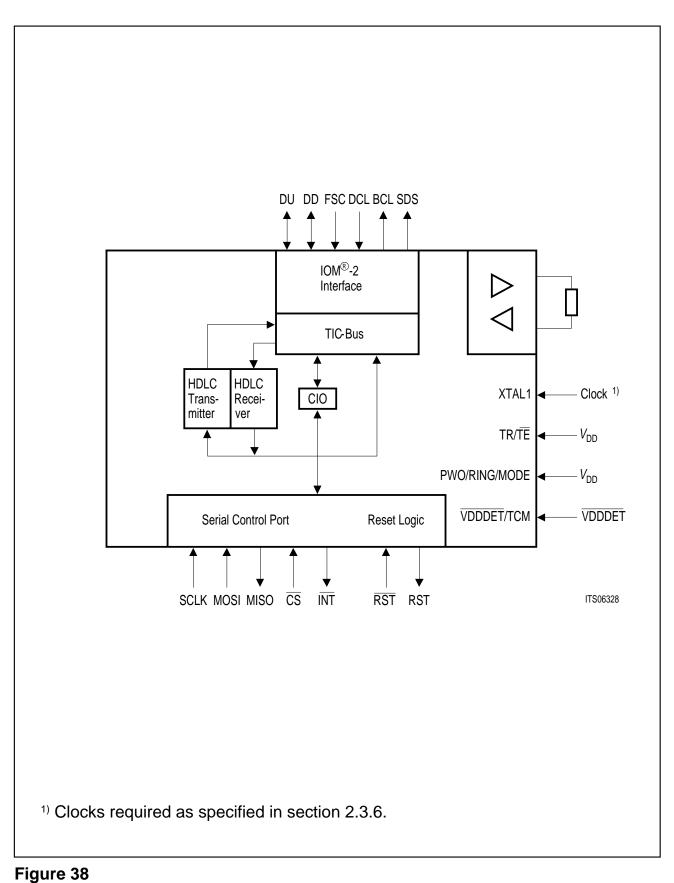

1.1 Pin Definitions and Functions

Note: The possibility to use the undervoltage detection in HDLC controller mode is listed for completeness. The pulse width of the reset output in HDLC controller mode if the undervoltage detection is used is not specified in the electrical characteristics but may be as short as 200 ns.


If \overline{RST} is configured as reset input, it must be driven to a valid V_{IL} during power-up.

The first note on page 14 is incorrect in regards to pin 7. All V_{DD} pins are internally connected via the chip substrate.


The second note on page 14 is for information only, and the series resistors referred to have no effect on the AC and DC characteristics shown in chapter 5.


Figure 2 Logic Symbol of the SmartLink-P TR-Mode

Logic Symbol of the SmartLink-P HDLC-Controller Mode

Figure 32 Device Architecture in TR Mode

Device Architecture of the SmartLink-P in HDLC-Controller Mode

Semiconductor Group

2.1.2.1 Jitter (TE Mode)

Jitter on IOM[®]-2

The IOM-2 clocks are derived from a receive PLL which adjusts the clock to all pulses that are received. The receive PLL recovers bit timing from a comparator output signal. The comparator has a threshold of 80 % with respect to the signal stored by the peak detector. The RPLL adjust the IOM clocks by one oscillator period (65 ns) every four positive pulses that are offset in the same direction. At maximum four oscillator periods may be adjusted in one IOM-2 frame if every bit of the U_{pn} frame is a '1' (38 frame bits with every second positive pulse result in an average of 19 pulses, 19/4 = 4). Due to the scrambler it is very unlikely that continuous pulses occur, thus the actual adjustment will be less than the maximum.

In the following IOM-2 frame, no adjustment is done since the SmartLink transmits in uplink direction.

Jitter on U_{pn}

Jitter on U_{pn} is directly related to the crystal tolerance. There is no transmit PLL involved.

Jitter on MCLK, Pulse Width Modulator, LCD Contrast

Jitter on these clocks is directly related to the crystal tolerance. Only clock dividers are involved.

2.2.2.1 Jitter (TR Mode)

Jitter on U_{pn}

Jitter on U_{pn} is directly related to the jitter on the IOM-2 clocks. A fixed divider is used to generate the U_{pn} data rate of 384 kbit/s.

2.3.6 Reset

The HDLC-controller mode is reset by applying a reset pulse to the \overline{RST} input.

To bring the U_{pn} -transceiver to a low power state, the following requirements must be fulfilled: While reset is active, at least 40 clock pulses must be applied to XTAL1. After reset is released, another 10 clock pulses are required. The U_{pn} -transceiver enters its low power deactivated state after 6 IOM-frames which are generated after the 50 clock pulses on XTAL1 have elapsed.

This procedure is necessary only after power-cycle. Resetting SmartLink while the power remains active doesn't require the procedure to be performed again.

3.1.2.5 TE-Mode State Description

Level Detect, Resynchronization

During the first period of receiving info 2 or under severe disturbances on the line the U_{pn} -receiver recognizes the receipt of a signal but is not (yet) synchronized. In extremely rare situations of severe line disturbances, the U_{pn} -receiver might become locked in this state. To avoid this, it is recommended that the software issue an RES command to restart activation if SmartLink remains in this state longer than an acceptable period. This timeout period should be at least 110 ms, but the exact period should be chosen by the user based on system concerns.

Analog Loop 2

The states for analog loop 2 are identical to the states of the regular TE operation. The analog loop 2 indications are output if the S-bit of the U_{pn} -frame is '1'.

State	S-bit = 0	S-bit = 1
Synchronized	AR	ARL2
Activated	AI	AIL2

3.1.3 Operation of the Serial Control Interface

The first falling edge of SCLK will force the state machine to load the current value of STA1 into the shift register and output the MSB. The following clocks shift the contents of STA1 over the MISO line. At the same time, the MOSI line receives the value of CTRL1. Its value is stored in the CTRL1 register with the rising edge of the last clock period.

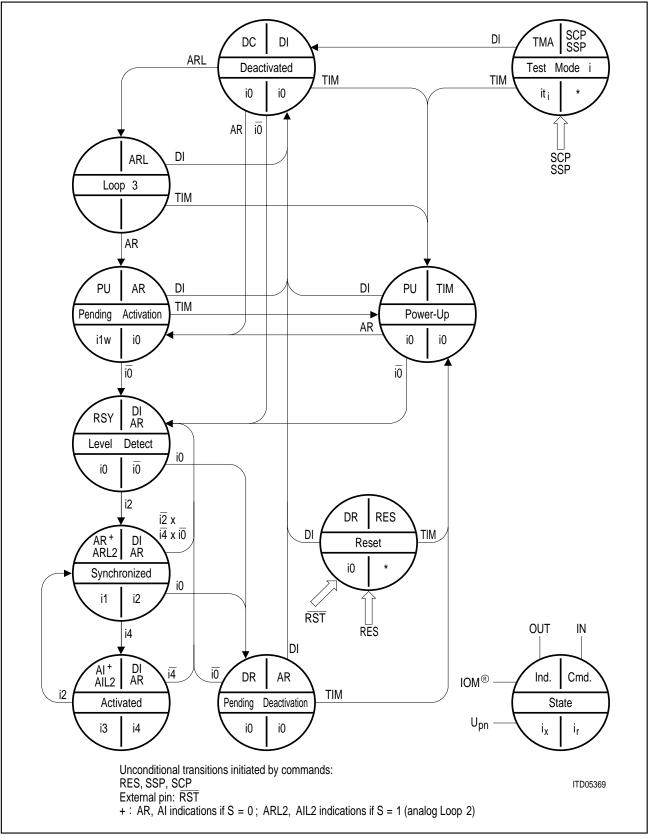
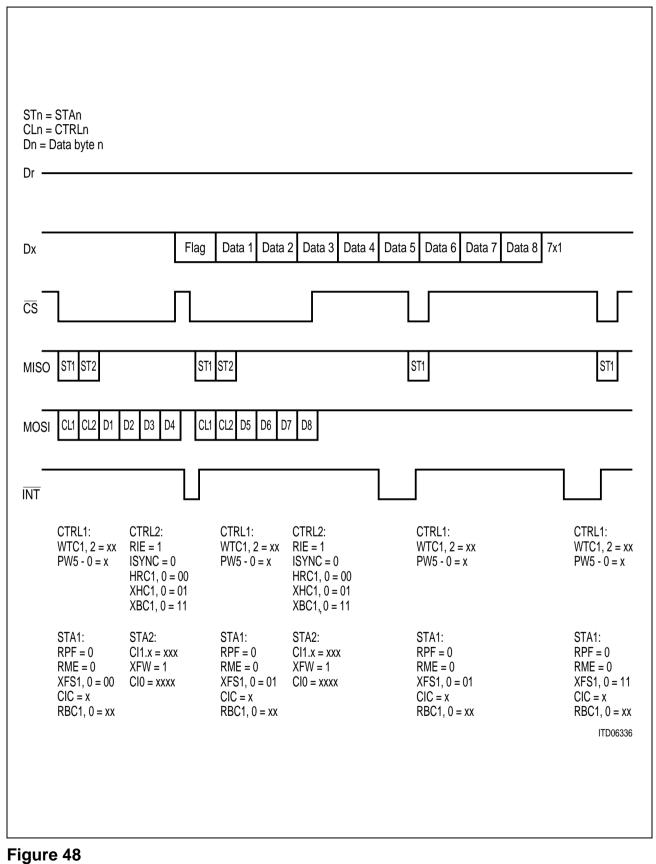



Figure 43 State Diagram TE-Mode

Transmit Data Underrun

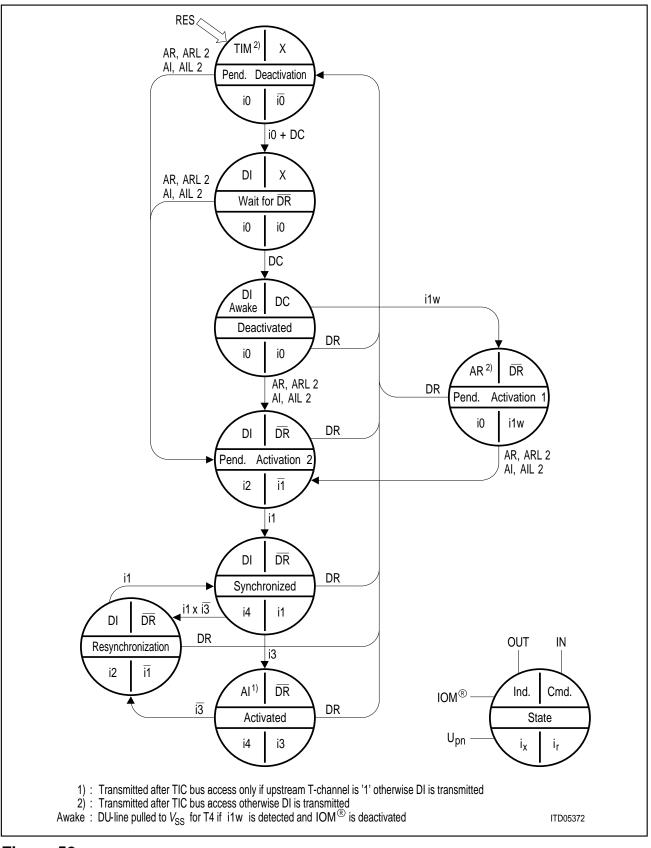
Dr Flag Data 1 Data 2 Data 3 CRC CRC Flag Dx CS MISO STA1 STA2 Data 1 Data 2 Data 3 RSTA MOSI CTRL1 CTRL2 INT CTRL1: CTRL2: WTC1,2 = xx XHC1,0 = 00 RIE = 1 ISYNG = 0 HRC1,0 = 01 (RMC) STA1: STA2: RPF = 0 C11 x = xxx RME = 1 XFS1,0 = 00 C10 = xxx RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = xxx C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x RBC1,0 = 00 C10 = x C1C = x C1C = x RBC1,0 = 00 C10 = x C1C										
CS MISO STA1 STA2 Data 1 Data 2 Data 3 RSTA MOSI INT CTRL1: CTRL2: WTC1, 2 = xx XHC1, 0 = 00 PW5 - 0 = x XHC1, 0 = 00 RIE = 1 ISYNG = 0 HRC1, 0 = 01 (RMC) STA1: STA2: RPF = 0 Cl1 x = xxx RME = 1 XFW = 1 XFS1, 0 = 00 Cl0 = xxxx CIC = x					Flag	CRC	3 CRC	Data 2 Data	lag Data 1	r
MISO STA1 STA2 Data 1 Data 2 Data 3 RSTA MOSI CTRL1 CTRL2 INT CTRL1: CTRL2: WTC1, 2 = xx XHC1, 0 = 00 PW5 - 0 = x XBC1, 0 = 00 RIE = 1 ISYNG = 0 HRC1, 0 = 01 (RMC) STA1: STA2: RPF = 0 Cl1 x = xxx RME = 1 XFW = 1 XF51, 0 = 00 Cl0 = xxxx ClC = x Cl0 = xxxx										× —
MOSI $\begin{array}{c} CTRL1 \ CTRL2 \\ \hline \\ INT \\ \hline \\ CTRL1: \ CTRL2: \\ WTC1, 2 = xx \ XHC1, 0 = 00 \\ PW5 - 0 = x \ XBC1, 0 = 00 \\ RIE = 1 \\ ISYNG = 0 \\ HRC1, 0 = 01 \ (RMC) \\ \hline \\ STA1: \ STA2: \\ RPF = 0 \ C11 x = xxx \\ RME = 1 \ XFW = 1 \\ XFS1, 0 = 00 \ C10 = xxxx \\ CIC = x \\ \hline \end{array}$										s
INT CTRL1: CTRL2: WTC1, 2 = xx XHC1, 0 = 00 PW5 - 0 = x XBC1, 0 = 00 RIE = 1 ISYNG = 0 HRC1, 0 = 01 (RMC) $STA1: STA2: RPF = 0 C11.x = xxx RME = 1 XFW = 1 XFW = 1 XFS1, 0 = 00 CI0 = xxxx CIC = x$		a 2 Data 3 RSTA	Data 1 Data 2 Dat	STA1 STA2						1ISO
CTRL1: CTRL2: WTC1, 2 = xx XHC1, 0 = 00PW5 - 0 = x XBC1, 0 = 00RIE = 1ISYNG = 0HRC1, 0 = 01 (RMC)STA1: STA2:RPF = 0 CI1.x = xxxRME = 1 XFW = 1XFS1, 0 = 00 CI0 = xxxxCIC = x CID = xxx				CTRL1 CTRL2						10SI
RPF = 0 Cl1.x = xxx RME = 1 XFW = 1 XFS1, 0 = 00 Cl0 = xxxx ClC = x		00	XHC1, 0 = 00 XBC1, 0 = 00 RIE = 1 ISYNG = 0	WTC1, $2 = xx$						NT
	ITD06337		CI1.x = xxx XFW = 1	RPF = 0 RME = 1 XFS1, 0 = 00 CIC = x						

Figure 49a Reception of Frames

3.1.5 Reset

Reset Logic

Table 3


Reset State of the SmartLink-P Registers

Register	Value after Reset	Meaning
STA1	00 _H	No C/I-change, no status change, no data in RFIFO.
STA2	0F _H (00 _H)	C/I is '1111' ('0000' if undervoltage detection is used, see Note)
CTRL1	00 _H	MCLK = 3.84 MHz, Watchdog disabled, PW = '000000'.
CTRL2	00 _H	No HDLC-controller operation, no XFIFO-data.
CTRL3	00 _H	Permanent D-channel access, permanent access to C/I0 and D-channel. T-channel mapped on S/G, PW-output operates as LCD-contrast, TIC-bus access during D-channel transmission only, TAD = '000'.
CTRL4	00 _H	Normal operation of DU-line, Serial Strobe = '000' (OFF), Cl0 = '0000'.

Note: If the undervoltage detection is used to generate the reset signal for SmartLink, the value in STA2 will read "00". Please refer to **figure 21** for details.

3.2.1.2 Layer-1 Command/Indication Codes in TR Mode

In TR mode, the U_{pn}-interface is activated if the C/I code Activate Request (AR, ARL2) or Activate Indication (AI, AIL2) has been detected in downstream direction. It stays activated until the C/I code Deactivation Confirmation (DC) is received in downstream direction.

Figure 52 State Diagram TR-Mode

Semiconductor Group

5 Electrical Characteristics

DC-Characteristics

 $T_{\rm A} = 0$ to 70 °C; $V_{\rm DD} = 5 \text{ V} \pm 5 \text{ \%}$, $V_{\rm SS} = 0 \text{ V}$

Parameter	Symbol	Limit Values			Unit	Test	Remarks
		min.	typ.	max.		Condition	
H-output voltage L-output voltage	V _{OH} V _{OL}	4.5		0.4	V V	$I_{OH} = 100 \ \mu A$ $C_{LD} \le 60 \ pF$ $I_{OL} = 100 \ \mu A$ $C_{LD} \le 60 \ pF$	XTAL2 XTAL2
Input leakage current Output leakage current	I _{LI} I _{LO}			1	μΑ μΑ	$0 V < V_{IN} < V_{DD}$ $0 V \leq V_{OUT} \leq V_{DD}$	All pins except Lla, Llb, XTAL1, XTAL2, TST , RST, MCLK, BCL, SDS

All power consumption values are integrated values and not instantaneous currents. The currents for Lla and Llb in the remarks column of the power consumption parameters are instantaneous values.

All HDLC power consumption values are measured after the $\rm U_{pn}\mbox{-}transceiver$ is in the power-down state.

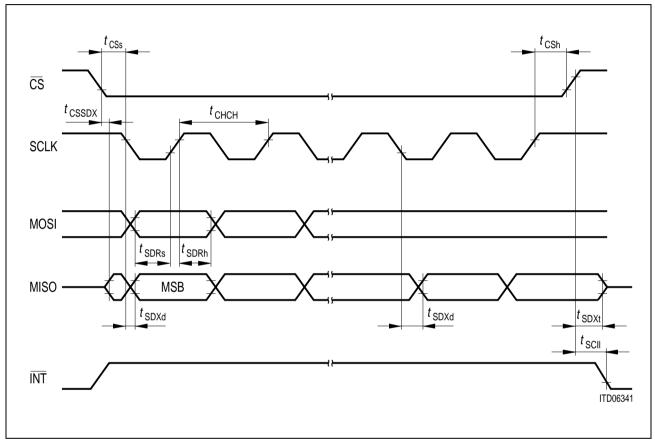
Capacitances

 $T_{\rm A}$ = 0 to 70 °C; $V_{\rm DD}$ = 5 V \pm 5 %, $V_{\rm SS}$ = 0 V

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Input capacitance I/O-capacitance	C _{IN} C _{I/O}		7 7	pF pF	All pins except Lla, Llb
Output capacitance	C_{OUT}		25	pF	Lla, Llb
Load capacitance	$C_{\rm LD}$		60	pF	XTAL1, XTAL2

ATALI, Recommended (ypical crystal parameters)	XTAL1,2	Recommended typical crystal parameters.
--	---------	---

Parameter	Symbol Limit Values		Unit	Remarks	
		typ.			
Motional capacitance	<i>C</i> ₁	20		fF	
Shunt	C_0	7		pF	
Load	CL	≤ 30		pF	
Resonance resistor	R _r	≤ 65		Ω	


Note: The crystal tolerance of ± 100 ppm is the total tolerance required including adjustment, temperature and aging tolerances.

Start-up of the oscillator has been simulated and works with crystals which meet the above specifications.

AC Characteristics

There are no requirements regarding rise and fall times of input signals as long as all other AC timing requirements are met.

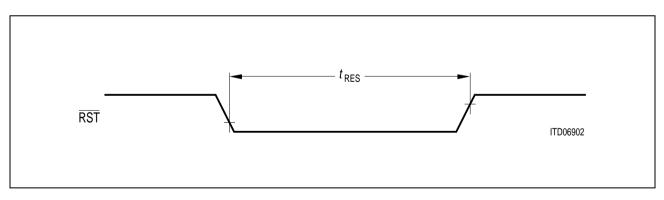
Serial Control Interface Timing

Figure 56 SCI-Switching Characteristics

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Chip select setup time	t _{CSs}	15		ns
Chip select hold time	t _{CSh}	25		ns
CSQ high to MISO tristate	t _{SDXt}		70	ns

IOM®-2 Bus Switching Characteristics

Parameter	Symbol	Limit	Values	Unit
		min.	max.	
Bit clock delay	t _{bcd}	- 20	50	ns


MCLK-Timing

The MCLK generator is designed to start with a complete clock cycle. Thus the minimum high or low period is n (n = 1, 2, 4, 8) × oscillator period (65 ns). Only if the undervoltage detection is active and it generates a reset signal due to voltage drop, MCLK will immediately be stopped at the same time the reset outputs become active. As a result, for that MCLK period, the minimum pulse width may be as low as 0 ns (see Reset Timings).

Reset Timings

Parameter	Symbol	Limit	Values	Unit
		min.	max.	
Hysteresis	$V_{\rm HH}$ - $V_{\rm HL}$	50	230	mV

External Reset Timings

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Reset pulse width	T _{RES}	2		μs

Note: If \overline{RST} is configured as reset input, it must be driven to a valid V_{IL} during power-up.