

PS200 Data Sheet

PowerSmart[®] Configurable Lithium Ion/ Lithium Polymer Battery Charger

DS21891A

© 2004 Microchip Technology Inc.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, PIC, PICmicro, PowerSmart and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SmartSensor is a registered trademark of Microchip Technology Incorporated in the U.S.A.

PowerCal, PowerInfo, PowerMate, PowerTool and SmartTel are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

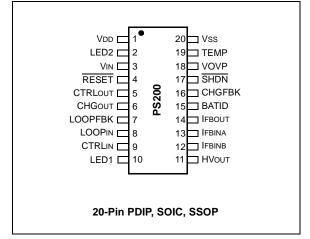
All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2004, Microchip Technology Incorporated. Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

PS200

PowerSmart[®] Configurable Lithium Ion/Lithium Polymer Battery Charger


Features

- User configurable battery charger for Lithium Ion/ Lithium Polymer battery packs:
- 10-bit ADC for voltage, current and temperature measurement:
 - Accurate Voltage Regulation (+/-1%)
 - Accurate Current Regulation (+/-5%)
- Advanced Li Ion/Li Polymer Charge Algorithm:
 - Constant current/constant voltage charge
 - Charge qualification to detect shorted, damaged or heated cells
 - Precharge for deeply discharged cells
 - Configurable overtemperature and overvoltage charge suspension
 - Charge termination at user specified minimum current or time-out
- Maximum integration for optimal size:
 - Integrated voltage regulator
 - Internal 8 MHz clock oscillator
 - High-Frequency Switch mode charging configurable switching frequency up to 1 MHz
- 256 bytes EEPROM storage for charging parameters
- Supports Switch mode charger topology
- Configurable charge status display via two LEDs
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Power-saving Sleep mode

Applications

- Single-Cell and Multi-Cell Lithium Ion and Lithium Polymer Battery Chargers
- Notebook Computers
- Personal Data Assistants
- Cellular Telephones
- Digital Still Cameras
- · Camcorders
- Portable Audio Products
- Bluetooth[®] Devices

Pin Diagram

	Description	i	1	1	
Pin	Pin Name	Pin Type	Input Type	Output Type	Description
1	Vdd	Supply	Power	—	Supply voltage
2	LED2	0	—	CMOS	Status indicator
3	Vin	I	Analog	—	Battery voltage input
4	RESET	I	ST	—	Reset
5	CTRLOUT	0	—	CMOS	PWM output for setting current level
6	CHGOUT	0	—	CMOS	PWM output to a buck converter for charge control
7	LOOPFBK	I	Analog	—	Current feedback loop
8	LOOPIN	I	Analog	—	Current feedback loop input
9	CTRLIN	I	Analog	—	Current level control
10	LED1	0	—	CMOS	Status indicator
11	HVout	0	—	HVOD	High-voltage, open-drain output pin (optional)
12	IFBINB	I	Analog	—	Current feedback input pin B used for current scaling
13	IFBINA	I	Analog	—	Current feedback input pin A used for current scaling
14	IFBOUT	0	_	Analog	Current feedback output
15	BATID	I	Analog	_	Battery ID select
16	CHGFBK	Ι	Analog	_	Charge control feedback
17	SHDN	0	_	Analog	Shutdown signal, active-low
18	VOVP	I	Analog	—	Overvoltage protection
19	TEMP	I	Analog	—	Battery temperature input
20	Vss	Supply	Power	—	Supply ground

Pinout Description

Legend: I = Input, O = Output, ST = Schmitt Trigger Input Buffer, HVOD = High-Voltage Open-Drain

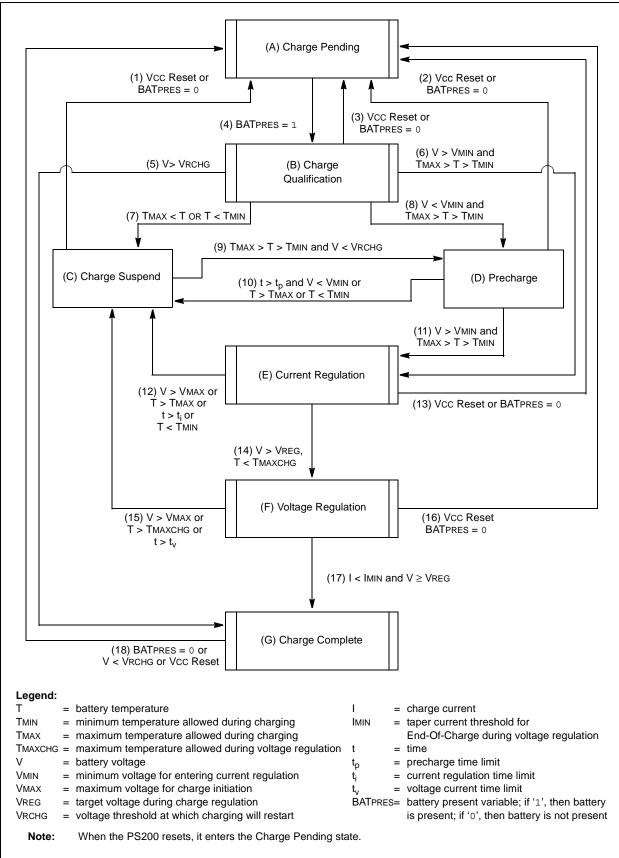
1.0 **PRODUCT OVERVIEW**

The PS200 provides an unprecedented level of configurability for charging Lithium Ion/Lithium Polymer battery packs. It's precision, 10-bit Analog-to-Digital converter and high-frequency Pulse-Width Modulator enable the PS200 to provide optimum control of charging algorithms for lithium battery chemistries. Special features include an internal voltage regulator and an internal clock oscillator that reduce external component count.

1.1 Multi-Step Charging

To ensure the proper treatment of lithium chemistries during extreme temperature and voltage conditions, multi-step charging is required. The PS200 starts the charging cycle upon sensing the presence of a battery pack and a valid charging supply. During charge qualification, the battery's temperature and voltage are measured to determine the appropriate initial state. The initial states include Charge Suspend, Precharge and Current Regulation. Charge Suspend halts charging when the user defined preset conditions for charging are not met. Precharge allows for the recovery of deeply discharged batteries by applying a low charge (or C) rate. Current Regulation provides constant current, voltage limited charge. Upon reaching the target voltage during Current Regulation, the Voltage Regulation state is entered. Charging continues at a constant voltage until the current decreases to the user specified minimum current threshold (IMIN). The user specified minimum current threshold can be configured for various charging temperatures. At this threshold, charging is terminated and the End-Of-Charge state is reached.

The state diagram illustrates the charging cycle (see Figure 1-1).


1.2 User Configurable Parameters

The PS200 supports user configurable parameters that allow for customizing the charging profile without changing the charger's hardware design. This feature allows for the maximum reuse of hardware, thus reducing time-to-market. These parameters include:

- Battery Temperature:
 - Minimum/maximum temperature for charge initiation
 - Maximum temperature allowed during charge
- Battery Voltage:
 - Minimum/maximum voltage for charge initiation
 - Target voltage during Voltage Regulation
 - Voltage at which the charger will restart charging after completion of a valid charge cycle
- Charge Current:
 - Target current during Current Regulation
 - Taper current threshold for End-Of-Charge during Voltage Regulation
 - Target current during Precharge
- Time:
 - Precharge time limit
 - Current Regulation time limit
 - Voltage Regulation time limit
- Status Display:
 - Two LEDs denote the charge states. Their flash rates can be modified.

PS200

FIGURE 1-1: PS200 STATE DIAGRAM LI CHARGER

1.3 Features

The PS200 features are well-suited for Switch mode battery charging. The PS200 device's block diagram (Figure 1-2) is to be used in conjunction with the Switch mode charger example (Figure 4-1).

 Current/Voltage Measurement Block – The Current/Voltage Measurement Block consists of a 10-bit Analog-to-Digital converter, operational amplifiers and a comparator. The output of this block is fed into the Charge Control module. Please refer to Figure 1-2.

The inputs into this block are to be connected as described in Figure 4-1. The following signals are inputs into this block:

- LOOPFBK to comparator
- LOOPIN to op amp and ADC
- CTRLIN to op amp
- IFBINB to op amp
- IFBINA to op amp
- BATID to ADC
- TEMP to ADC
- CHGFBK to comparator

The following signals are outputs from this block:

- IFBOUT from op amp
- Charge Control Module:
 - The charge control module generates a Pulse-Width Modulated signal called CHGOUT. Its frequency is configurable and can be set up to 1 MHz. This signal is connected to an external DC/DC buck converter.

- Voltage Regulator
 - The integrated voltage regulator is designed to work with unregulated DC supplies.
 - There are guidelines that should be followed. A series limiting resistor (RVDD) should be placed between the unregulated supply and the VDD pin. The value for this series resistor (RVDD) must be between RMIN and RMAX as shown in the following equation:

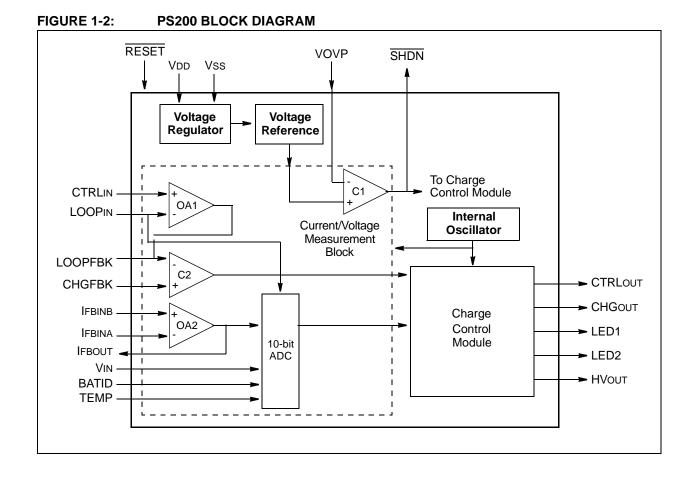
EQUATION 1-1:

$$RMAX = \frac{Vs(min) - 5V) * 1000}{1.05 * (16 mA + I(led))}$$

$$RMIN = \frac{Vs(max) - 5V) * 1000}{.95 * (50 mA)}$$

Where:

RMAX = maximum value of series resistor (ohms) RMIN = minimum value of series resistor (ohms)


Vs(min) = minimum value of charger DC supply (VDC) Vs(max) = maximum value of charger DC supply (VDC)

I(led) = total current drawn by all LEDs when illuminated simultaneously

The 1.05 and.95 constants are included to compensate for the tolerance of 5% resistors. The 16 mA constant is the anticipated load presented by the PS200, including the loading due to external components and a 4 mA minimum current for the shunt regulator itself. The 50 mA constant is the maximum acceptable current for the shunt regulator.

- The precision internal 8 MHz clock oscillator eliminates the need for external oscillator circuits.
- In-circuit configurability utilizing 256 bytes of on-board EEPROM.
- Power on Reset The POR insures the proper start-up of the PS200 when voltage is applied to VDD.
- Brown-out Reset The BOR is activated when the input voltage falls to 2.1V; the PS200 is reset.

PS200

2.0 ARCHITECTURAL OVERVIEW

To ensure the proper treatment of lithium chemistries during extreme temperature and voltage conditions, multi-step charging is required. The PS200 measures key voltage, temperature and time parameters. It compares them to user defined voltage, temperature and time limits. These limits are described in **Section 3.0 "User Configurable Parameters"**.

Note:	Refer to	Figure 1-1	and	Figure 2-1	for
	clarificat	on when rea	ding	this section.	

2.1 Charge Pending State – Beginning the Charge Cycle

The PS200 is initially set in the Charge Pending state (A). In this state, the presence of a battery pack must be sensed in order to begin the charging cycle. The PS200 comes up in the Charge Pending state, after a Reset, independent of the previous state.

2.2 Charge Qualification State

During charge qualification, the battery's temperature and voltage are measured to determine the next charging state. There are four possible next states (see Figure 1-1).

- 1. If the battery's temperature is outside of the limits for charge initiation (TMAX, TMIN) then the next state is Charge Suspend (C).
- 2. If the battery's voltage is less than the minimum voltage for charge initiation (VMIN) and its temperature is within the limits for charge initiation (TMAX, TMIN), then the next state is Precharge (D).
- 3. If the battery's voltage is above the minimum voltage for charge initiation (VMIN) and its temperature is within the limits for charge initiation (TMAX, TMIN), then the next state is Current Regulation (E).
- 4. If the battery's voltage is above the voltage at which charging will restart (VRCHG), then the next state is Charge Complete (G).

2.3 Precharge State

The Precharge state allows for the recovery of a deeply discharged battery pack by applying a low charge rate. In this state, a user configured precharge current is applied to the battery, resulting in an increase in the battery's voltage (refer to Figure 2-1). There are three possible next states (see Figure 1-1).

- If the battery's voltage is above the minimum voltage for charge initiation (VMIN) and the battery's temperature is within the limits for charge initiation (TMAX, TMIN), then the next state is Current Regulation (E).
- 2. If the Precharge state time limit is exceeded (t_p) and the battery's voltage remains less than the minimum voltage for charge initiation (VMIN), then the next state is Charge Suspend (C).

If the Precharge state time limit is exceeded (t_p) and the battery's temperature is greater than the maximum temperature for charge initiation (TMAX), then the next state is Charge Suspend (C).

If the Precharge state time limit is exceeded (t_p) and the battery's temperature is less than the minimum temperature for charge initiation (TMIN), then the next state is Charge Suspend (C).

 If the battery pack is taken away (BATPRES = 0), then the PS200 enters the Charge Pending (A) state.

2.4 Charge Suspend State

In the Charge Suspend state, no current is applied to the battery pack. There are two possible next states (see Figure 1-1).

- If the battery's temperature is within the limits for charge initiation (TMAX, TMIN) and its voltage is less than the voltage at which charging would restart (VRCHG), then the next state is Precharge (D).
- If the battery pack is taken away (BATPRES = 0), then the PS200 enters the Charge Pending (A) state.

2.5 Current Regulation State

The Current Regulation state can be entered from the Precharge state or Charge Qualification state. Battery charging is initiated. This state provides constant current, voltage limited charging (refer to Figure 2-1). The charge current is referred to as IREG or the regulation current. While the current is applied, the battery's voltage increases until it reaches a voltage limit referred to as VREG or regulation voltage. Charging continues, during which battery voltage and temperature are monitored. There are three possible next states.

- If the battery's voltage reaches or exceeds the voltage limit, VREG and its temperature remains below the maximum allowable during current regulated charging (TMAXCHG), then the next state is Voltage Regulation (F).
- 2. If the battery exhibits any one of the following conditions then the next state is Charge Suspend (C):
 - Battery voltage exceeds upper voltage limit for charging (VMAX)
 - Battery temperature exceeds upper temperature limit for charging (TMAX)
 - Battery temperature is below the lower temperature limit for charging (TMIN)

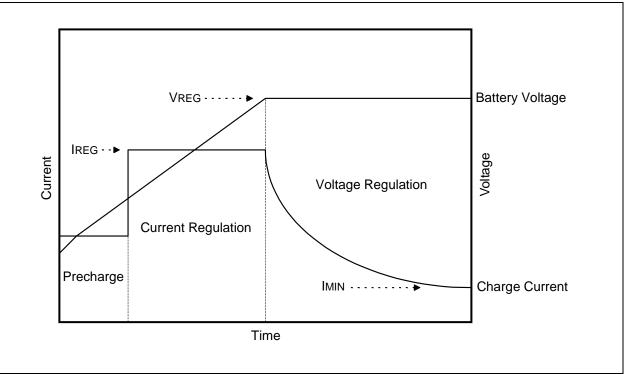
If the time in the Current Regulation state exceeds the time limit (t_i) , then the next state is Charge Suspend (C).

 If the battery pack is taken away (BATPRES = 0), then the PS200 enters the Charge Pending (A) state.

2.6 Voltage Regulation State

Voltage Regulation provides charging at a constant voltage while the charge current decreases (or tapers) to the user specified minimum current threshold (IMIN). There are three possible next states.

- When the charge current reaches the taper current threshold for End-Of-Charge (IMIN) and the battery's voltage remains at the regulated voltage value (VREG), then the battery has reached the Charge Complete (G) state.
- If the battery exhibits any one of the following conditions, then the next state is Charge Suspend (C).
 - Battery voltage exceeds upper voltage limit for charging (VMAX)
 - Battery temperature exceeds upper temperature limit for charging (TMAXCHG)


If the time in the Voltage Regulation state exceeds the time limit (t_v), then the next state is Charge Suspend (C).

 If the battery pack is taken away (BATPRES = 0), then the PS200 enters the Charge Pending (A) state.

2.7 Charge Cycle Complete State

The user specified minimum current threshold (IMIN) can be configured for various charging temperatures. At this threshold, charging is terminated and the End-Of-Charge state is reached. The PS200 can renew the charge cycle by entering the Charge Pending (A) state when: 1) the battery is removed (BATPRES = 0), or 2) if the battery's voltage falls below the recharge threshold voltage (VRCHG).

PS200

NOTES:

3.0 USER CONFIGURABLE PARAMETERS

The PS200 device's configurable parameters allow for flexible changes in designing battery chargers. The parameters are categorized as follows:

- Configuration
- Precharge State
- Current Regulation State
- Voltage Regulation State
- LED Display Configuration

Please refer to Table 3-2 "PS200 Configurable Parameters".

3.1 Configuration Parameters

The configuration parameters provide an identity to the battery pack and provide its basic characteristics to the PS200.

- Manufacturing Name A user defined text field for identifying the battery pack
- Device A user defined text field for identifying the device in use
- Number of Cells Identifies the number of series cells within the battery pack. The PS200 supports up to four cells.
- Battery Pack Capacity Identifies the capacity of the battery pack in units of milliamp hour (mAh), a unit of current and time.
- PWM Frequency The PS200 generates a PWM frequency for use in a Switch mode charger topology. The maximum frequency supported is 1 MHz.

3.2 Precharge State Parameters

The Precharge state parameters set the battery's operating condition in this initial battery charging phase. These parameters are:

- Minimum Voltage (VMIN) It is the minimum voltage required to enter Current Regulation. Otherwise, the charging process remains in the Precharge state.
- Maximum Temperature (TMAX) It is the maximum temperature allowed for the battery pack during any portion of the charging cycle. The PS200 allows a battery pack to continue its charging process as long as the battery pack's temperature is below TMAX.

- Minimum Temperature (TMIN) It is the minimum temperature allowed for the battery pack during any portion of the charging cycle. The PS200 allows a battery pack to continue its charging process as long as the battery pack's temperature is above TMIN.
- Precharge Current (IPRECHG) It is the current provided to the battery pack during the Precharge state. The value can be specified in mA.
- Precharge Time Limit (t_p) It is the maximum amount of time allowable in the Precharge state. It is specified in minutes. The maximum number of minutes supported is 300.

3.3 Current Regulation State Parameters

The Current Regulation state parameters set the battery's operating condition in this second battery charging phase. These parameters are:

- Charge Current (IREG) It is the current provided to the battery pack during the Current Regulation state. The value can be specified in mA. The maximum C rate supported is 2.0.
- Maximum Temperature (TMAXCHG) It is the maximum battery temperature allowable during the Current Regulation state.
- Current Regulation Time Limit (t_i) It is the maximum amount of time allowable in the Current Regulation state. It is specified in minutes. The maximum number of minutes supported is 300.
- Maximum Voltage (VMAX) It is the maximum voltage allowed for a battery pack's cell during any portion of the charging cycle. The values range from 4.0 to 4.5 volts. To determine the figure for a multi-cell pack, divide the maximum pack voltage by the number of cells. The PS200 allows a battery pack to continue its charging process as long as the battery pack's cell voltage is below VMAX.

3.4 Voltage Regulation State Parameters

The Voltage Regulation state parameters set the battery's operating condition in this third battery charging phase. These parameters are:

- Target Voltage (VREG) It is the maximum voltage allowed per cell. 4.2V is the maximum supported value.
- Minimum Current (IMIN) During the Voltage Regulation phase, the current supplied to the battery pack decreases (or tapers) to a minimum current value. This value is compensated for temperature. Minimum current is implemented with a look-up table, 1 value for each of six temperature zones. The value for each zone is specified in units of 1/256 C-Rate (capacity). For example: Value of 10 for a 2000 mAh pack = 10/256 * 2000 = 78 mA.
- Voltage Regulation Time Limit (t_v) It is the maximum amount of time allowable in the Voltage Regulation state. It is specified in minutes. The maximum number of minutes supported is 300.
- Maximum Voltage (VMAX) It is the maximum voltage allowed for a battery pack's cell during any portion of the charging cycle. The values range from 4.0 to 4.5 volts. To determine the figure for a multi-cell pack, divide the maximum pack voltage by the number of cells. The PS200 allows a battery pack to continue its charging process as long as the battery pack's cell voltage is below VMAX.

3.5 LED Display Configuration

The PS200 supports two LEDs that communicate the charge state. It is recommended that LED1 be green, while LED2 be red. The table below shows the default blinking values.

	ED DISPLAY ONFIGURATION C	HART
Charge State	LED1 (Green) Default	LED2 (Red) Default
Charge Pending	Off	Off
Charge Qualification	1 sec on, 4 sec off	Off
Charge Suspend	Off	On
Precharge	1 sec on, 1 sec off	Off
Current Regulation	1 sec on, 1 sec off	Off
Voltage Regulation	1 sec on. 1 sec off	Off

Charge Complete On Off

The user may customize the blinking of each LED.

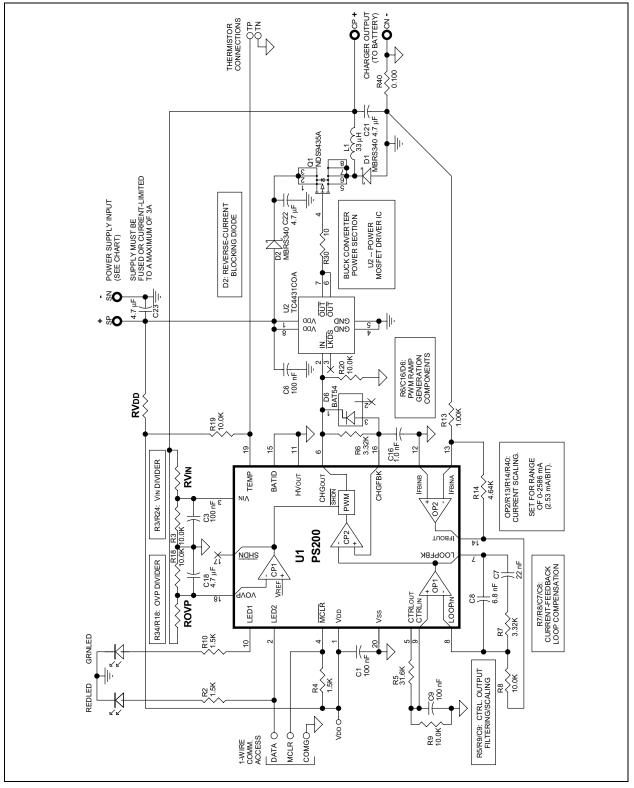
TABLE 3-2: PS200 CONFIGURABLE PARAMETERS

Parameters in Step 1 – Configuration	n		•		r
Parameter Name	Variable Name	Min	Мах	Default	Description
Manufacturing Name	-	-	-	-	ASCII value.
Device	-	-	-	I	ASCII value.
Number of Cells	-	1	-	2	Number of cells in the pack.
Battery Pack Capacity (mAh)	-	500	65535	2,000	Typical value assumes 2-cell pack.
PWM Frequency (kHz)	-	100	1 MHz	250	Frequency is converted to period.
Parameters in Step 2 – Precharge S	tate				
Parameter Name	Variable Name	Min	Max	Default	Description
Maximum Voltage (V)	VMAX	4.0	4.5	4.2	Maximum voltage allowed.
Minimum Voltage (V)	Vmin	0.0	3.0	2.0	Minimum voltage allowed.
Maximum Temperature for Charge Initiation (degC)	Тмах	0.0	85.0	40.0	Maximum temperature allowed.
Minimum Temperature for Charge Initiation (degC)	ΤΜΙΝ	0.0	85.0	0.0	Minimum temperature cannot be higher than maximum temperature.
Precharge Current (mA)	IPRECHG	0	65535	200	Current for precharging battery.
Precharge Time Limit (minutes)	t _p	0	300	45	Maximum value is 300 minutes.
Parameters in Step 3 – Current Reg	ulation Phas	е			
Parameter Name	Variable Name	Min	Max	Default	Description
Charge Current (mA)	IREG	125	65535	2,000	Current defined for Current Regulation phase.
Maximum Temperature during Charge	TMAXCHG	0.0	85.0	55.0	Temperature measurement is an option.
Current Regulation Time Limit (min)	t _i	0	300	90	Maximum value is 300 minutes.
Parameters in Step 4 – Voltage Reg	ulation Phase	e			
Parameter Name	Variable Name	Min	Max	Default	Description
Target Voltage	Vreg	4	4.5	4.2	Maximum value is 4.5 volts.
Minimum Current (mA)	Ιμιν	0	65535	140	Minimum current is a function of temperature and capacity.
Restart Charging Threshold Voltage (V)	VRCHG	3.0	4.0	3.5	Voltage Threshold at which charging restarts (V)
Voltage Regulation Time Limit (min)	t _v	0	300	90	Maximum value is 300 minutes.
Parameters in Step 5 – LED Display	Configuratio	on	•		
Parameter Name	Variable Name	Min	Max	Default	Description
LED1 On/Off Time (sec)	LED1 mode	0.0	4.0	State Dep.	Increments of 0.25 second. 8-bit word defines the LED state.
LED2 On/Off Time (sec)	LED2 mode	0.0	4.0	State Dep.	Increments of 0.25 second. 8-bit word defines the LED state.
Default LED Display Configuration	·1				
Charge State	LED	1 (Gree	n) Defau	lt	LED2 (Red) Default
Charge Pending	Off				Off
Charge Qualification	1 sec on, 4 s	ec off			Off
Charge Suspend	Off				On
Precharge	1 sec on, 1 s	ec off			Off
Current Regulation	1 sec on, 1 s	ec off			Off
Voltage Regulation	1 sec on, 1 s	ec off			Off
0 0					

© 2004 Microchip Technology Inc.

PS200

NOTES:


Refer to the Microchip web site (www.microchip.com) for the latest Application Notes that reference this

theory of operation and component values.

4.0 APPLICATION

Figure 4-1 is an example of the PS200 in a Switch mode charger for Lithium Ion batteries. The sense resistor (RSENSE) is in a low side configuration.

FIGURE 4-1: SWITCH MODE CHARGER CIRCUIT EXAMPLE

PS200

NOTES:

5.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40 to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	-0.3 to +6.5V
Voltage on RESET with respect to Vss	
Voltage on HVout with respect to Vss	0V to +8.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, Ioк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by each Port	50 mA ⁽²⁾
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-\Sigma$	VOH) x IOH} + Σ (VOL x IOL).
2. Total actives current must not exceed the churt regulator conscitu	

2: Total source current must not exceed the shunt regulator capacity.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

5.1 Reliability Targets

The device must be designed to target the following reliability specifications: ESD: $\pm 4000V$ HBM $\pm 400V$ MM all pins including VDD, Vss, RESET

Latch-up: ±400 mA @ 125°C

5.2 Design Targets

The AC/DC specifications included in the following sections are preliminary specifications that we intend to publish at product introduction. As the product matures, we intend to expand the specifications. Therefore, design should try and meet the following extended VDD/temperature targets:

- 1. Frequency of operation: DC 4 MHz, VDD = 2.0V 5.5V, $-40^{\circ}C$ to $125^{\circ}C$
- 2. Frequency of operation: DC 20 MHz, VDD = 4.5V 5.5V, $-40^{\circ}C$ to $125^{\circ}C$

5.3 DC Characteristics

			Standard Operating Conditions (unless otherwise stated)Operating temperature-40°C to +85°C					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
D001B D001C	Vdd	Supply Voltage	2.0 4.5		5.0 5.0	V V	Fosc <= 4 MHz Fosc > 4 MHz	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*			V	Device in SLEEP mode	
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	—	Vss	_	V	See section on Power-on Reset for details	
D004	Svdd	VDD rise rate to ensure internal Power-on Reset signal	0.05*	_	—	V/ms	See section on Power-on Reset for details	
D005	VBOR	VDD voltage required to initiate a Brown-out Detect	—	2.1	_	V		
D010S	Idd	Supply Current ⁽²⁾	—	_	—	mA	VDD and current are constant due to shunt regulator.	
D020	IPD	Power-down Current ⁽³⁾	—	2.9	TBD	nA	VDD = 5.0V, WDT disabled	

Legend: TBD = To Be Determined

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested
- Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
 - 2: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD; RESET = VDD.
 - **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and Vss.

5.4 Shunt Regulator

TABLE 5-1: SHUNT REGULATOR SPECIFICATIONS

Shunt Regulator Specifications	s Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C to +125°C								
Characteristic	Sym	Min	Тур	Max	Units	Comments			
Shunt Voltage	VSHUNT	4.75	—	5.25	Volts				
Shunt Current	ISHUNT	4	—	50	mA				
Shunt Resistance	RSHUNT		—	3	Ω				
Settling Time*	TSETTLE	_	—	150	ns	To 1% of final value			
Load Capacitance	CLOAD	0.01	—	10	μF	Bypass capacitor on VDD pin			
Regulator Operating Current	Δ ISNT		180	—	μA	Includes band gap reference current			

* These parameters are characterized but not tested.

Note: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

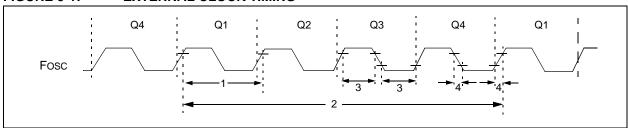
5.5 DC Characteristics

			Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C to +85°C						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
D032	VIL	VIL Input Low Voltage RESET			0.2 Vdd	V	$4.5V \le VDD \le 5.5V$, otherwise entire range		
D042	Viн	Input High Voltage RESET	0.8 Vdd		Vdd	V	$4.5V \le VDD \le 5.5V$, otherwise entire range		
	lı∟	Input Leakage Current ⁽²⁾							
D060A		Analog inputs	_	±0.1	±1	μA	$Vss \leq VPIN \leq VDD$		
D061		RESET ⁽¹⁾	—	±1	±5	μΑ	$Vss \leq VPIN \leq VDD$		
D080	Vol	Output Low Voltage Pins LED1, LED2, CTRLout, CHGout, HVout	_	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V		
D090	Vон	Output High Voltage Pins LED1, LED2, CTRLOUT, CHGOUT, HVOUT	Vdd - 0.7		_	V	ІОН = -3.0 mA, VDD = 4.5V		

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The leakage current on the RESET pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.


5.6 DC Characteristics

			Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C to +85°C						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
		Capacitive Loading Specs on Output Pins							
D101	Сю	Pins LED1, LED2, CTRLOUT, CHGOUT, HVOUT	—	—	50*	pF			
		Data EEPROM Memory							
D120	ED	Endurance	1M	10M	_	E/W	25°C at 5V		
D121	Vdrw	VDD for read/write	Vmin	—	5.5	V	VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write cycle time		5	6	ms			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

5.7 AC Characteristics: PS200 (Industrial)

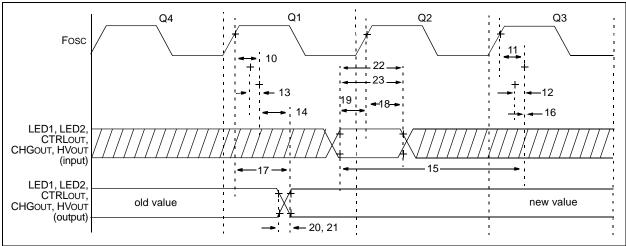
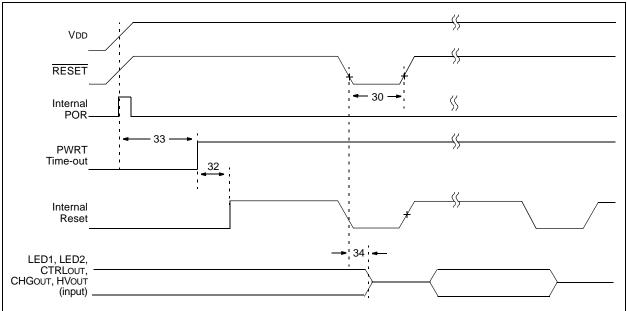

FIGURE 5-1: EXTERNAL CLOCK TIMING

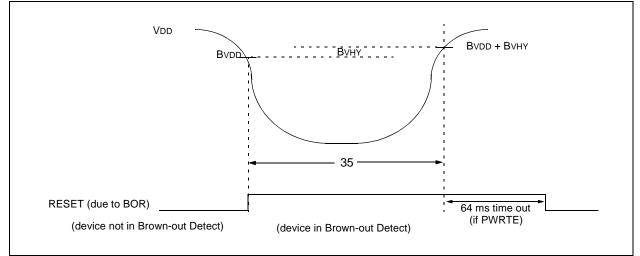
TABLE 5-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	Oscillator Frequency ⁽¹⁾	_	8		MHz	Using PS200 internal oscillator
1	Tosc	Oscillator Period ⁽¹⁾	—	125	_	ns	Using PS200 internal oscillator

† Data in "Typ" column is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
17	TosH2ioV	Fosc↑ (Q1 cycle) to Port Out Valid		50	150*	ns	
			—	-	300	ns	
18	TosH2iol	Fosc↑ (Q2 cycle) to Port Input Invalid (I/O in hold time)	100	_	_	ns	
19	TioV2osH	Port Input Valid to Fosc↑ (I/O in setup time)	0	_	_	ns	
20	TioR	Port Output Rise Time	_	10	40	ns	
21	TioF	Port Output Fall Time	_	10	40	ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0 V, 25°C unless otherwise stated.

FIGURE 5-4: BROWN-OUT DETECT TIMING AND CHARACTERISTICS

TABLE 5-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT DETECT REQUIREMENTS

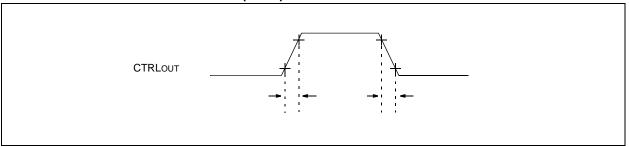
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	ТмсL	RESET Pulse Width (low)	2 11		 24	μs ms	VDD = 5 V, -40°C to +85°C Extended temperature
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc	—	—	Tosc = Fosc period
33*	TPWRT	Power up Timer Period (4 x TwDT)	28* TBD	64 TBD	132* TBD	ms ms	VDD = 5 V, -40°C to +85°C
34	Tioz	I/O high-impedance from RESET Low or Watchdog Timer Reset	—	—	2.0	μs	
	Bvdd	Brown-out Detect voltage	2.025		2.175	V	
	Βνηγ	Brown Out hysteresis		25		mV	
35	TBOR	Brown-out Detect pulse width	100*	—		μs	$VDD \le BVDD$ (D005)

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 5-5:	PRECISION INTERNAL OSCILLATOR PARAMETERS


Param No.	Sym	Characteristic	Freq Tolerance	Min	Тур†	Max	Units	Conditions
F10	Fosc	Internal Calibrated	±1%	_	8.00	TBD	MHz	VDD and Temperature (TBD)
		INTOSC Frequency ⁽¹⁾	±2%	—	8.00	TBD	MHz	$2.5V \le VDD \le 5.5V$ $0^{\circ}C \le TA \le +85^{\circ}C$
		±5%	—	8.00	TBD	MHz	$2.0V \le VDD \le 5.5V$ -40°C \le TA \le +85°C (Ind.) -40°C \le TA \le +125°C (Ext.)	
F14	TIOSCST	Oscillator wake-up from	—	_	TBD	TBD	μs	VDD = 2.0V, -40°C to +85°C
	SLE	SLEEP start-up time*	—	—	TBD	TBD	μs	VDD = 3.0V, -40°C to +85°C
			—	—	TBD	TBD	μs	$VDD = 5.0V, -40^{\circ}C \text{ to } +85^{\circ}C$

Legend: TBD = To Be Determined

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and .01 μ F values in parallel are recommended.

FIGURE 5-5: CTRLOUT TIMINGS (PIN 5)

TABLE 5-6: CTRLOUT REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
53*	TccR	CTRLOUT Output Rise Time	—	25	50	ns	
54*	TccF	CTRLOUT Output Fall Time	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

5.8 Current Voltage Measurement Block

DC CH	DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) VDD = 2.7V to 5.5V, TA = 25°C, VCM = VDD/2, $RL = 100 \text{ k}\Omega$ to VDD/2 and VOUT ~ VDD/2 Operating Temperature -40°C to +85°C for Industrial						
Param No.	Sym	Parameters	Min	Тур	Max	Units	Conditions			
001	Vos	Input Offset Voltage		±5	_	mV				
002 003	IB IOS	Input Current and Impedance Input Bias Current Input Offset Bias Current	_	±2* ±1*	_	nA pA				
004 005	Vсм CMR	Common Mode Common Mode Input Range Common Mode Rejection	Vss TBD	 70	Vdd – 1.4	V dB	VDD = 5V Vcм = Vdd/2, Frequency = DC			
006A 006B	Aol Aol	Open-Loop Gain DC Open-Loop Gain DC Open-Loop Gain	_	90 60	_	dB dB	No load Standard load			
007 008	Vout Isc	Output Output Voltage Swing Output Short Circuit Current	Vss + 50 —	 25	Vdd – 50 TBD	mV mA	To VDD/2 (20 k Ω connected to VDD 20 k Ω + 20 pF to Vss)			
010	PSR	Power Supply Power Supply Rejection	80		_	dB				

TABLE 5-7:DC CHARACTERISTICS (PINS LOOPIN, CTRLIN, IFBINB, IFBINA INPUTS;
PIN IFBOUT OUTPUT)

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

TABLE 5-8:AC CHARACTERISTICS (PINS LOOPIN, CTRLIN, IFBINB, IFBINA INPUTS;
PIN IFBOUT OUTPUT)

AC CHA	Standard Operating Conditions (unless otherwise stated) VDD = 2.7V to 5.5V, Vss = GND, TA = 25°C, VCM = VDD/2, RL = 100 k Ω to VDD/2 and VOUT = VDD/2 Operating Temperature -40°C to +85°C for Industrial								
Param No.	Sym	Parameters	Min Typ Max Units Conditions						
011	GBWP	Gain Bandwidth Product	_	3		MHz	VDD = 5V		
012	TON	Turn On Time	—	10	TBD	μs	VDD = 5V		
013	Θм	Phase Margin	—	60		degrees	VDD = 5V		
014	SR	Slew Rate	2	TBD		V/µs	VDD = 5V		

Legend: TBD = To Be Determined

COMPARATOR SPECIFICATIONS (PINS LOOPFBK, CHGFBK, SHDN, VOVP) **TABLE 5-9:**

Comparator Specifications			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Symbol	nbol Characteristics Min Ty		Тур	Max	Units	Comments		
C01	Vos	Input Offset Voltage	—	± 2	± 5	mV			
C02	Vсм	Input Common Mode Voltage	0		Vdd - 1.5	V			
C03	ILC	Input Leakage Current	_		200*	nA			
C04	CMRR	Common Mode Rejection Ratio	+70*	—	—	dB			
C05	Trt	Response Time ⁽¹⁾	—	—	20*	ns	Internal		
* These perameters are characterized by		rameters are characterized but	—		40*	ns	Output to pin		

These parameters are characterized but not tested.

Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Note 1: Vss to VDD - 1.5V.

COMPARATOR VOLTAGE REFERENCE (VREF) SPECIFICATIONS **TABLE 5-10:**

Compara	Comparator Voltage Reference Specifications			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments			
CV01	CVRES	Resolution	—	Vdd/24* Vdd/32	_	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)			
CV02		Absolute Accuracy	_	_	±1/4* ±1/2*	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)			
CV03		Unit Resistor Value (R)	—	2K*	_	Ω				
CV04		Settling Time ⁽¹⁾		—	10*	μs				

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000 to 1111.

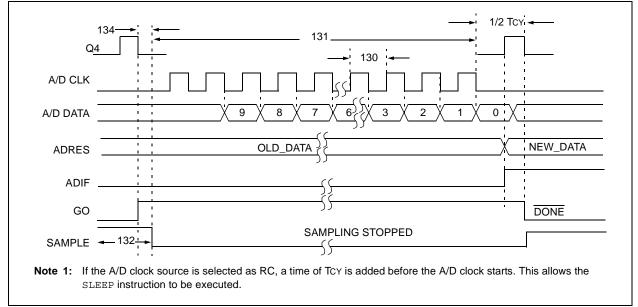
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
A01	Nr	Resolution	_	—	10 bits	bit	
A02	Eabs	Total Absolute Error*(1)	—	—	±1	LSb	VREF = 5.0V
A03	EIL	Integral Error	—	—	±1	LSb	VREF = 5.0V
A04	Edl	Differential Error	—	—	±1	LSb	No missing codes to 10 bits VREF = 5.0V
A05	Efs	Full Scale Range	2.2*	—	5.5*	V	
A06	EOFF	Offset Error	_	—	±1	LSb	VREF = 5.0V
A07	Egn	Gain Error	_	—	±1	LSb	VREF = 5.0V
A10	—	Monotonicity		guaranteed ⁽²⁾	—		$VSS \le VAIN \le VREF$
A20 A20A	Vref	Reference Voltage	2.2 ⁽⁴⁾ 2.5	—	 Vdd + 0.3	V	Absolute minimum to ensure 10-bit accuracy
A25	VAIN	Analog Input Voltage	Vss		Vref ⁽⁵⁾	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	10	kΩ	
A50	IREF	VREF Input Current* ⁽³⁾	10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.
			—	—	10	μA	During A/D conversion cycle.

TABLE 5-11: A/D CONVERTER CHARACTERISTICS

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes Integral, Differential, Offset and Gain Errors.


2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: VREF current is from external VREF or VDD pin, whichever is selected as reference input.

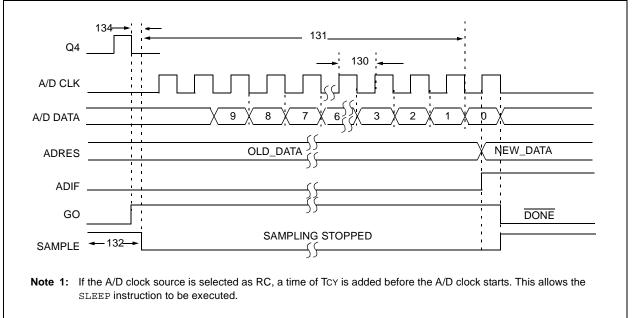
4: Only limited when VDD is at or below 2.5V. If VDD is above 2.5V, VREF is allowed to go as low as 1.0V.

5: Analog input voltages are allowed up to VDD, however, the conversion accuracy is limited to VSS to VREF.

FIGURE 5-6: A/D CONVERSION TIMING (NORMAL MODE)

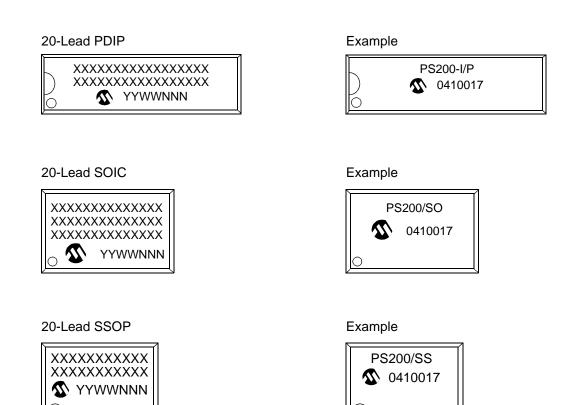
PS200

TABLE 5-12: A/D CONVERSION REQUIREMENTS								
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
130*	TAD	A/D Clock Period	1.6			μs	Tosc based, V _{REF} ≥ 2.5V	
			3.0*	—	—	μs	Tosc based, VREF full range	
130*	TAD	A/D Internal RC					ADCS<1:0> = 11 (RC mode)	
		Oscillator Period	3.0*	6.0	9.0*	μs	At $V_{DD} = 2.5V$	
			2.0*	4.0	6.0*	μs	At VDD = 5.0V	
131*	ΤΟΝΥ	Conversion Time (not including acquisition time) ⁽¹⁾	—	11 Tad		Tad	Set GO bit to new data in A/D Result register	
132*	TACQ	Acquisition Time	—	11.5	—	μs		
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 1mV @ 4.096V) from the last sampled voltage (as stated on CHOLD).	
134*	TGO	Q4 to A/D Clock Start	—	Tosc/2	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.	


TABLE 5-12: A/D CONVERSION REQUIREMENTS

* These parameters are characterized but not tested.

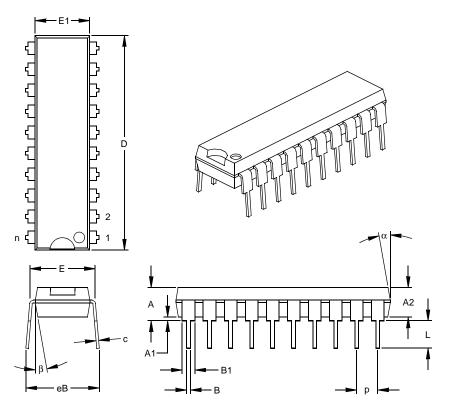
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: ADRES register may be read on the following TCY cycle.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend	: XXX Y YY WW NNN	Customer specific information* Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters her specific information.


^t Standard device marking consists of Microchip part number, year code, week code, and traceability code. For device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

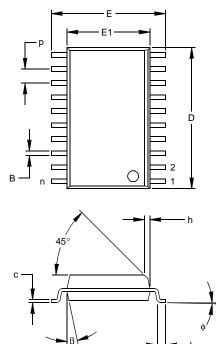
© 2004 Microchip Technology Inc.

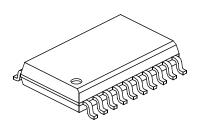
6.2 **Package Details**

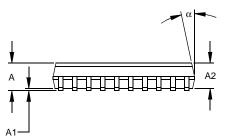
The following sections give the technical details of the packages.

20-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)

	Units		INCHES*		MILLIMETERS			
Dimensior	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n	20				20		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32	
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.295	.310	.325	7.49	7.87	8.26	
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60	
Overall Length	D	1.025	1.033	1.040	26.04	26.24	26.42	
Tip to Seating Plane	L	.120	.130	.140	3.05	3.30	3.56	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.055	.060	.065	1.40	1.52	1.65	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eВ	.310	.370	.430	7.87	9.40	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

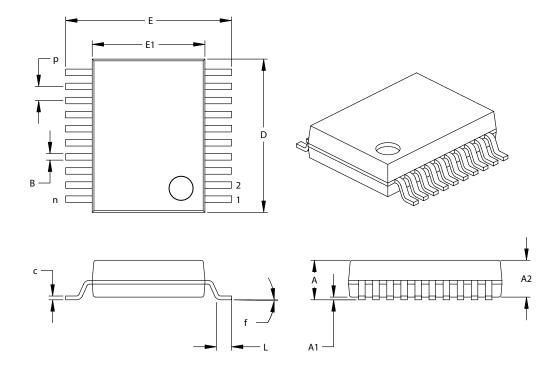

* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-019

20-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)


	Units		INCHES*		N	1ILLIMETERS	8
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.496	.504	.512	12.60	12.80	13.00
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-094

20-Lead Plastic Shrink Small Outline (SS) – 209 mil Body, 5.30 mm (SSOP)

	Units		INCHES		М	ILLIMETERS*	
Dimension Lim	its	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	Α	-	-	.079	-	-	2.00
Molded Package Thickness	A2	.065	.069	.073	1.65	1.75	1.85
Standoff	A1	.002	-	-	0.05	-	-
Overall Width	E	.291	.307	.323	7.40	7.80	8.20
Molded Package Width	E1	.197	.209	.220	5.00	5.30	5.60
Overall Length	D	.272	.283	.289	.295	7.20	7.50
Foot Length	L	.022	.030	.037	0.55	0.75	0.95
Lead Thickness	с	.004	-	.010	0.09	-	0.25
Foot Angle	f	0°	4°	8°	0°	4°	8°
Lead Width	В	.009	-	.015	0.22	-	0.38

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-150 Drawing No. C04-072

Revised 11/03/03

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

042003

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fro	m: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	uld you like a reply? <u>Y</u>	
Dev	ice: PS200	Literature Number: DS21891A
Que	estions:	
1.	What are the best features of this do	ocument?
2.	How does this document meet your	hardware and software development needs?
3.	Do you find the organization of this of	document easy to follow? If not, why?
4		in this lower design of the structure and subject?
4.	what additions to the document do	you think would enhance the structure and subject?
5.	What deletions from the document of	ould be made without affecting the overall usefulness?
0.		
6.	Is there any incorrect or misleading	information (what and where)?
7.	How would you improve this docume	ent?

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Device Temperature Range Package Pattern Device PS200 Temperature Range 1 = -20°C to +85°C (Industrial) Package P = PDIP SO = SOIC SS = SSOP	PART NO.	<u>x /xx xxx</u>	Examples:
Device PS200 package Temperature Range I = -20°C to +85°C (Industrial) Package P = PDIP SO SO = SOIC	Device	Temperature Package Pattern Range	package
Package P = PDIP SO = SOIC	Device	PS200	package c) PS200-I/P = Industrial Temperature, PDIP
SO = SOIC	Temperature Range	I = -20° C to $+85^{\circ}$ C (Industrial)	
	Package	SO = SOIC	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: www.microchip.com

Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston Westford, MA Tel: 978-692-3848 Fax: 978-692-3821

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou Tel: 86-591-750-3506 Fax: 86-591-750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen Tel: 86-755-8290-1380 Fax: 86-755-8295-1393

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi Tel: 91-11-5160-8632 Fax: 91-11-5160-8632

Japan - Kanagawa Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Kaohsiung Tel: 886-7-536-4816

Fax: 886-7-536-4817 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup Tel: 45-4420-9895 Fax: 45-4420-9910

France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/24/04