Philips Semiconductors

Programming the | 2C interface

Author: Mitchell Kahn

Dr. Dobb’

J 0 U RNA L

he Inter-Integrated Circuit Bus
(“I*C Bus” for short) is a two-
wire, synchronous, serial inter-
face designed primarily for
communication between intel-
ligent IC devices. The I2C bus offers sev-
eral advantages over “traditional” seri-
al interfaces such as Microwire and
RS-232. Among the advanced features
of 1C are multimaster operation, auto-
matic baud-rate adjustment, and “plug-
and-play” network extensions.

Mention the IC bus to a group of
American engineers and you'll likely get
hit with an abundance of blank stares.
I say American engineers because un-
til recently the I°C bus was primarily a
European phenomenon. Within the last
year, however, interest in I°C in the
United States has risen dramatically.
Embedded systems designers are real-
izing the cost, space, and power sav-
ings afforded by robust serial interchip
protocols.

The idea of serial interconnect be-
tween integrated circuits is not new.
Many semiconductor vendors offer de-
vices designed to “talk” via serial links
with other processors. Current examples
include Microwire (National Semicon-
ductor), SPI (Motorola), and most re-
cently Echelon’s Neuron chips. In all cas-
es, the goal is the same: to reduce the
wiring and pincount necessary for a par-
allel data bus. It simply does not make

Mitch is a senior strategic development
engineer for Intel and can be contact-
ed at 5000 W. Chandler Blvd., Chan-
dler, AZ 85226 or at mkabn@sedona.
intel.com.

June 1992

BUS

economic sense to route a full-speed
parallel bus to a slow peripheral.

Unfortunately for most serial-bus-
capable devices, the choice of a bus
protocol will dictate the CPU architec-
ture. For example, only two CPU ar-
chitectures implement an on-chip 12C
port. If your choice of architecture pre-
cludes use of these architectures, then
your only option is to implement the
protocol in software.

The software implementation of the
I°C protocol discussed in this article
came about as a result of an implicit
challenge during a staff meeting. One
of our managers proposed that we hire
a consultant to write a software I2C driv-
er for the Intel 80C186EB embedded
processor. Being somewhat new to the

4-215

group, 1 took exception (although not
verbally!) to his suggestion. A weekend
of intense hacking later, I presented the
first prototype of the driver. My reward?
I got to write a generic version of the
driver for general distribution.

Design Trade-offs

Three distinct tasks are involved in im-
plementing the 1C protocol: watching
the bus, waiting for a specific amount
of time, and driving the bus. This be-
came apparent when I flowcharted 1
byte of a typical bus transaction; see
Figure 1. The time delays associated
with creating the bus waveforms would
normally have been relegated to the
80C186EB’s on-chip timers. 1 could not,
however, assume that the end users of
my code would be able to spare a timer
for the software 1*C port. I had to forego
the elegance (and to some extent ac-
curacy) of the on-chip timers for the
sledgehammer approach of software
timing loops. Luckily, the 12C protocol
is extremely forgiving with regard to
timing accuracy. The decision to use as-
sembly instead of a high-level language
stemmed directly from the need to con-
trol program-execution time. I had nei-
ther the time nor the inclination to hand-
tune high-level code.

Having made the decision to use as-
sembly language, I faced my next prob-
lem: Could I make the code portable?
Intel offers a plethora of CPU and em-
bedded-controller architectures. Would
it be possible to make the code some-
what portable between disparate as-
sembly languages? I found my answer
in the use of macros.

Philips Semiconductors

Programming the 12C interface

All the basic building blocks of the
I2C protocol (watching, waiting, and do-
ing) can be compartmentalized into dis-
tinct macros. The algorithms that make
up the I°C driver are written with these
macros as the framework. You don't
need to understand the intricacies of the
I2C protocol to port these routines—
you just need to know how to make
your CPU watch, wait, and do.

For example, a 4.7_u$ delay is a com-
mon event during a transfer. The macro
%Wait_4_7_uS implements just such a
delay by using the 8086 LOOP instruc-
tion with a couple of NOPs for tuning;
see Example 1(a). Total execution time
is readily calculated from instruction tim-
ing tables. The same macro is ported to
the 1960 architecture in Example 1(b).
Although T am a neophyte when it

Drive SCL Low

Wait 2.35 uS

A
Assert Nth Data
Bit on SDA

y

Wait 2.35 uS

y
Drive SCL High

No (wait state)

comes to 1960 programming, I had no
problems porting the core macros.

Hardware Dependencies

A few words about the target hardware
are in order before I discuss the code.
Any implementation of the I*C protocol
requires two open-drain (or open-col-
lector), bidirectional port pins for the
Serial Clock (SCL) and Serial Data (SDA)
lines. The code in this article was de-
signed for the 80C186EB embedded pro-
cessor, which has two open-drain ports
on-chip. The two pins, P2.6 (SCL) and
P2.7 (SDA), are part of a larger 8-bit
port. Processors without open-drain I/O
ports can easily implement 1°C with the
addition of an external open-collector
latch.

Two special-function registers, P2PIN
and P2LTCH, are used to read and write
the state of the port pins. The 80C186EB
allows the special-function registers to
be located anywhere in either memo-
ry or 1/O space. For this implementa-
tion, I chose to leave the registers in
1/0 space, even though this limited my
choice of instructions. The 80186 ar-
chitecture does not provide for read-
modify-write instructions in I/O space
(an AND to I/O, for example); it can
only load and store (IN and OUT). So
why did I limit myself? Again, I had to
assume the lowest common denomi-
nator for our customers when design-
ing my code.

Building the Framework

Early on in development, I decided to
partition my code macros according to
physical processes involved in the I°C

protocol. Code not directly involved in
mimicking the actions of a hardware 12C
port was not written as macros. For ex-
ample, the code necessary to access the
stack frame is not written as a macro,
whereas the code needed to toggle the
clock line is. This was done to isolate
architecture-dependent code sequences
from the more generic 12C functions.
Macros were also not used for “gray ar-
eas” such as the shifting of serial data,
which is both architecture dependent
and physical in nature. The I°C func-
tions that passed the litmus test fell in-
to the three aforementioned categories
of watching, waiting, and doing.

The “waiting” macros provide a fixed-
minimum time delay. They are imple-
mented using a simple LOOP § delay.
The LOOP instruction decrements the
CX register, then branches to the target
(in this case itself) if the result is non-
zero. The delay is (n—1)*15+5 clocks,
where n is the starting value in the CX
register. All the delays were calculated
assuming a 16-MHz clock rate (62.5
nanoseconds per clock). The code still
works at lower CPU speeds because the
I°C protocol only specifies minimum
timings. In fact, the delay macros are
only “accurate enough,” providing tim-
ings as close as I could get to the spec-
ified minimum without undue tuning.

The “watching” macros are “spin-on-
bit” polling loops. These pieces of code
wait for a transition on the appropriate
I%C line to occur before allowing execu-
tion to continue. There are two polling
macros for each of the two I*C signal
lines; one for high-to-low transitions and
one for low-to-high transitions. The

Y
(@
igh?
SCL High? $*DEFINE (Wait_4_7_uS) (
mov cx, 5 ; 4 clocks
loop $; 4%15+45 = 65 clocks
nop ; 3 clocks
nop ; 3 clocks
; total = 75 clocks
SDA Valid? ; 75 % 62.5ns = 4.69uS (close enough)
Abort)
Yy (arbitration loss) ’
()
No Clock high define(Wait_4_7_usS,"'

ime expired?

lda 0x17, r4 # instruction may be issued in parallel
so assume no clocks.
Ob: cmpdeco 0, r4 # compare and decrement counter in ré
bne.t 0b % if 1=0 branch back (predict taken
Drive SCL low # branch)
The cmpdeco and bne.t together take 3
clocks in parallel minimum.
A 4 #
) # 0x17 (25 decimal) * 3 = 75 clocks
Wait 2.35 uS # at 16MHz this is 4.69uS

")

Example 1: (a) SOC186 implementation of 4.7_uS wait macro; (b) 80960CA
implementation of 4.7_uS wait macro.

Figure 1: Flowchart of process for
transmission of a single bit.

June 1992 4-216

Philips Semiconductors

Programming the 12C interface

polling of the SCL line that gives rise to
an important feature of 1°C: automatic,
bit-by-bit baud-rate adjustment. Any de-
vice on the I*C bus may hold the clock
line low in order to stall the bus for
more time (a serial wait state). The oth-
er devices on the bus are then forced
to poll the SCL line until the slow de-
vice releases control of the clock.

The %Get_SDA_Bit macro also falls
under the category of “watching.” Its
function is simply to return the state of
the SDA line without waiting for a tran-
sition. %Get_SDA_Bit is used primarily
to pull the serial data off the bus when
the clock is valid.

The “doing” macros control the state
of the clock and data lines. As with the
polling macros, there are four types—
one for each transition of the SCL or
SDA lines. The “doing” macros are
named to reflect the physical operations
they perform. For example, %Drive_
SCI_Low always drives the SCL line to
a low state. %Release_SCI_High, on the
other hand, relinquishes control of the
SCL line, which may then be pulled high
or driven low by another device on the
bus. A read-modify-write operation is
used for the bit manipulation so that the
other 6 bits of Port 2 are not affected
by the I°C operations.

Getting on the Bus

Three procedures were created using
the macro framework. I'll describe on-
ly the master transmit (Listing One, page

Start
Byte = 12C address
N=1

4

» Transmit bit N

Byte ++;
4 Get byte;
N=1;

Stop

Figure 2: Flowchart for I°C transmit
procedure.

June 1992

106) and master receive functions (List-
ing Two, page 108), as they represent
the needs of most I°C users. The slave
procedure is long and intricate and will
not be described here.

An I’C master transmission proceeds
as follows:

1. The master polls the bus to see if it
is in use.

2. The master generates a start condi-
tion on the bus.

3. The master broadcasts the slave ad-
dress and expects an acknowledge
(ACK) from the addressed slave.

4. The master transmits 0 or more bytes
of data, expecting an ACK following
each byte.

5. The master generates a stop condi-
tion and releases the bus.

The stack frame for the master trans-
mit procedure, 12CXA.A86, includes a
far pointer to the message for transmis-
sion, the byte count for the message,
and the slave address. Far pointers and
far procedure calls are used in all the
procedures. No attempt was made to
conform to a specific high-level lan-
guage calling convention, although such
a conversion would be trivial. The pro-
cedures save only the state of the mod-
ified segment registers.

The master transmit procedure per-
forms error checking on the passed pa-
rameters before attempting to send the
message. The maximum message length
is set at 64 Kbytes by the segmentation
of the 80186 memory space. This re-
striction could be removed by includ-
ing code to handle segment boundaries.
The transmit procedure also checks the
direction bit in the slave address to en-
sure that a reception was not erro-
neously indicated. Errors are reported
back to the calling procedure through
the AX register. (The exact code is in
Listing One.)

The first step in sending a message is
getting on the I?C bus. The macro
%Check_For_Bus_Free simply polls the
bus to determine if any transactions are
in progress. If so, the transmit proce-
dure aborts with the appropriate error
code. If the bus is free, a start condition
is generated. The start condition is de-
fined as a high-to-low transition of SDA
with SCL high followed by a 4.7_us
pause. These waveforms are easily gen-
erated with the %Drive_SDA Low and
Y%Wait_4_7_uS macros.

All communication on the I?C bus be-
tween the stop and start conditions, in-
cluding addressing and data, takes place
as an 8-bit data value followed by an
acknowledge bit. This lead to the nat-
ural nested loop structure for the body
of the procedure; see Figure 2.

4-217

The inner loop is responsible for
transmitting the 8 bits of each data byte.
Each transmitted bit generates the ap-
propriate data (SDA) and clock (SCL)
waveforms while checking for both se-
rial wait states and potential bus colli-
sions. A bus collision occurs when two
masters attempt to gain control of the

Three distinct tasks
are involved in
implementing the
I2C protocol:
waiching the bus,
waiting for a specific
amount of time, and
driving the bus

bus simultaneously. The I°C protocol
handles collisions with the simple rule:
“He who transmits the first 0 on the SDA
line wins the bus.” To ensure that we
(the master transmit procedure) own the
bus, the SDA line is checked whenev-
er transmitting a 1. If a O is present, then
a collision has occurred (because an-
other master is pulling the line low),
and the transfer must be aborted.

Control is turned over to the outer
loop after the 8 bits of data (or address)
have been transmitted. The outer loop
immediately checks for an acknowledge
from the addressed slave. The transfer
is aborted if an acknowledge is not re-
ceived. At the end of the ACK bit the
message length counter is decremented.
Control is returned to the inner loop if
more data remains, otherwise a stop con-
dition is generated and the master trans-
mit procedure terminates.

Registers are used for intermediate re-
sult storage throughout the body of the
procedure. For example, the AH reg-
ister is used to hold the current value
(either address or data) being shifted
onto the SDA line. This eliminates the
need for local data storage within the
procedure.

On the Receiving End

The steps involved in an I?C master re-
ceive transaction are almost identical to
those in transmission:

1. The master polls the bus to see if it
is in use.
2. The master generates a start condi-

Philips Semiconductors

Programming the 12C interface

tion on the bus.

3. The master broadcasts the slave ad-
dress and expects an ACK from the
addressed slave.

4. The master receives 0 or more bytes
of data and sends an ACK to the slave
after each byte. The master signals
the last byte by not sending an ACK.

5. The master generates a stop condi-
tion and releases the bus.,

A far pointer to the receive buffer is
passed on the stack to the master re-
ceive procedure. The remainder of the
parameters—slave address and mes-
sage count—are identical between the
two procedures. The received message
length is fixed at 64 Kbytes, again be-
cause of segmentation. The error-check-
ing, bus-availability sensing, and start-
condition generation sections of the
receive procedure are lifted verbatim
from the transmit code.

The structure of the receive proce-
dure differs slightly once the start con-

Start
Byte = 12C address
- (This block
Transmit represents
one pass
Address byte througfﬁJ the
N=1 transmit
flowchart)
Get SDADbitN [«
N++; N
y
Store byte in
buffer
Y Last N
Byte?
No ACK “ Send ACK
y
Byte ++ ||
N=
Stop

Figure 3: Flowchart for 12C receive
procedure.

June 1992

dition has been generated; see Figure
3. The slave address is transmitted us-
ing one iteration of the transmit proce-
dure’s outer loop. Control is passed to
the receive loop once the slave acknow-
ledges its address.

The receive loop structure is patterned
after that of the transmit procedure. The
inner loop controls the clocking of the
SCL line and the shifting of the serial da-
ta off the SDA line into the CPU. Eight
iterations of the inner loop are performed
to receive each byte. The outer loop
stores the received byte in the buffer,
decrements the byte count, then sends
an ACK to the slave. The last data byte
is signalled by not sending an ACK.

Using the Procedures

Listing Three (page 110) shows a short
program that uses both the master trans-
mit and master receive procedures. The
call to procedure 12C_XMIT displays the
word “bUS-" on a four-character, sev-
en-segment display controlled by the
SAA1064 1°C compatible display driver.
The time of day is read from the
PCE8583 real-time clock by the call to
procedure 12C_RECV.

Please note that interrupts must be
disabled during the execution of both
procedures. An interruption at an in-
opportune time (when the master is not
in control of the clock) could cause the
bus to hang. If you need to service in-
terrupts periodically, then enable them
only when the clock is driven low.

These procedures have been tested
on a wide array of 1’C devices ranging
from serial EEPROMSs to voice synthe-
sizers. No compatibility problems have
been seen to date.

Enhancing the Code
I've kicked around many ideas for en-
hancing the 12C procedures. You could,

All the basic
building blocks of
the I°C protocol
(watching, waiting,
and doing) can be
compartmentalized
into distinct macros

4-218

for example, replace the timing loops
with timed interrupts. That way, the CPU
could perform useful work during the
pauses. Along the same lines, the paus-
es could be scheduled using a real-
time kernel, again improving CPU
throughput. Finally, you could add a
high-level language calling structure.
The use of timed interrupts adds an
order of magnitude to the complexity
of the code, but would be worth it for
high-performance, real-time systems.

Conclusion

I%C is not the only game in town when
in comes to serial protocols. Hopefully,
some of the techniques presented here
will carry over into the development of
other “simulated” serial protocols, such
as those targeted at the home-automa-
tion market. Who knows, maybe some-
day a snippet of my code may find its
way into a truly intelligent dishwasher.
['ll be waiting. ...

References
I2C Bus Specification, Philips Corpora-
tion (undated).

DDJ

Reprinted with permission of Dr.
Dobb’s Journal, 1992

Entire contents copyright © 1992
by M&T Publishing, Inc.
Uniess otherwise noted on specific articles.
All rights reserved.

ABP I
Audit
American Business Press Bureau

Philips Semiconductors

a North American Philips Company
811 E. Arques Avenue

P.O. Box 3409
Sunnyvale, California 94088-3409

	Table of Contents
	List of Figures
	1. Flowchart of process for transmission of a single bit
	2. Flowchart for I 2 C transmit procedure.
	3. Flowchart for 12C receive procedure.

	Design Tradeoffs
	Hardware Dependencies
	Building the Framework
	Getting on the Bus
	On the Receiving End
	Using the Procedures
	Enhancing the Code
	Conclusion
	References

