

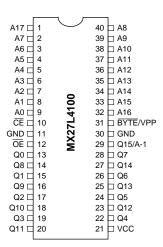
MX27L4100/27L4096

4M-BIT(512K x 8/256K x 16) CMOS EPROM

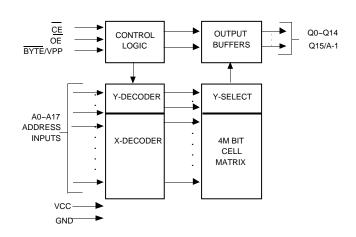
FEATURES

- 256K x 16 organization(MX27L4096, JEDEC pin out)
- 512K x 8 or 256K x 16 organization(MX27L4100, ROM pin out compatible)
- Wide voltage range, 2.7V to 3.6V
- +12.5V programming voltage
- Fast access time: 200/250 ns
- Totally static operation

GENERAL DESCRIPTION

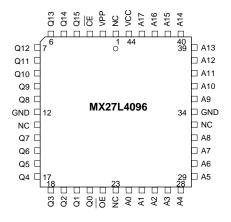

The MX27L4100/4096 is a 4M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized as 256K words by 16 bits per word(MX27L4096), 512K x 8 or 256K x 16(MX27L4100), operates from a single + 3 volt supply, has a static standby mode, and features fast single address location programming. All programming signals are TTL levels, requiring a single pulse. For programming outside from the system, existing EPROM

- Completely TTL compatible
- Operating current: 20mA @3.6V, 5MHz
- Standby current: 50µA
- · Package type:
 - 40 pin ceramic DIP
 - 40 pin plastic DIP
 - 44 pin PLCC
 - 40 pin SOP
 - 40 pin TSOP(I)

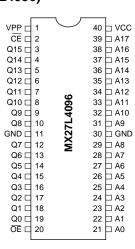

programmers may be used. The MX27L4100/4096 supports a intelligent fast programming algorithm which can result in programming time of less than two minutes.

This EPROM is packaged in industry standard 40 pin dual-in-line packages, 40 lead SOP, and 44 lead PLCC packages.

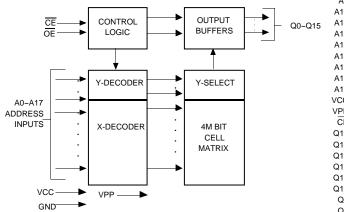
PIN CONFIGURATIONS SOP/CDIP/PDIP(MX27L4100)

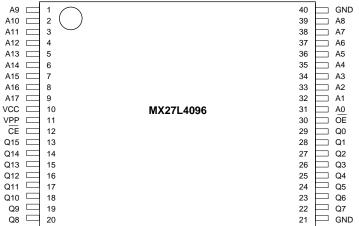


BLOCK DIAGRAM (MX27L4100)



PIN CONFIGURATIONS PLCC(MX27L4096)




PIN CONFIGURATIONS CDIP/PDIP(MX27L4096)

BLOCK DIAGRAM (MX27L4096)

10 x 14mm 40-TSOP(I)

PIN DESCRIPTION(MX27L4100)

SYMBOL	PIN NAME
A0~A17	Address Input
Q0~Q14	Data Input/Output
CE	Chip Enable Input
ŌĒ	Output Enable Input
BYTE/VPP	Word/Byte Selection
	/Program Supply Voltage
Q15/A-1	Q15(Word mode)/LSB addr. (Byte mode)
VCC	Power Supply Pin
GND	Ground Pin

PIN DESCRIPTION(MX27L4096)

SYMBOL	PIN NAME
A0~A17	Address Input
Q0~Q15	Data Input/Output
CE	Chip Enable Input
ŌĒ	Output Enable Input
VPP	Program Supply Voltage
VCC	Power Supply Pin
GND	Ground Pin

TRUTH TABLE OF BYTE FUNCTION(MX27L4100)

BYTE MODE($\overline{BYTE} = GND$)

ĊĒ	ŌE	Q15/A-1	MODE	Q0-Q7	SUPPLY CURRENT	
н	Х	х	Non selected	High Z	Standby(ICC2)	
L	Н	х	Non selected	High Z	Operating(ICC1)	
L	L	A-1 input	Selected	DOUT	Operating(ICC1)	

WORD MODE($\overline{BYTE} = VCC$)

ĈĒ	OE	Q15/A-1	MODE	Q0-Q14	SUPPLY CURRENT	
н	Х	High Z	Non selected	High Z	Standby(ICC2)	
L	н	High Z	Non selected	High Z	Operating(ICC1)	
L	L	DOUT	Selected	DOUT	Operating(ICC1)	

NOTE : X = H or L

FUNCTIONAL DESCRIPTION

THE ERASURE OF THE MX27L4100/4096

The MX27L4100/4096 is erased by exposing the chip to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase a MX27L4100/4096. This dosage can be obtained by exposure to an ultraviolet lamp — wavelength of 2537 Angstroms (Å) — with intensity of 12,000 μ W/cm² for 15 to 20 minutes. The MX27L4100/4096 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the MX27L4100/4096, and similar devices, will be cleared for all bits of their programmed states with light sources having wavelengths shorter than 4000 Å. Although erasure times will be much longer than that with UV sources at 2537Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the MX27L4100/4096 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

THE PROGRAMMING OF THE MX27L4100/4096

When the MX27L4100/4096 is delivered, or it is erased, the chip has all 4M bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX27L4100/4096 through the procedure of programming.

For programming, the data to be programmed is applied with 16 bits in parallel to the data pins.

VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP. When programming an MXIC EPROM, a 0.1uF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.

FAST PROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP = 12.75V is applied, with VCC = 6.25 V and \overline{OE} = VIH (Algorithm is shown in Figure 1). The programming is achieved by applying a single TTL low level 100µs pulse to the \overline{CE} input after addresses and data line are stable. If the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at VCC = VPP = $5V \pm 10\%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27L4100/4096's in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for \overrightarrow{CE} and \overrightarrow{OE} , all like inputs of the parallel MX27L4100/4096 may be common. A TTLlow-level program pulse applied to an MX27L4100/4096 CE input with VPP = 12.5 ± 0.5 V will program the MX27L4100/4096. A high-level CE input inhibits the other MX27L4100/4096s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be <u>performed</u> with <u>OE</u> and CE at VIL(for MX27C4096), OE atVIL and CE at VIH(for MX27C4100) and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the MX27L4100/4096.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte 0 (A0 = VIL) represents the manufacturer code, and byte 1 (A0 = VIH), the device identifier code. For the MX27L4100/4096, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (Q15) defined as the parity bit.

READ MODE

The MX27L4100/4096 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from \overline{CE} to output (tCE). Data is available at the outputs tOE after the falling edge of \overline{OE} 's, assuming that \overline{CE} has been LOW and addresses have been stable for at least tACC - t OE.

WORD-WIDE MODE

With $\overrightarrow{\text{BYTE}}/\text{VPP}$ at VCC \pm 0.2V outputs Q0-7 present data $\underline{\text{Q0}}$ -7 and outputs Q8-15 present data Q8-15, after $\overrightarrow{\text{CE}}$ and $\overrightarrow{\text{OE}}$ are appropriately enabled.

BYTE-WIDE MODE

With BYTE/VPP at GND \pm 0.2V, outputs Q8-15 are tristated. If Q15/A-1 = VIH, outputs Q0-7 present data bits Q8-15. If Q15/A-1 = VIL, outputs Q0-7 present data bits Q0-7.

STANDBY MODE

The MX27L4100/4096 has a CMOS standby mode which reduces the maximum VCC current to 50 μ A. It is placed in CMOS standby when CE is at VCC \pm 0.3 V. The MX27L4100/4096 also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA. It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation,
- 2. Assurance that output bus contention will not occur.

It is recommended that \overline{CE} be decoded and used as the primary device-selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 μ F ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be used between VCC and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE (MX27L4096)

	PINS						
MODE	CE	OE	A0	A9	VPP	OUTPUTS	
Read	VIL	VIL	Х	Х	VCC	DOUT	
Output Disable	VIL	VIH	Х	Х	VCC	High Z	
Standby (TTL)	VIH	Х	Х	Х	VCC	High Z	
Standby (CMOS)	VCC±0.3V	Х	Х	Х	VCC	High Z	
Program	VIL	VIH	Х	Х	VPP	DIN	
Program Verify	VIH	VIL	Х	Х	VPP	DOUT	
Program Inhibit	VIH	VIH	Х	Х	VPP	High Z	
Manufacturer Code(3)	VIL	VIL	VIL	VH	VCC	00C2H	
Device Code(3)	VIL	VIL	VIH	VH	VCC	0151H	

NOTES:1. VH = $12.0 \text{ V} \pm 0.5 \text{ V}$

2. X = Either VIH or VIL

3. A1 - A8 = A10 - A17 = VIL(For auto select)

4. See DC Programming Characteristics for VPP voltage during programming.

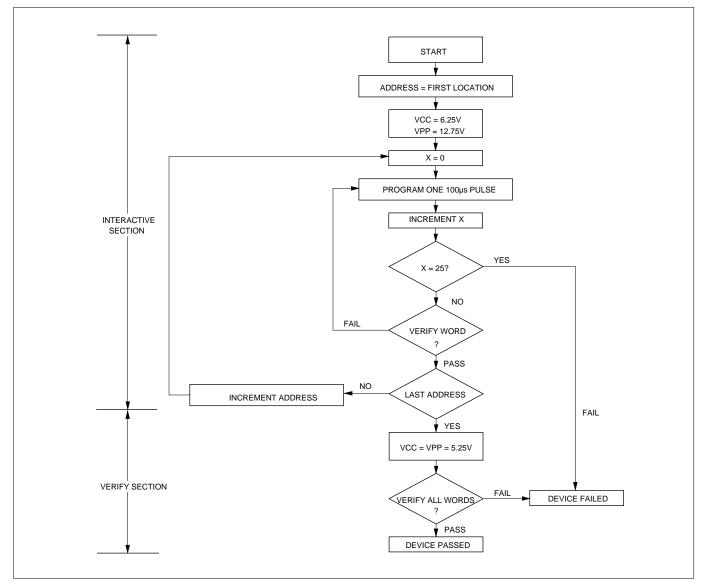
MODE SELECT TABLE (MX27L4100)

						BYTE/		
MODE	CE	OE	A17	A0	Q15/A-1	VPP(5)	Q8-14	Q0-7
Read (Word)	VIL	VIL	Х	х	Q15 Out	VCC	Q8-14 Out	Q0-7 Out
Read (Upper Byte)	VIL	VIL	Х	Х	VIH	GND	High Z	Q8-15 Out
Read (Lower Byte)	VIL	VIL	Х	Х	VIL	GND	High Z	Q0-7 Out
Output Disable	VIL	VIH	Х	Х	High Z	Х	High Z	High Z
Standby	VIH	Х	х	х	High Z	Х	High Z	High Z
Program	VIL	VIH	Х	х	Q15 In	VPP	Q8-14 In	Q0-7 In
Program Verify	VIH	VIL	Х	Х	Q15 Out	VPP	Q8-14 Out	Q0-7 Out
Program Inhibit	VIH	VIH	х	х	High Z	VPP	High Z	High Z
Manufacturer Code(3)	VIL	VIL	VH	VIL	0B	VCC	00H	C2H
Device Code(3)	VIL	VIL	VH	VIH	1B	VCC	38H	00H

NOTES: 1. $VH = 12.0V \pm 0.5V$

2. X can be VIL or VIH.

3. A1 - A8, A10 - A17 = VIL (for auto select)


See DC Programming Characteristics for VPP voltages.
 BYTE/VPP is intended for operation under DC Voltage conditions

only. 6. Manufacture code = 00C2H

Device code = B800H

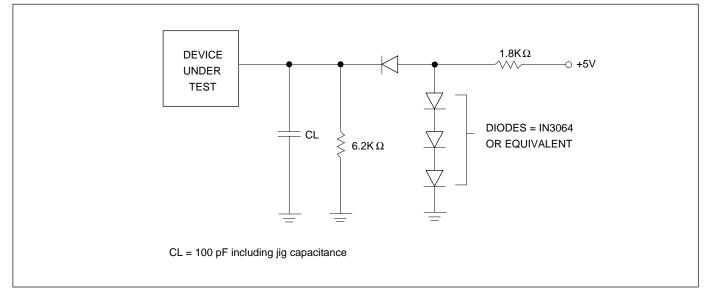
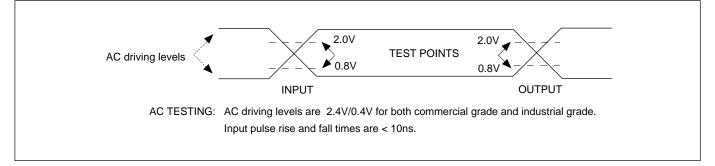


FIGURE 1. FAST PROGRAMMING FLOW CHART



SWITCHING TEST CIRCUITS

SWITCHING TEST WAVEFORMS

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	-40°C to 85°C
Storage Temperature	-65°C to 125°C
Applied Input Voltage	-0.5V to 7.0V
Applied Output Voltage	-0.5V to VCC + 0.5V
VCC to Ground Potential	-0.5V to 7.0V
A9 & VPP	-0.5V to 13.5V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC/AC Operating Conditions for Read Operation

		MX27L4 ²	100/4096	
	1	-20	-25	
Operating Temperature	Commercial	0°C to 70°C	0°C to 70°C	
	Industrial	-40°C to 85°C	-40°C to 85°C	
VCC Power Supply		2.7V to 3.6V	2.7V to 3.6V	

DC CHARACTERISTICS

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	Vcc-0.3		V	IOH = -100μA, Vcc=3.0V
VOL	Output Low Voltage		0.3	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.6	V	
ILI	Input Leakage Current	-10	10	μΑ	VIN = 0 to 3.6V
ILO	Output Leakage Current	-10	10	μΑ	VOUT = 0 to 3.6V
ICC3	VCC Power-Down Current		50	μΑ	$\overline{CE} = VCC \pm 0.3V$
ICC2	VCC Standby Current		0.25	mA	$\overline{CE} = VIH$
ICC1	VCC Active Current		20	mA	CE = VIL, f=5MHz,Iout=0mA,,Vcc=3.0V
IPP	VPP Supply Current Read		10	μA	$\overline{CE} = \overline{OE} = VIL, VPP = VCC$

CAPACITANCE TA = 25°C, f = 1.0 MHz (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN = 0V
COUT	Output Capacitance	8	12	pF	VOUT = 0V
CVPP	VPP Capacitance	18	25	pF	VPP = 0V

AC CHARACTERISTICS

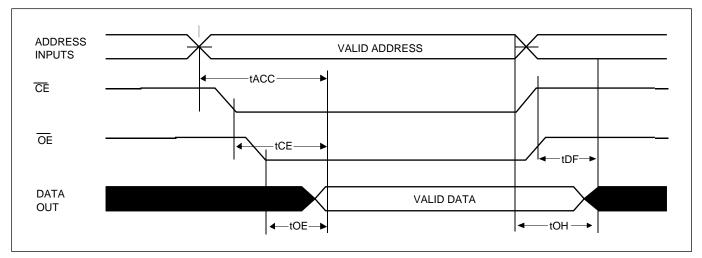
		27L4100/4096-20				27L4100/4096-25	
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		200		250	ns	$\overline{CE} = \overline{OE} = VIL$
tCE	Chip Enable to Output Delay		200		250	ns	OE = VIL
tOE	Output Enable to Output Delay		100		120	ns	$\overline{CE} = VIL$
tDF	OE High to Output Float,	0	60	0	70	ns	
	or CE High to Output Float						
tOH	Output Hold from Address,	0		0		ns	
	CE or OE which ever occurred first						

AC CHARACTERISTICS(Continued)

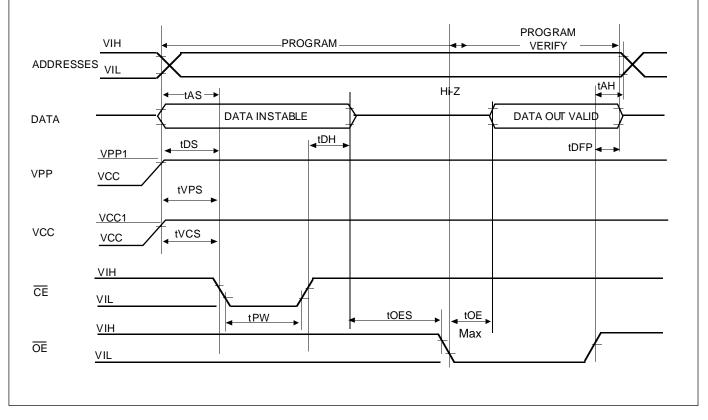
		27L4100-20		27L4100-25			
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX	UNIT	CONDITIONS
tBHA	BYTE Access Time		200		250	ns	
tOHB	BYTE Output Hold Time	0		0		ns	
tBHZ	BYTE Output Delay Time		100		120	ns	
tBLZ	BYTE Output Set Time	20		20		ns	

DC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH = -0.40mA
VOL	Output Low Voltage		0.4	V	IOL = 2.1mA
VIH	Input High Voltage	2.0	VCC + 0.5	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	μΑ	VIN = 0 to 3.6V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program & Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{CE} = VIL, \overline{OE} = VIH$
VCC1	Fast Programming Supply Voltage	6.00	6.50	V	
VPP1	Fast Programming Voltage	12.5	13.0	V	

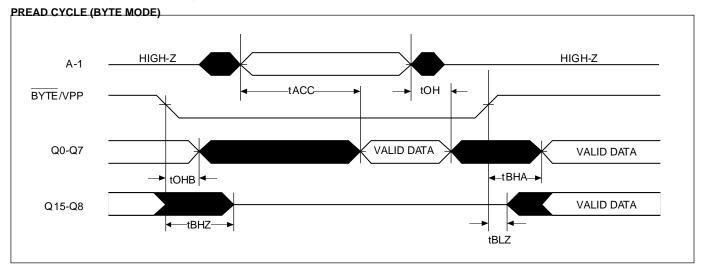

AC PROGRAMMING CHARACTERISTICS TA = $25^{\circ}C \pm 5^{\circ}C$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		μS	
tOES	OE Setup Time	2.0		μS	
tDS	Data Setup Time	2.0		μS	
tAH	Address Hold Time	0		μS	
tDH	Data Hold Time	2.0		μS	
tDFP	Output Enable to Output Float Delay	0	130	nS	
tVPS	VPP Setup Time	2.0		μS	
tPW	PGM Program Pulse Width	95	105	μS	
tVCS	VCC Setup Time	2.0		μS	
tOE	Data valid from OE		150	nS	

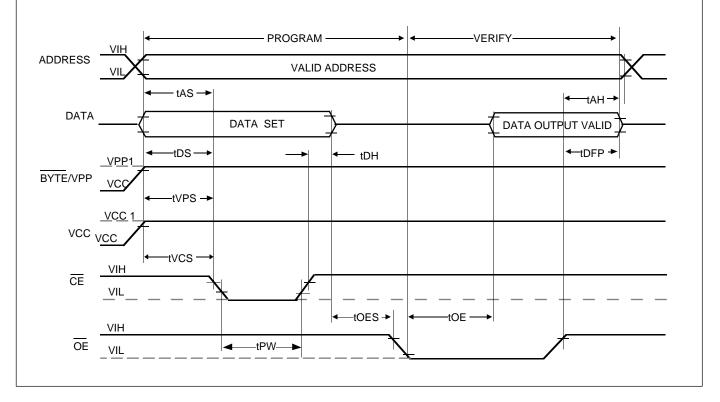


WEFORMS(MX27L4096)

READ CYCLE



FAST PROGRAMMING ALGORITHM WAVEFORM



WAVEFORMS(MX27L4100)

FAST PROGRAMMING ALGORITHM WAVEFORM

ORDERING INFORMATION

CERAMIC PACKAGE

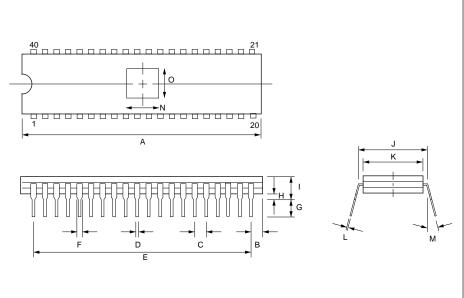
PART NO.	ACCESS TIME	OPERATING	STANDBY CURRENT	OPERATING	PACKAGE
	(ns)	CURRENT MAX.(mA)	CURRENT MAX.(µA)	TEMPERATURE	
MX27L4100DC-20	200	20	50	0°C to 70°C	40 Pin DIP(ROM pin out)
MX27L4100DC-25	250	20	50	0°C to 70°C	40 Pin DIP(ROM pin out)
MX27L4096DC-20	200	20	50	0°C to 70°C	40 Pin DIP(JEDEC pin out)
MX27L4096DC-25	250	20	50	0°C to 70°C	40 Pin DIP(JEDEC pin out)
MX27L4100DI-20	200	20	50	-40°C to 85°C	40 Pin DIP(ROM pin out)
MX27L4100DI-25	250	20	50	-40°C to 85°C	40 Pin DIP(ROM pin out)
MX27L4096DI-20	200	20	50	-40°C to 85°C	40 Pin DIP(JEDEC pin out)
MX27L4096DI-25	250	20	50	-40°C to 85°C	40 Pin DIP(JEDEC pin out)

PLASTIC PACKAGE

PART NO.	ACCESS TIME	OPERATING	STANDBY	OPERATING	PACKAGE
	(ns)	CURRENT MAX.(mA)	CURRENT MAX.(µA)	TEMPERATURE	
MX27L4100PC-20	200	20	50	0°C to 70°C	40 Pin DIP(ROM pin out)
MX27L4100PC-25	250	20	50	0°C to 70°C	40 Pin DIP(ROM pin out)
MX27L4100MC-20	200	20	50	0°C to 70°C	40 Pin SOP(ROM pin out)
MX27L4100MC-25	250	20	50	0°C to 70°C	40 Pin SOP(ROM pin out)
MX27L4096PC-20	200	20	50	0°C to 70°C	40 Pin DIP(JEDEC pin out)
MX27L4096PC-25	250	20	50	0°C to 70°C	40 Pin DIP(JEDEC pin out)
MX27L4096QC-20	200	20	50	0°C to 70°C	44 Pin PLCC
MX27L4096QC-25	250	20	50	0°C to 70°C	44 Pin PLCC
MX27L4100PI-20	200	20	50	-40°C to 85°C	40 Pin DIP(ROM pin out)
MX27L4100PI-25	250	20	50	-40°C to 85°C	40 Pin DIP(ROM pin out)
MX27L4100MI-20	200	20	50	-40°C to 85°C	40 Pin SOP(ROM pin out)
MX27L4100MI-25	250	20	50	-40°C to 85°C	40 Pin SOP(ROM pin out)
MX27L4096PI-20	200	20	50	-40°C to 85°C	40 Pin DIP(JEDEC pin out)
MX27L4096PI-25	250	20	50	-40°C to 85°C	40 Pin DIP(JEDEC pin out)
MX27L4096QI-20	200	20	50	-40°C to 85°C	44 Pin PLCC
MX27L4096QI-25	250	20	50	-40°C to 85°C	44 Pin PLCC

Revision History

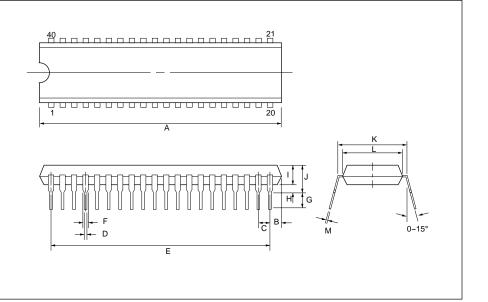
Revision No.	Description	
Date		
2.0	 Revise SWITCHING TEST WAVEFORM, the AC measurement level change from 2.0V/0.6V to 2.0V/0.8V. 	6/05/1997
	2) 40-CDIP package quartz lens change to square shape.	
	3) Eliminate Interactive programming Mode.	
2.1	IPP1 100μA to 10μA	
7/17/19	97	



PACKAGE INFORMATION

40-PIN CERDIP(MSI) WITH WINDOW(600 mil)

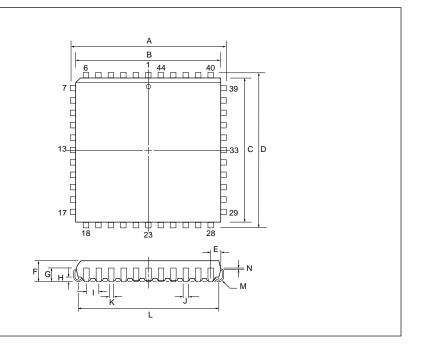
ITE	MILLIMETERS	INCHES
Α	53.34 max.	2.100 max.
В	1.85 ± .30	.073 ± .012
С	2.54 [TP]	.100 [TP]
D	.46 ± .05	.018 ± .002
Е	48.22	1.900
F	1.40 ± .05	.055 ± .005
G	3.43 ± .38	.135 ± .015
Н	.94 ± .41	.037 ± .016
I	5.00	.197
J	15.494 ± 1.27	.610 ± .005
К	14.6558 ± .254	.577 ± .001
L	.25 ± .13	.010 ± .005
М	0~15°	0~15°
Ν	10.668	.420
0	8.128	.320

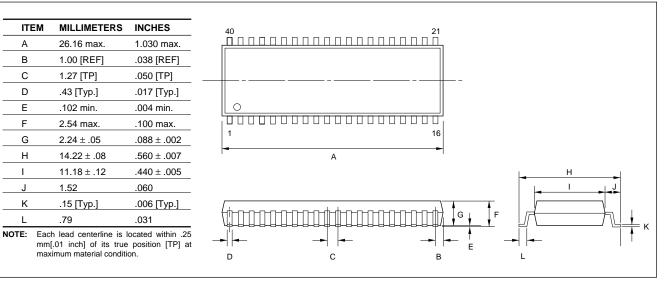

NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at maximum material condition.

40-PIN PLASTIC DIP(600 mil)

ITE	MILLIMETERS	INCHES
Α	52.54 max.	2.070 max.
В	2.03 [REF]	.080 [REF]
С	2.54 [TP]	.100 [TP]
D	.46 [Typ.]	.018 [Typ.]
Е	48.22	1.900
F	1.52 [Typ.]	.060 [Typ.]
G	3.30 ± .25	.130 ± .010
н	.51 [REF]	.020 [REF]
I	3.94 ± .25	.155 ± .010
J	5.33 max.	.210 max.
К	$15.22 \pm .25$.600 ± .010
L	$13.97\pm.25$.550 ± .010
М	.25 [Typ.]	.010 [Typ.]
NOTE:	Each lead centerline is I	ocated within .2

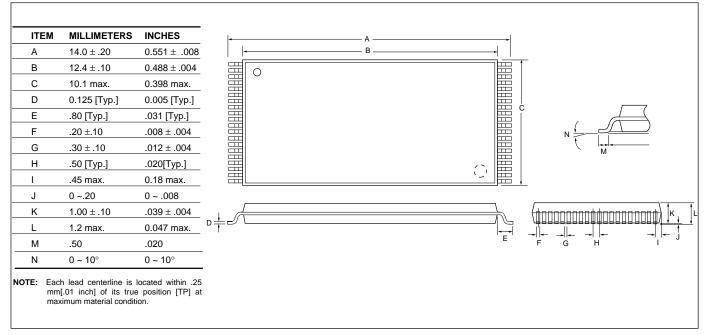
DTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at maximum material condition.




PACKAGE INFORMATION

44-PIN PLASTIC LEADED CHIP CARRIER(PLCC)

ITEM	MILLIMETERS	INCHES
A	17.53 ± .12	.690 ± .005
В	16.59 ± .12	.653 ± .005
С	16.59 ± .12	.653 ± .005
D	17.53 ± .12	.690 ± .005
E	1.95	.077
F	4.70 max.	.185 max
G	2.55 ± .25	.100 ± .010
н	.51 min.	.020 min.
I	1.27 [Typ.]	.050 [Typ.]
J	.71 ± .10	.028 ± .004
К	.46 ± .10	.018 ± .004
L	15.50 ± .51	.610 ± .020
М	.63 R	.025 R
N	.25 [Typ.]	.010 [Typ.]



40-PIN PLASTIC SOP(450 mil)

40-PIN PLASTIC TSOP

MACRONIX INTERNATIONAL CO., LTD

HEADQUARTERS:

TEL : +886-3-578-8888 FAX : +886-3-578-8887

EUROPE OFFICE :

TEL : +32-2-456-8020 FAX : +32-2-456-8021

JAPAN OFFICE :

TEL : +81-44-246-9100 FAX : +81-44-246-9105

SINGAPORE OFFICE :

TEL : +65-747-2309 FAX : +65-748-4090

TAIPEI OFFICE :

TEL:+886-2-2509-3300 FAX:+886-2-2509-2200

MACRONIX AMERICA INC.

TEL : +1-408-453-8088 FAX : +1-408-453-8488

CHICAGO OFFICE :

TEL:+1-847-963-1900 FAX:+1-847-963-1909

http://www.macronix.com