

High-Performance 8-Bit CMOS EPROM Microcontrollers with 10-bit A/D

PIC17LC752/756A is tested for high frequency, low voltage operation - 16 MHz @ 3V

Microcontroller Core Features:

- · Only 58 single word instructions to learn
- All single cycle instructions (250 ns) except for program branches and table reads/writes which are two-cycle
- Operating speed:
 - DC 16 MHz clock input
- DC 250 ns instruction cycle
- 8 x 8 Single-Cycle Hardware Multiplier
- Interrupt capability
- 16 level deep hardware stack
- Direct, indirect, and relative addressing modes
- Internal/external program memory execution, Capable of addressing 64K x 16 program memory space

Device	Men	nory
Device	Program (x16)	Data (x8)
PIC17LC752	8K	678
PIC17LC756A	16K	902

Peripheral Features:

- Up to 50 I/O pins with individual direction control
- 10-bit, multi-channel analog-to-digital converter
- High current sink/source for direct LED drive
- · Four capture input pins
- Captures are 16-bit, max resolution 250 ns
- Three PWM outputs (resolution is 1- to 10-bits)
- TMR0: 16-bit timer/counter with 8-bit programmable prescaler
- TMR1: 8-bit timer/counter
- TMR2: 8-bit timer/counter
- TMR3: 16-bit timer/counter
- Two Universal Synchronous Asynchronous Receiver Transmitters (USART/SCI) with Independent baud rate generators
- Master Synchronous Serial Port (MSSP) with SPI™ and I²C™ modes (including I²C master mode)

Special Microcontroller Features:

- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Brown-out Reset
- · Code-protection
- · Power saving SLEEP mode
- · Selectable oscillator options

CMOS Technology:

- Low-power, high-speed CMOS EPROM technology
- Fully static design
- Wide operating voltage range (3.0V to 5.5V)
- Commercial and Industrial temperature ranges
- Low-power consumption
 - < 5 mA @ 5V, 4 MHz
 - 100 μA typical @ 4.5V, 32 kHz
 - < 1 μA typical standby current @ 5V

Table of Contents

1.0	Overview	3
2.0	Development Support	5
3.0	Electrical Characteristics	9
	DC and AC Characteristics	
	Packaging Information	
	ne Support	
Reade	r Response	42
Produ	ct Identification System	43

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

1.0 OVERVIEW

This data sheet covers the PIC17LC752-16/PTL16 and PIC17LC756A-16/PTL16 devices. The functional characteristics of these devices are identical to the PIC17LC752A/756A devices. For electrical specifications, see the electrical specifications contained within this document. For all other information about these devices, see the PIC17C7XX data sheet (DS30289).

Feature	es	PIC17C752	PIC17LC752-16/PTL16	PIC17C756A	PIC17LC756A-16/PTL16	PIC17C762	PIC17C766
Maximum Freque of Operation	ncy	33 MHz	16 MHz	33 MHz	16 MHz	33 MHz	33 MHz
Operating Voltage	e Range	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V
Program	(EPROM)	8K	8K	16K	16K	8K	16K
Memory (x16)	(ROM)	—	—	—	_	_	_
Data Memory (by	tes)	678	678	902	902	678	902
Hardware Multipli	er (8 x 8)	Yes	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit pos	stscaler)	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Capture inputs (1	6-bit)	4	4	4	4	4	4
PWM outputs (up	to 10-bit)	3	3	3	3	3	3
USART/SCI		2	2	2	2	2	2
A/D channels (10	-bit)	12	12	12	12	16	16
SSP (SPI/I ² C w/\ mode)	laster	Yes	Yes	Yes	Yes	Yes	Yes
Power-on Reset		Yes	Yes	Yes	Yes	Yes	Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes
External Interrupt	S	Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		18	18	18	18	18	18
Code Protect		Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset		Yes	Yes	Yes	Yes	Yes	Yes
In-circuit Serial P	rogramming	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins		50	50	50	50	66	66
I/O High Current	Source	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA
Capability	Sink	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾
Package Types		68-pin LCC 68-pin TQFP	64-pin TQFP	68-pin LCC 68-pin TQFP	64-pin TQFP	80-pin QFP 84-pin PLCC	80-pin QFF 84-pin PLC

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

TABLE 1-1:

PIC17C7XX FAMILY OF DEVICES

2.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[™] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - PICDEM-17

2.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:

- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- Customizable tool bar and key mapping
- A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

2.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PICmicro MCU's. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

2.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

2.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

MPLIB is a librarian for pre-compiled code to be used with MPLINK. When a routine from a library is called from another source file, only the modules that contains that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. MPLIB manages the creation and modification of library files.

MPLINK features include:

- MPLINK works with MPASM and MPLAB-C17 and MPLAB-C18.
- MPLINK allows all memory areas to be defined as sections to provide link-time flexibility.

MPLIB features include:

- MPLIB makes linking easier because single libraries can be included instead of many smaller files.
- MPLIB helps keep code maintainable by grouping related modules together.
- MPLIB commands allow libraries to be created and modules to be added, listed, replaced, deleted, or extracted.

2.5 MPLAB-SIM Software Simulator

The MPLAB-SIM Software Simulator allows code development in a PC host environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file or user-defined key press to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPLAB-C18 and MPASM. The Software Simulator offers the flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

2.6 <u>MPLAB-ICE High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of MPLAB-ICE is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support new PICmicro microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows 3.x/95/98 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE 2000 is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems use the same processor modules and will operate across the full operating speed range of the PICmicro MCU.

2.7 PICMASTER/PICMASTER CE

The PICMASTER system from Microchip Technology is a full-featured, professional quality emulator system. This flexible in-circuit emulator provides a high-quality, universal platform for emulating Microchip 8-bit PICmicro microcontrollers (MCUs). PICMASTER systems are sold worldwide, with a CE compliant model available for European Union (EU) countries.

2.8 <u>ICEPIC</u>

ICEPIC is a low-cost in-circuit emulation solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X, and PIC16CXXX families of 8-bit one-timeprogrammable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules or daughter boards. The emulator is capable of emulating without target application circuitry being present.

2.9 PRO MATE II Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allow it to verify programmed memory at VDD min. and VDD max. for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode the PRO MATE II can read, verify or program PICmicro devices. It can also set code-protect bits in this mode.

2.10 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

PICSTART Plus supports all PICmicro devices with up to 40 pins. Larger pin count devices such as the PIC16C92X, and PIC17C76X may be supported with an adapter socket. PICSTART Plus is CE compliant.

2.11 PICDEM-17

The PICDEM-17 is an evaluation board that demonstrates the capabilities of several Microchip microconincluding PIC17C752, trollers. PIC17C756, PIC17C762, and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included, and the user may erase it and program it with the other sample programs using the PRO MATE II or PICSTART Plus device programmers and easily debug and test the sample code. In addition, PICDEM-17 supports down-loading of programs to and executing out of external FLASH memory on board. The PICDEM-17 is also usable with the MPLAB-ICE or PICMASTER emulator, and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

lent	"	0‡	ວ	Э	()	94	3	2:	ວ	8	6		2	(:	¢			L
MPLAB TM Integrated Development Environment MPLAB TM C17 Compiler	PIC120	PIC1	PIC16	PIC16	PIC160	PIC16	PIC16	PIC16C	PIC16	PIC16F	PIC16C	PIC170	9719I9	PIC18C	83CX 52CX 54CX	кхээн	МСКЕХ	MCP25
	~	~	>	>	>	>	>	>	>	>	~	~	^	~				
												~	>					
MPLAB ^{IM} C18 Compiler														>				
MPASM/MPLINK	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB TM -ICE	>	>	>	>	>	** `	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	>	>	>	>	>		>	>	>		>	>	>					
In-Circuit Emulator	>		>	>	>	L	>	>	>		>							
MPLAB-ICD In-Circuit Debugger				*>			*>			>								
PICSTART®Plus Low-Cost Universal Dev. Kit	>	>	>	>	>	**`	~	`	>	>	`	~	~	~				
ସେମ୍ବର MATE® I Universal Programmer	>	>	>	>	>	** ⁄^	>	>	>	>	>	~	^	~	>	>		
simice ~	~		>	ļ	ļ			<u> </u>										
PICDEM-1			>	ļ	>		+	<u> </u>	>			~						
PICDEM-2				↓ †			⁺,							~				
PICDEM-3											~							
PICDEM-14A		~																
PICDEM-17													1					
KEELoq® Evaluation Kit																~		
KEELoo Transponder Kit																~		
microlD™ Programmer's Kit																	~	
125 kHz microID Developer's Kit																	1	
125 kHz Anticollision microID Developer's Kit																	>	
13.56 MHz Anticollision microID Developer's Kit																	~	
MCP2510 CAN Developer's Kit				<u> </u>	<u> </u>													>

DEVELOPMENT TOOLS FROM MICROCHIP TABLE 2-1:

[†] Development tool is available on select devices.

3.0 PIC17LC75X-16/PTL16 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	-55°C to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA2 and RA3 with respect to Vss	
Voltage on all other pins with respect to Vss0.3	3, / t o VDD + 0.3V
Total power dissipation (Note 1)	
Maximum current out of Vss pin(s) - total (@ 70°C)	
Maximum current into VDD pin(s) - total (@ 70°C)	500 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	60 mA
Maximum output current sourced by any $1/0$ pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (sombined)	100 mA
Maximum current sunk by PORTF and PORTG (combined)	150 mA
Maximum current sourced by PORTF and PORTG (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis $= \sqrt{DR} \times \{IDD - \Sigma IOH\} + \Sigma \{(VDD-VOH) \times IOH\}$	i + Σ (Vol x Iol)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

CAUTION: ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Although the PIC17LC75X-16/PTL16 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

3.1	DC CHARACTERISTICS:	PIC17LC75X-16/PTL16 (Commercial)

DC CHA	RACTERIS	TICS	Standard Operating te	•			ss otherwise stated) ≤ +70°C for commercial
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	3.0	-	5.5	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	-	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	-	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure proper operation	0.010 *	-	-	V/ms	See Section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	K	
D006	VPORTP	Power-on Reset trip point	-	2.2		\W	VØD = VPORTP
D010 D011 D014	IDD	Supply Current (Note 2)	- - - <	3 3 85	6 * 6 150	mA mA µA	Fosc = 4 MHz (Note 4) Fosc = 16 MHz, VDD = 3V Fosc = 32 kHz, (EC osc configuration)
D021	IPD	Power-down Current (Note 3)		×1	5	μΑ	VDD = 3.0V, WDT disabled
		Module Differential Current					
D023	∆lbor	BOR circuitry	\searrow	150	300	μΑ	VDD = 4.5V, BODEN enabled
D024	∆IWDT	Watchdog Timer	\searrow	10	35	μΑ	Vdd = 5.5V
D026	∆IAD	A/D converter	-	1	_	μΑ	VDD = 5.5V, A/D not convert- ing

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5%, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which Voo can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC/1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT disabled.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered. For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: VDD / (2 • R).

For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL \bullet VDD) \bullet f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

3.2 DC CHARACTERISTICS: PIC17LC75X-16/PTL16 (Commercial)

DC CHAF	RACTER	RISTICS	Operating te	emperatur oltage VDI	e 0°C D range as	≤ TA ≤ descr	ess otherwise stated) +70°C for commercial ibed in Section 3.1 of the
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	VIL	Input Low Voltage I/O ports					
D030		with TTL buffer (Note 6)	Vss Vss		0.8 0.2VDD	V V	$4.5V \le VDD \le 5.5V$ $3.0V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer RA2, RA3 All others	Vss Vss	-	0.3Vdd 0.2Vdd	V V	I ² C compliant
D032 D033		MCLR, OSC1 (in EC and RC mode) OSC1 (in XT, and LF mode)	Vss –	- 0.5Vdd	0.2Vdd -	V V	Note1
		Input High Voltage					
D040	Viн	I/O ports with TTL buffer (Note 6)	2.0 1 + 0.2VDD	-	Vdd Vdd	TX X	$4.5V \le VD \le 5.5V$ $3.0V \le VD \le 4.5V$
D041		with Schmitt Trigger buffer RA2, RA3 All others	0.7Vdd 0.8Vdd	- -⁄~	VDD VDR		1 ² C compliant
D042 D043		MCLR OSC1 (XT, and LF mode)	0.8Vdd -	- 0.5VDD	ABD -	\sum_{v}	Note1
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15VDØ*			V	
D060	lıL.	Input Leakage Current (Notes 2, 3) I/O ports (except RA2, RA3)			±1	μΑ	Vss ≤ VPIN ≤ VDD, I/O Pin (in digital mode) at hi-impedance PORTB weak pull-ups disabled
D061		MCLR, TEST	\searrow	-	±2	μΑ	VPIN = Vss or VPIN = VDD
D062		RA2, RA3	$\langle \rangle$		±2	μA	$VSS \leq VRA2$, $VRA3 \leq 12V$
D063		OSC1 (EC, RC modes) OSC1 (XT, LF modes)	-	_	±1	μΑ	$VSS \le VPIN \le VDD$
D063B D064		MCLR, TEST	_	_	Vpin 25	μΑ μΑ	RF ≥ 1 MΩ VMCLR = VPP = 12V (when not programming)
D070	Ipurb	PORTB weak pull-up current	60	200	400	μΑ	$VPIN = VSS, \overline{RBPU} = 0$ 4.5V \leq VDD \leq 5.5V

These parameters are characterized but not tested.

+ Date in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17C7XX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specification (Literature number DS30274).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

DC CHAF	RACTER	RISTICS	Operating te	emperature oltage VDI	e 0°C D range as	≤ TA ≤ descri	ess otherwise stated) +70°C for commercial ibed in Section 3.1 of the
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D080	Vol	Output Low Voltage I/O ports	_	_	0.1Vdd 0.1Vdd *		IOL = VDD/1.250 mA $4.5V \le VDD \le 5.5V$ VDD = 3.0V
D081		with TTL buffer	_	_	0.1000		OD = 3.0V IOL = 6 mA, VDD = 4.5V Note 6
D082		RA2 and RA3	_ _ _		3.0 0.4 0.6		IOL = 60.0 mA , VDD = 5.5 V IOL = 60.0 mA , VDD = 2.5 V IOL = 60.0 mA , VDD = 4.5 V
D083 D084		OSC2/CLKOUT (RC and EC osc modes)		_	0.4 0.1Vdd *	v/	$I_{OL} = 1 \text{ mA}, \text{ VDD} = 4.5 \text{ V}$ $I_{OL} = \text{ VDD/S} \text{ mA}$ $I_{PIC} \frac{17}{L} \text{ C} \frac{75}{2} \frac{16}{PTL16} \text{ only}$
D090	Vон	Output High Voltage (Note 3) I/O ports (except RA2 and RA3)	0.9Vdd 0.9Vdd *	_	$\overline{\gamma}$		IOH = -VDD/2.5 mA 4.5V \leq VDD \leq 5.5V VDD $=$ 3.0V
D091		with TTL buffer	2.4	- <		V	урд = 3.0V Іон = -6.0 mA, Vpd = 4.5V Note 6
D093 D094		OSC2/CLKOUT (RC and EC osc modes)	2.4 0.9VDD *			V V	IOH = -5 mA, VDD = 4.5V IOH = -VDD/5 mA (PIC17LC75X-16/PTL16 only)
D150	Vod	Open Drain High Voltage		-	8.5	V	RA2 and RA3 pins only pulled-up to externally applied voltage
D100	Cosc2	Capacitive Loading Specs on Output Pins OSC2/CLKOUT pin		-	25‡	pF	In EC or RC osc modes when OSC2 pin is outputting CLK- OUT. External clock is used to drive OSC1.
D101	Сю	All I/O pins and OSC2 (in RC mode)	- \	_	50‡	pF	
D102	CAD	System Interface Bus (PORTC, PORTO and PORTE) rameters are characterized but not tes	-	-	50 ‡	рF	In microprocessor or extended microcontroller mode

These parameters are on aracterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

These parameters are for design guidance only and are not tested, nor characterized. ±

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17C7XX devices be driven with external clock in RC mode.

The leakage corrent on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent 2; normal operating conditions. Higher leakage current may be measured at different input voltages.

3:< Negative current is defined as current sourced by the pin.

These specifications are for the programming of the on-chip program memory EPROM through the use of the table write 4: instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specification (Literature number DS30274).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

DC CHAR	ACTERIS	STICS	Operating t	emperatu /oltage Vt	ire -40°(DD range a	$C \le TA$	nless otherwise stated) ≤ +40°C cribed in Section 3.1 of the
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Internal Program Memory Pro- gramming Specs (Note 4)					
D110	VPP	Voltage on MCLR/VPP pin	12.75	-	13.25	V	Note 5
D111	Vddp	Supply voltage during programming	4.75	5.0	5.25	V	$\langle \rangle$
D112	IPP	Current into MCLR/VPP pin	_	25 ‡	50 ‡	mA	
D113	IDDP	Supply current during programming	-	-	30 ‡	mA	
D114	Tprog	Programming pulse width	100	-	1000	μs	Terminated via internal/external interrupt or a reset

These parameters are characterized but not tested.

t

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17C7XX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program nemory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specification (Literature number DS30274).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: Internal Program Memory Programming Specs:

When using the Table Write for internal programming, the device temperature must be less than 40°C. For In-Circuit Serial Programming (ICSP^{TN}), refer to the device programming specification.

3.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	т	Time
Lowercas	se symbols (pp) and their meanings:		
рр			
ad	Address/Data	ost	Oscillator Start-Up Timer
al	ALE	pwrt	Power-Up Timer
сс	Capture1 and Capture2	rb	PORTB
ck	CLKOUT or clock	rd	RD
dt	Data in	rw	
in	INT pin	t0	ТОСКІ
io	I/O port	t123	TCLK12 and TCLK3
mc	MCLR	wdt	Watchdog Timer
oe	<u>OE</u>	wr	WR
os	OSC1	\bigcirc	
Uppercas	se symbols and their meanings?		
S		>	
D	Driven	L	Low
E	Edge	Р	Period
F	Fall	R	Rise
н	High	V	Valid
I	Invalid (Hi-impedance)	Z	Hi-impedance

FIGURE 3-2: PARAMETER MEASUREMENT INFORMATION

All timings are measured between high and low measurement points as indicated in the figures below.

3.4 Timing Diagrams and Specifications

FIGURE 3-3: EXTERNAL CLOCK TIMING

TABLE 3-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency (Note 1)	DC		16	MHz	EC osc mode
		Oscillator Frequency (Note 1)	DC 2 DC		4 16 2	MHz MHz MHz	RC osc mode XT osc mode LF osc mode
1	Tosc	External CLKIN Period (Note 1)	62.5	_	—	ns	EC osc mode
		Oscillator Period (Note 1)	250 62.5 500		 1,000 	ns ns ns	RC osc mode XT osc mode LF osc mode
2	Тсү	Instruction Cycle Time (Note 1)	121.2	4/Fosc	DC	ns	
3	TosL, TosH	Clock in (OSC1) high or low time	10‡	_	_	ns	EC oscillator
4	TosR, TosF	Clock in (OSC1) rise or fall time	—		5‡	ns	EC oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 3-4: CLKOUT AND I/O TIMING

TABLE 3-2: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Typ‡	Max	Units	Conditions
10	TosL2ckL	OSC1↓ to CLKOUT↓	$\overline{)}$	15 ‡	30 ‡	ns	Note 1
11	TosL2ckH	OSC1↓ to CLKOUT↑	$V/ \neq >$	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time	$/// \neq \checkmark$	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time	\mathbb{Z}/\mathbb{Z}	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT ↑ to Port out valid	<u> </u>	—	0.5TCY + 20 ‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT	✓0.25Tcy + 25 ‡	—	_	ns	Note 1
16	TckH2iol	Port in hold after CLKOUT	0 ‡		—	ns	Note 1
17	TosL2ioV	OSC1↓ (Q1 cycle) to Port out valid	—		100 ‡	ns	
18	TosL2iol	OSC1↓ (Q2 cycle) to Port/input invalid (I/O in hold time)	0 ‡	_	_	ns	
19	TioV20sL	Port input valid tø OSC1↓ (I/፬ in setup time)	30 ‡	—	_	ns	
20	TióR	Port output rise time	—	10‡	35 ‡	ns	
21	TioF	Port output fall time	—	10 ‡	35 ‡	ns	
22 / /	TjnHL	INT pin high or low time	25 *	—	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25 *	—		ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where CLKOUT output is 4 x Tosc.

RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, **TABLE 3-3:** AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100 *	_	_	ns	VDD = 5V
31	Twdt	Watchdog Timer Time-out Period (Postscale = 1)	5 *	12	25 *	ms	VDD = 5V
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc§	_	ms	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	40 *	96	200 *	ms	VDD = 5V
34	Tioz	MCLR to KO M-impedance	100 ‡	_	—	ns	Depends on pin load
35	TmeL2adl	MCLR to System Interface bus (AD15:AD0>) invalid	—	—	120 *	ns	
36	TBOR	Brown-out Reset Pulse Width (low)	100 *	—	—	ns	$3.9V \leq V\text{DD} \leq 4.2V$

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

‡ § These parameters are for design guidance only and are not tested, nor characterized.

This specification ensured by design.

FIGURE 3-6: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 3-4: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	—	—	ns	$\langle \rangle$
			With Prescaler	10*	_	$ \neq $	ns	Ľ ř
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	—	$\left \right\rangle$	ns	$\overline{)}$
			With Prescaler	10*	—	_/	ns	
42	Tt0P	T0CKI Period		GREATER OF:	$\gamma >$		ns	N = prescale value
				20 NS OR <u>TCY + 40 §</u> N	$\backslash \uparrow$		\succ	(1, 2, 4,, 256)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 3-7: TIMER1, TIMER2, AND TIMER3 EXTERNAL CLOCK TIMINGS

TABLE 3-5: (IMER1, TIMER2, AND TIMER3 EXTERNAL CLOCK REQUIREMENTS

	ram Io.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
45	\langle	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	_	_	ns	
46		Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	_	—	ns	
47		Tth23P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N	_	_		N = prescale value $(1, 2, 4, 8)$
48		TckE2tmrI	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 3-8: CAPTURE TIMINGS

TABLE 3-6:CAPTURE REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture pin input low time	10 *	— `		/ns~	\searrow
51	TccH	Capture pin input high time	10 *		$ \neq $	ns	
52	TccP	Capture pin input period	2Tcy § N	VV		ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 3-9: PWM TIMINGS

TABLE 3-7: PWM REQUIREMENTS

Param No.	Sym Characteristic	Min	Тур†	Max	Units	Conditions
53	TccR PWM pin output rise time	_	10 *	35 *	ns	
54	TceF PWM pin output fail time	—	10 *	35 *	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ / This specification ensured by design.

FIGURE 3-10: SPI MASTER MODE TIMING (CKE = 0)

TABLE 3-8: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		Тсү *	—		ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30 *	—	_	ns	
71A		(slave mode)	Single Byte	40	—		ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30 *	_	_	ns	
72A		(slave mode)	Single Byte	40	_	—	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to	Setup time of SDI data input to SCK edge		—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the of Byte2	1st clock edge	1.5Tcy + 40 *	-	—	ns	Note 1
74	TscH2diL, TscL2diL	Hoto time of SDI data input to S	CK edge	100 *	-	—	ns	
75	TdoR	SDO data output rise time		—	10	25 *	ns	
76	TdoF	SDO data output fall time		—	10	25 *	ns	
78 <	TscR))	SCK output rise time (master mode)		—	10	25 *	ns	
79	TscF	SCK output fall time (master mo	ode)	—	10	25 *	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCI	K edge	—	-	50 *	ns	

* Characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 3-9: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30 *	_	_	ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25 TCY + 30 *	_	_	ns	
72A		(slave mode)	Single Byte	40	_		ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to	SCK edge	100 *			ns	
73A	Тв2в	Last clock edge of Byte1 to the 1 of Byte2	Last clock edge of Byte1 to the 1st clock edge		-		ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	CK edge	100 *			ns	
75	TdoR	SDO data output rise time		—	10	25 *	ns	
76	Tdoff	SDO data output fall time		_	10	25 *	ns	
78	IscR	SCK output rise time (master me	ode)	_	10	25 *	ns	
79	(FscF)	SCK output fall time (master mo	de)	_	10	25 *	ns	
80	TscH2doV, TseL2doV	SDO data output valid after SCk	K edge	_		50 *	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK e	edge	Tcy *	_		ns	

Characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 3-12: SPI SLAVE MODE TIMING (CKE = 0)

TABLE 3-10: SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		TCY *	—	_	ns	
71	TscH	SCK input high time	Continuous	, ∕1.25Tcy + 30 *	_	—	ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30 *	—	-	ns	
72A		(slave mode)	Single Byte	40	—	-	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SOI data input to SCK edge		100 *	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the of Byte2	Last clock edge of Byte1 to the 1st clock edge of Byte2		-	_	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	CK edge	100 *	-	—	ns	
75	TdoR	SDO data output rise time		_	10	25 *	ns	
76	TdøF	SDO data output fall time		_	10	25 *	ns	
77	TsøH2doZ)	SS to SDO output hi-impedance	ce	10 *	_	50 *	ns	
78	TscR	SCK output rise time (master m	SCK output rise time (master mode)		10	25 *	ns	
79	TscF	SCK output fall time (master mode)		—	10	25 *	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge			_	50 *	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40 *	—	—	ns	

* Characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 3-11: SPI MODE REQUIREMENTS (SLAVE MODE, CKE = 1)

Param. No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input		Tcy *	—	_	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30 *	_	—	ns	
71A		(slave mode)	Single Byte	40	—		ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30 *	—	_	ns	
72A		(slave mode)	Single Byte	40	—	—	ns	Note 1
73A	Тв2в	Last clock edge of Byte1 to the 1 of Byte2	ast clock edge of Byte! to the 1st clock edge		—	—	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	CK edge	100 *	—	—	ns	
75	TdoR	SDO data output rise time		—	10	25 *	ns	
76	TdoF	SDO data output fall time		—	10	25 *	ns	
77	TssH≵doZ	SS ↑ to SDO output hi-impedanc	e	10 *	-	50 *	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		_	—	50 *	ns	
82	√ss L 2doV	SDO data output valid after $\overline{SS} \downarrow$ edge		_	—	50 *	ns	
83	TsoH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40 *	—	_	ns	

Characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 3-14: I²C BUS START/STOP BITS TIMING

Param. No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition Setup time	100 kHz mode 400 kHz mode 1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1) § 2(Tosc)(BRG + 1) § 2(Tosc)(BRG ≠ 1) §	$(\$		ns	Only relevant for repeated START condition
91	THD:STA	START condition Hold time	100 kHz mode 400 kHz mode 1 MHz mode ⁽¹⁾	2(TOSC)(BRG + 1) § 2(TOSC)(BRG + 1) § 2(TOSC)(BRG + 1) § 2(TOSC)(BRG + 1) §	$\left(\neq \right)$		ns	After this period the first clock pulse is generated
92	Tsu:sto	STOP condition Setup time	100 kHz mode 400 kHz mode 1 MHz mode	2(TOSC)(BRG + 1) \$ 2(TOSC)(BRG + 1) \$ 2(TOSC)(BRG + 1) \$	-		ns	
93	THD:STO	STOP condition Hold time	100 kHz mode 400 kHz mode 1 MHz mode ⁽¹⁾	2(TOSC)(BRG + 1) § 2(TOSC)(BRG + 1) § 2(TOSC)(BRG + 1) §	—		ns	

§ This specification ensured by design.

Note 1: Maximum pin capacitance = 10 pF for all I²C pips.

TABLE 3-13 :	I ² C BUS DATA REQUIREMENTS
---------------------	--

Param No.	Sym	Characteristic		Min	Max	Units/	Conditions
100	THIGH	Clock high time	100 kHz mode	2(Tosc)(BRG + 1) §	_	us /	
		Ũ	400 kHz mode	2(Tosc)(BRG + 1) §	_	juş	$\langle \land \rangle$
			1 MHz mode (1)	2(Tosc)(BRG + 1) §	_	μs	\sim
101	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1) §	\rightarrow	μs	
101			400 kHz mode	2(Tosc)(BRG + 1) §	ΎΥ	pts.	\searrow
			1 MHz mode (1)	2(Tosc)(BRG + 1) §	\rightarrow	Jus	∖`
102	TR	SDA and SCL	100 kHz mode	- ^	1000*	√ns∕~	Cb is specified to be from
		rise time	400 kHz mode	20 + 0.1Cb *	∖300 *∖	ns	10 to 400 pF
			1 MHz mode (1)	-~ \	300 *	∖)ns	
103	TF	SDA and SCL	100 kHz mode	<i>+</i> .	300*	Vns	Cb is specified to be from
		fall time	400 kHz mode	20,+0.1Cb	300 *	ns	10 to 400 pF
			1 MHz mode (1)	$\langle + \rangle \rangle$	100*	ns	
90	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1) §	> -	μs	Only relevant for repeated
		setup time	400 kHz mode <	2(Tosc)(BRG + 1) §	-	μs	START condition
			1 MHz mode (1)	2(Tosc)(BRG +)) §	—	μs	
91	THD:STA	START condition	100 kHz prode	2(Tosc)(BRG + 1) §	—	μs	After this period the first
		hold time	400 kHz mode	2(Tosc)(BRG + 1) §	—	μs	clock pulse is generated
			1 MHz mode (1)	2(TOSC)(BRG + 1) §	—	μs	
106	THD:DAT	Data input	100 kHz mode	<u>√</u> 0	—	ns	
		hold time	400 kHz mode	0	0.9 *	μs	
		^	1 MHz mode 🔍	TBD *	—	ns	
107	TSU:DAT	Data input	100 kHz mode	250 *	—	ns	Note 2
-		setup time	400 kHz mode	100 *	—	ns	
			1 MHz møde (1)	TBD *	—	ns	
92	TSU:STO	STOP condition	NO kHz mode	2(Tosc)(BRG + 1) §	—	μs	
-		setup time	400 kHz mode	2(Tosc)(BRG + 1) §	—	μs	
		$ \setminus ^{\vee} / /$	MHz mode (1)	2(Tosc)(BRG + 1) §	—	μs	
109	TAA	Output valid from	100 kHz mode	—	3500 *	ns	
	/r	clock	400 kHz mode		1000 *	ns	
		$l \sim \sim$	1 MHz mode (1)		—	ns	
110	TRUF	Bus free time	100 kHz mode	4.7 ‡	_	μs	Time the bus must be free
		$\langle \rangle$	400 kHz mode	1.3 ‡	—	μs	before a new transmission
	$ \land \land \land$	\mathbf{i}	1 MHz mode (1)	TBD *	—	μs	can start
D(102 €) Cb	Bus capacitive loa	ding	_	400 *	pF	Note 3, 4

* Characterized but not tested.

S This specification ensured by design.

‡ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

- 2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode I²C-bus system, but the parameter # 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line. PARAMETER # 102 + # 107 = 1000 + 250 = 1250 ns (for 100 kHz-mode) before the SCL line is released.
- **3:** C_b is specified to be from 10-400pF. The minimum specifications are characterized with $C_b=10pF$. The rise time spec (t_r) is characterized with $R_p=R_p$ min. The minimum fall time specification (t_f) is characterized with $C_b=10pF$, and $R_p=R_p$ max. These are only valid for fast mode operation (VDD=4.5-5.5V) and where the SPM bit (SSPSTAT<7>)=1.)
- 4: Max specifications for these parameters are valid for falling edge only. Specs are characterized with $R_p=R_p$ min and $C_b=400$ pF for standard mode, 200 pF for fast mode, and 10 pF for 1MHz mode.

FIGURE 3-16: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 3-14: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Condition	ns
120	TckH2dtV	<u>SYNC XMIT (MASTER &</u> <u>SLAVE)</u> Clock high to data out valid	PIC17 LC XXX	_		75 *	ns	\searrow	/
121	TckRF	Clock out rise time and fall time (Master Mode)	PIC17 LC XXX	-		40 *	ns		
122	TdtRF	Data out rise time and fall time	PIC17LCXXX	—	1-1	40 ×	>ns		

Characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 3-17: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 3-15: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC ROV (MAS	TER & SLAVE)					
	\frown	Data setup before	$CK\downarrow$ (DT setup time)	15	—	—	ns	
126	Tckl/2dtl	Data hold after CK	$4\downarrow$ (DT hold time)	15	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 3-18: USART ASYNCHRONOUS MODE START BIT DETECT

TABLE 3-16: USART ASYNCHRONOUS MODE START BIT DETECT REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120A	TdtL2ckH	Time to ensure that the RX pin is sar	mpled low	—	—	₹сүб	ns	
121A	TdtRF	Data rise time and fall time	Receive	—	—	Note 1	ns	\searrow
			Transmit	—	$\langle \rangle$	40 †	ns	
123A	TckH2bckL	Time from RX pin sampled low to first of x16 clock	t rising edge	-		TCYS	'ns	
-	† These para	ameters are for design guidance only a	and are not te	sted.		\langle		

These parameters are for design guidance only and are not tested

§ This specification ensured by design.

Note 1: Schmitt trigger will determine logic level.

FIGURE 3-19: USART ASYNCHRONOUS RECEIVE SAMPLING WAVEFORM

USART ASYNCHRONOUS RECEIVE SAMPLING REQUIREMENTS **TABLE 3-17:**

Param No.	Sym Characteristic	Min	Тур†	Max	Units	Conditions
125A	TdtL2ckH Setup time of RX pin to first data	Tcy §			ns	
126A	TottL2ckH Hold time of RX pin from last data sampled	TCY §	_	_	ns	

SV This specification ensured by design.

Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution	—	—	10	bit	VREF+ = VDD = 5.12V, $VSS \le VAIN \le VREF+$
			—	—	10*	bit	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A02	Eabs	Absolute error		—	< ±1	LSb	$V_{REF+} = V_{DD} = 5.12V,$ $V_{SS} \le V_{AIN} \le V_{REF+}$
			—	_	< ±1*	LSb	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A03	EIL	Integral linearity error		—	< ±1	LSb	VREF+ = VDD = 5.12V, VSS \leq VAIN \leq VREF+
			—	_	< ±1*	LSb	$(VREF+ - VREF+ \ge 3.0V, VREF+ \le VAIN \le VREF+ \le VAIN \le VREF+ $
A04	Edl	Differential linearity error	_	_	< ±1	LSb	VREF+ = VDD = 5.12V, $VSS \le VAIN \le VREF+$
			—	_	< ±1*	LSb	$(VREF+ VREF-) \ge 3.0V,$ VREF- VAIN \le VREF+
A05	Efs	Full scale error	_	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF +$
			—	_	< ±1*,	LSD	$(VREF) \rightarrow VREF \rightarrow 3.0V,$ VREF $\leq VAIN \leq VREF \rightarrow 0$
A06	EOFF	Offset error	—		× ±1	LSD	$V_{REF+} = VDD = 5.12V$, VSS \leq VAIN \leq VREF+
			-		< ±1*	LŠb	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A10	_	Monotonicity	$\left \begin{array}{c} \\ \\ \end{array} \right $	duaran- teed ⁽³⁾	\searrow	_	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage (VREF+ — VREF-)	01X	$\langle \rangle$	-	V	VREF delta when changing voltage levels on VREF inputs.
A20A		\square	3V *	\searrow -	—	V	Absolute minimum electrical spec. To ensure 10-bit accuracy
A21	VREF+	Reference voltage High	Avss/ + 3.0V		AVDD + 0.3V	V	
A22	VREF-	Reference voltage Low	Avss- 0.3V	_	Avdd - 3.0V	V	
A25	VAIN	Analog input voltage	Avss- 0.3V	_	VREF + 0.3V	V	
A30	ZAIN	Recommended impedance of analog voltage source		_	10.0	kΩ	
A40	TAD	AXD conversion current (VDD)	_	90	—	μA	Average current consumption when A/D is on. (Note 1)
A50	IREP	XREF input current (Note 2)	10		1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.
		\checkmark	—	—	10	μA	During A/D conversion cycle

TABLE 3-18: A/D CONVERTER CHARACTERISTICS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RG0 and RG1 pins or AVDD and AVSS pins, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage and has no missing codes.

FIGURE 3-20: A/D CONVERSION TIMING

TABLE 3-19: A/D CONVERSION REQUIREMENTS

Param. No.	Sym	Characteristic	Min	Typt	Мах	Units	Conditions
130	TAD	A/D clock period	3.0	\rightarrow –	_	μs	TOSC based, VREF full range
		\land	3.0*	6.0	9.0 *	μs	A/D RC Mode
131	Тсму	Conversion time (not including acquisition time) (Note 1)		Ι	12 §	Tad	
132	TACQ	Acquisition time	(Note 2)	20	—	μs	
			10 *	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e. 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to ADCLK start	_	Tosc/2 §			If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be exe- cuted.

These parameters are characterized but not tested.

- Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 This specification ensured by design.
- **Note 1:** ADRES register may be read on the following Tcy cycle.
 - See Section 16.1 of the PIC17C7XX Data Sheet (DS30289) for minimum conditions when input voltage has changed more than 1 LSb.

FIGURE 3-21: MEMORY INTERFACE WRITE TIMING

TABLE 3-20: MEMORY INTERFACE WRITE REQUIREMENTS

Param. No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tey - 10*		_	ns	
151	TalL2adl	ALE↓ to address out invalid(address hold time)	0*	> _	—	ns	
152	TadV2wrL	(data setup time)	0.25Tcy - 40*	_	_	ns	
153	TwrH2adl	WR [↑] to data out invalid(data hold time)	\bigtriangledown	0.25Tcy§	_	ns	
154	TwrL	WR pulse width	× –	0.25Tcy§	_	ns	

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- § This specification ensured by design

 \checkmark

FIGURE 3-22: MEMORY INTERFACE READ TIMING

TABLE 3-21: MEMORY INTERFACE READ REQUIREMENTS

Param. No.	Sym	Characteristic	Min 🤇	Typ†	Max	Units	Condi- tions
150	TadV2alL	AD15:AD0 (address) valid to ALE↓ (address setup time)	0.25TCY - 10*		/ _	ns	
151	TalL2adl	ALE \downarrow to address out invalid(address hold time)	5*			ns	
160	TadZ2oeL	AD15:AD0 hi-impedance to $\overline{OE}\downarrow$	Q* \	-	_	ns	
161	ToeH2adD	OE↑ to AD15:AD0 driven	Q.25TCY - 15*	_	—	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	45*	_	_	ns	
163	ToeH2adI	OE [↑] to data in invalid (data hold time)	0*	_	_	ns	
164	TalH	ALE pulse width	—	0.25TCY §		ns	
165	ToeL	OE pulse width	0.5TCY - 35 §	_		ns	
166	TalH2alH	ALE [↑] to ALE [↑] (cycle time)	—	TCY §		ns	
167	Tacc	Address access time		_	0.75Tcy - 45*	ns	
168	Тое	Output enable access time (OE low to Data Valid)	—	_	0.5Tcy - 75*	ns	

These parameters are characterized but not tested.

+ Data in "Typ" column is at \$4, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

NOTES:

4.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Please refer to the PIC17C7XX Data Sheet (DS30289) for the most current graphs and tables.

NOTES:

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Exar	nple
	PIC17C752 -16/PTL16
0	9917017

Legend: MMM	Microchip part number information
XXX	Customer specific information*
YY	Year code (last 2 digits of calendar year)
WW	Week code (week of January 1 is week '01')
NNN	Alphanumeric traceability code
be carrie	ent the full Microchip part number cannot be marked on one line, it will d over to the next line thus limiting the number of available characters mer specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units		INCHES		М	MILLIMETERS*		
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		64			64		
Pitch	р		.020			0.50		
Pins per Side	n1		16			16		
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff	A1	.002	.006	.010	0.05	0.15	0.25	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039			1.00		
Foot Angle	¢	0	3.5	7	0	3.5	7	
Overall Width	E	.463	.472	.482	11.75	12.00	12.25	
Overall Length	D	.463	.472	.482	11.75	12.00	12.25	
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10	
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10	
Lead Thickness	С	.005	.007	.009	0.13	0.18	0.23	
Lead Width	В	.007	.009	.011	0.17	0.22	0.27	
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

*Controlling Parameter

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-085

INDEX

A/D Converter Characteristics	Α
Assembler MPASM Assembler	
MPASM Assembler 5 Development Support 5 E E Electrical Characteristics 9 Absolute Maximum Ratings 9 Capture Timing 21 CLKOUT and I/O Timing 18 External Clock Timing 13 Memory Interface Read Timing 33 Memory Interface Write Timing 19 Timer and Power-up Timer Timing 19 Timer0 Clock Timing 20 Timer1, Timer2 and Timer3 Clock Timing 20 Timer1, Timer2 and Timer3 Clock Timing 28 USART Module Synchronous Receive Timing 28 USART Module Synchronous Transmission Timing 28 USART Module Synchronous Transmission Timing 28 PIC17C7XX 4 M MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams A/D Conversion 31 A/	
D Development Support 5 E Electrical Characteristics Absolute Maximum Ratings 9 Capture Timing 21 CLKOUT and I/O Timing 18 External Clock Timing 17 Memory Interface Read Timing 33 Memory Interface Write Timing 32 Reset, Watchdog Timer, Oscillator Start-up 11 Timer and Power-up Timer Timing 19 Timer0 Clock Timing 20 Timing Parameter Symbology 15 USART Module Synchronous Receive Timing 28 USART Module Synchronous Transmission Timing 28 USART Module Synchronous Transmission Timing 28 USART Module Synchronous Transmission Timing 28 PIC17C7XX 4 M M MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams A/D Conve	
Development Support 5 E E Electrical Characteristics 4 Absolute Maximum Ratings 9 Capture Timing 21 CLKOUT and I/O Timing 11 External Clock Timing 17 Memory Interface Read Timing 33 Memory Interface Read Timing 32 Reset, Watchdog Timer, Oscillator Start-up 19 Timer and Power-up Timer Timing 19 Timer O Clock Timing 20 Timer 1, Timer2 and Timer3 Clock Timing 20 Timing Parameter Symbology 15 USART Module Synchronous Receive Timing 28 Errata 2 F Family of Devices PIC17C7XX 4 M MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing 21 CLKOUT and I/O 18 External Clock	
E Electrical Characteristics Absolute Maximum Ratings 9 Capture Timing 21 CLKOUT and I/O Timing 18 External Clock Timing 17 Memory Interface Read Timing 33 Memory Interface Write Timing 32 Reset, Watchdog Timer, Oscillator Start-up 19 Timer and Power-up Timer Timing 19 Timer O Clock Timing 20 Timer and Power-up Timer Timing 20 Timer 1, Timer2 and Timer3 Clock Timing 20 Timing Parameter Symbology 15 USART Module Synchronous Receive Timing 28 Errata 2 F Family of Devices PIC17C7XX 4 M MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing 21 CLKOUT and I/O 18 External Clock 17	-
P Electrical Characteristics Absolute Maximum Ratings 9 Capture Timing 21 CLKOUT and I/O Timing 18 External Clock Timing 17 Memory Interface Read Timing 32 Reset, Watchdog Timer, Oscillator Start-up 11 Timer and Power-up Timer Timing 19 Timer0 Clock Timing 20 Timer1, Timer2 and Timer3 Clock Timing 20 Timing Parameter Symbology 15 USART Module Synchronous Receive Timing 28 USART Module Synchronous Transmission Timing 28 Errata 2 F Family of Devices PIC17C7XX 4 M MPLAB Integrated Development Environment Software P S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams A/D Conversion 31 Capture Timing 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Read <td></td>	
Absolute Maximum Ratings 9 Capture Timing 21 CLKOUT and I/O Timing 18 External Clock Timing 17 Memory Interface Read Timing 33 Memory Interface Write Timing 32 Reset, Watchdog Timer, Oscillator Start-up 11 Timer and Power-up Timer Timing 19 Timer0 Clock Timing 20 Timer1, Timer2 and Timer3 Clock Timing 20 Timing Parameter Symbology 15 USART Module Synchronous Receive Timing 28 USART Module Synchronous Transmission Timing 28 USART Module Synchronous Transmission Timing 28 Prackaging Information 37 PIC17C7XX 4 M MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 5 Software Simulator (MPLAB-SIM) 6 7 Timing Diagrams A/D Conversion 31 A/D Conversion 31 24 CLKOUT and I/O <t< td=""><td>-</td></t<>	-
Capture Timing	
CLKOUT and I/O Timing. 18 External Clock Timing. 17 Memory Interface Read Timing. 33 Memory Interface Write Timing. 32 Reset, Watchdog Timer, Oscillator Start-up 11 Timer and Power-up Timer Timing. 19 Timer O Clock Timing. 20 Timer 1, Timer2 and Timer3 Clock Timing. 20 Timing Parameter Symbology. 15 USART Module Synchronous Receive Timing. 28 USART Module Synchronous Transmission Timing. 28 Errata 2 F Family of Devices PIC17C7XX. 4 M MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S 5 Software Simulator (MPLAB-SIM) 6 T Timing Diagrams A/D Conversion 31 Capture Timing 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Data 27	
External Clock Timing 17 Memory Interface Read Timing 33 Memory Interface Write Timing 32 Reset, Watchdog Timer, Oscillator Start-up 19 Timer and Power-up Timer Timing 19 Timer0 Clock Timing 20 Timer1, Timer2 and Timer3 Clock Timing 20 Timing Parameter Symbology 15 USART Module Synchronous Receive Timing 28 Errata 2 F Family of Devices PIC17C7XX 4 M MPLAB Integrated Development Environment Software S P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams 31 A/D Conversion 31 21 CLKOUT and I/O 18 22 PWM Timing 21 22 PWM Timing 21 22 PWM Timing 21 22 PWM Timing 21 22	
Memory Interface Read Timing	
Memory Interface Write Timing 32 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing 19 Timer O Clock Timing 20 Timer1, Timer2 and Timer3 Clock Timing 20 Timing Parameter Symbology 15 USART Module Synchronous Receive Timing 28 USART Module Synchronous Transmission Timing 28 USART Module Synchronous Transmission Timing 28 Errata 2 F Family of Devices PIC17C7XX 4 M MPLAB Integrated Development Environment Software MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams A/D Conversion 31 A/D Conversion 31 21 21 CLKOUT and I/O 18 24 27 I ² C Bus Data 27 27 27 12 I ² C Bus Start/Stop bits 26 <td< td=""><td>Memory Interface Read Timing</td></td<>	Memory Interface Read Timing
Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing 19 Timer0 Clock Timing 20 Timer1, Timer2 and Timer3 Clock Timing. 20 Timing Parameter Symbology. 15 USART Module Synchronous Receive Timing. 28 USART Module Synchronous Transmission Timing. 28 Errata 29 F Family of Devices PIC17C7XX. 4 M MPLAB Integrated Development Environment Software 5 P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams A/D Conversion A/D Conversion 11 CLKOUT and I/O 18 External Clock 17 12 C Bus Data	
Timer and Power-up Timer Timing19Timer0 Clock Timing20Timer1, Timer2 and Timer3 Clock Timing20Timing Parameter Symbology15USART Module Synchronous Receive Timing28USART Module Synchronous Transmission Timing28Errata2FFamily of DevicesPIC17C7XXPIC17C7XX4MMPLAB Integrated Development Environment Software5PPackaging Information37PICSTART® Plus Entry Level Development System7PRO MATE® II Universal Programmer6SSoftware Simulator (MPLAB-SIM)6TTiming Diagrams21A/D Conversion31Capture Timing21CLKOUT and I/O18External Clock17I ² C Bus Start/Stop bits26Memory Interface Read33Memory Interface Read33Memory Interface Write32PWM Timing21Reset, Watchdog Timer, Oscillator Start-up11Timer and Power-up Timer19Timer1, Timer2 and Timer3 Clock20USART Module Synchronous Receive28USART Module Synchronous Transmission28VVpD11W11	
Timer1, Timer2 and Timer3 Clock Timing.20Timing Parameter Symbology.15USART Module Synchronous Receive Timing.28USART Module Synchronous Transmission Timing.28Errata2FFamily of Devices PIC17C7XX.4MMMPLAB Integrated Development Environment Software5PPackaging Information37PICSTART® Plus Entry Level Development System7PRO MATE® II Universal Programmer6SSoftware Simulator (MPLAB-SIM)6TTiming Diagrams21A/D Conversion31Capture Timing21CLKOUT and I/O18External Clock17I ² C Bus Start/Stop bits26Memory Interface Read33Memory Interface Read33Memory Interface Write32PWM Timing21Reset, Watchdog Timer, Oscillator Start-up Timer0 Clock20USART Module Synchronous Receive28USART Module Synchronous Receive28USART Module Synchronous Receive28USART Module Synchronous Transmission28VVdd11W11	Timer and Power-up Timer Timing19
Timing Parameter Symbology15USART Module Synchronous Receive Timing28USART Module Synchronous Transmission Timing28Errata2FFFamily of Devices PIC17C7XX4MMMPLAB Integrated Development Environment Software5PPackaging Information37PICSTART® Plus Entry Level Development System7PRO MATE® II Universal Programmer6SSoftware Simulator (MPLAB-SIM)6TTiming Diagrams A/D Conversion31Capture Timing21CLKOUT and I/O18External Clock17I ² C Bus Start/Stop bits26Memory Interface Read33Memory Interface Write32PWM Timing21Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer19TimerO Clock20USART Module Synchronous Receive28USART Module Synchronous Transmission28VVdd11W11	
USART Module Synchronous Receive Timing	
USART Module Synchronous Transmission Timing28 Errata	
Errata	
F Family of Devices PIC17C7XX	
Family of Devices PIC17C7XX	
PIC17C7XX	-
M MPLAB Integrated Development Environment Software	
MPLAB Integrated Development Environment Software	
P Packaging Information 37 PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams 31 A/D Conversion 31 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Data 27 1 ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 11 Timer0 Clock 20 11 W	
Packaging Information 37 PlcSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) Timing Diagrams 4/D Conversion A/D Conversion 31 Capture Timing 21 CLKOUT and I/O 18 External Clock 17 I²C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 11 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V Vdd	
PICSTART® Plus Entry Level Development System 7 PRO MATE® II Universal Programmer 6 S Software Simulator (MPLAB-SIM) 6 T Timing Diagrams 31 A/D Conversion 31 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Data 27 1 ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 11 Timer0 Clock 20 11 W	-
PRO MATE® II Universal Programmer 6 Software Simulator (MPLAB-SIM) 6 T 7 Timing Diagrams 31 A/D Conversion 31 Capture Timing 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Data 27 I ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 1 Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD 11	PICSTART® Plus Entry Level Development System 7
S Software Simulator (MPLAB-SIM)	
Software Simulator (MPLAB-SIM)	-
T Timing Diagrams A/D Conversion 31 Capture Timing 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Data 27 I ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD 11	•
A/D Conversion 31 Capture Timing 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Data 27 I ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 1 Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD 11	
A/D Conversion 31 Capture Timing 21 CLKOUT and I/O 18 External Clock 17 I ² C Bus Data 27 I ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 1 Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD 11	- Timing Diagrams
Capture Timing21CLKOUT and I/O18External Clock17I²C Bus Data27I²C Bus Start/Stop bits26Memory Interface Read33Memory Interface Write32PWM Timing21Reset, Watchdog Timer, Oscillator Start-upTimer and Power-up Timer19Timer0 Clock20Timer1, Timer2 and Timer3 Clock20USART Module Synchronous Receive28USART Module Synchronous Transmission28VVDD11W11	5 5
External Clock17I²C Bus Data27I²C Bus Start/Stop bits26Memory Interface Read33Memory Interface Write32PWM Timing21Reset, Watchdog Timer, Oscillator Start-upTimer and Power-up Timer19Timer0 Clock20Timer1, Timer2 and Timer3 Clock20USART Module Synchronous Receive28USART Module Synchronous Transmission28VVDD11W11	
I ² C Bus Data 27 I ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD 11	CLKOUT and I/O18
I ² C Bus Start/Stop bits 26 Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 11 Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD 11 W 11	
Memory Interface Read 33 Memory Interface Write 32 PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 11 Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD 11	
Memory Interface Write	
PWM Timing 21 Reset, Watchdog Timer, Oscillator Start-up 1 Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V 11 W 11	,
Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer	•
Timer and Power-up Timer 19 Timer0 Clock 20 Timer1, Timer2 and Timer3 Clock 20 USART Module Synchronous Receive 28 USART Module Synchronous Transmission 28 V VDD M 11	
Timer0 Clock	
Timer1, Timer2 and Timer3 Clock	
USART Module Synchronous Receive	
USART Module Synchronous Transmission28 V VDD	
V VDD	
VDD	
W	-
WWW, On-Line Support2	
	WWW, On-Line Support2

NOTES:

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-786-7302 for the rest of the world.

981103

Trademarks: The Microchip name, logo, PIC, PICmicro, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. *Flex*ROM, MPLAB and *fuzzy*-LAB are trademarks and SQTP is a service mark of Microchip in the U.S.A.

All other trademarks mentioned herein are the property of their respective companies.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent					
RE:	E: Reader Response						
Fror	om: Name						
	Company						
	City / State / ZIP / Country						
	Telephone: ()	_ FAX: ()					
• •	plication (optional):						
Wou	ould you like a reply?YN						
Dev	evice: PIC17LC75X-16/PTL16 Literature Number	er: DS30176A					
Que	uestions:						
1	What are the best features of this document?						
1.	what are the best leatures of this document:						
2.	. How does this document meet your hardware and software development needs?						
3.	Do you find the organization of this data sheet easy to follow? If not, why?						
4.	. What additions to the data sheet do you think would enhance the structure and subject?						
5.	What deletions from the data sheet could be made	e without affecting the overall usefulness?					
6.	Is there any incorrect or misleading information (w	hat and where)?					
7.	How would you improve this document?						
8	How would you improve our software systems on	nd silicon products?					
0.							
8.	How would you improve our software, systems, an	nd silicon products?					

PIC17LC75X-16/PTL16 Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

Ordering Number	Maximum Frequency	Package	Temperature	Other
PIC17LC756A-16/PTL16	16MHz	64-TQFP	0°C to +70°C	
PIC17LC752-16/PTL16	16MHz	64-TQFP	0°C to +70°C	
PIC17LC756AT-16/PTL16	16MHz	64-TQFP	0°C to +70°C	Tape and Reel
PIC17LC752T-16/PTL16	16MHz	64-TQFP	0°C to +70°C	Tape and Reel

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277

3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75248 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253 ASIA/PACIFIC

Hong Kong Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431 Beijing Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing 100027 PRC Tel: 86-10-85282100 Fax: 86-10-85282104 India Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062 Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934 Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)

Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road

Taipei, Taiwan, ROC

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 **EUROPE**

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Denmark

Microchip Technology Denmark ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

11/15/99

DNV MSC **DNV Certification. Inc** USA The Netherland Accredited by the RvA ANSI * RAB CCRED DIN ISO 9001 / QS-9000 **REGISTERED FIRM**

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro[®] 8-bit MCUs, KEELOQ[®] code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Printed on recycled paper. All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infiningement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No incorpose and no version of the otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.