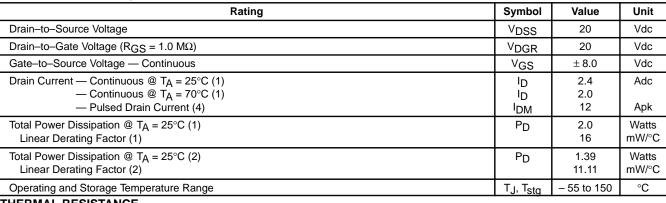
Product Preview


Medium Power Surface Mount Products **TMOS Dual P-Channel with**

Monolithic Zener ESD Protected Gate

EZFETs™ are an advanced series of power MOSFETs which utilize Motorola's High Cell Density TMOS process and contain monolithic back—to—back zener diodes. These zener diodes provide protection against ESD and unexpected transients. These miniature surface mount MOSFETs feature ultra low R_{DS(on)} and true logic level performance. They are capable of withstanding high energy in the avalanche and commutation modes and the drain—to—source diode has a very low reverse recovery time. EZFET devices are designed for use in low voltage, high speed switching applications where power efficiency is important. Typical applications are dc—dc converters, and power management in portable and battery powered products such as computers, printers, cellular and cordless phones. They can also be used for low voltage motor controls in mass storage products such as disk drives and tape drives.

- Zener Protected Gates Provide Electrostatic Discharge Protection
- Ultra Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Logic Level Gate Drive Can Be Driven by Logic ICs
- Miniature SO-8 Surface Mount Package Saves Board Space
- Diode Is Characterized for Use In Bridge Circuits
- Diode Exhibits High Speed, With Soft Recovery
- IDSS Specified at Elevated Temperature
- · Mounting Information for SO-8 Package Provided

MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise noted) *

THERMAL RESISTANCE

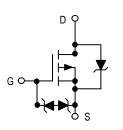
Rating	Symbol	Тур.	Max.	Unit
Thermal Resistance — Junction to Ambient, PCB Mount (1)	$R_{\theta JA}$		62.5	°C/W
— Junction to Ambient, PCB Mount (2)	$R_{\theta JA}$	1	90	

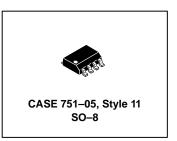
^{*} Negative sign for P-Channel device omitted for clarity

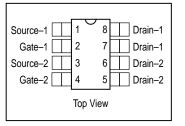
- (1) When mounted on 1 inch square FR-4 or G-10 board (VGS = 10 V, @ 4.5 Seconds)
- (2) When mounted on minimum recommended FR-4 or G-10 board (V_{GS} = 4.5 V, @ Steady State)

DEVICE MARKING

ORDERING INFORMATION

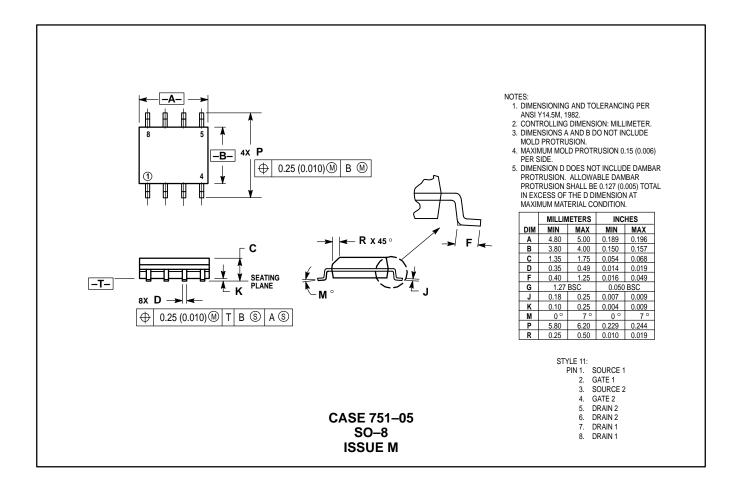

D2P017	Device	Reel Size	Tape Width	Quantity	
DZFUIZ	MMDF2P01ZR2	13″	12 mm embossed tape	2500 units	


This document contains information on a new product. Specifications and information are subject to change without notice. HDTMOS and EZFET are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc. Preferred devices are Motorola recommended choices for future use and best overall value.


MMDF2P01Z

Motorola Preferred Device

DUAL TMOS
POWER MOSFET
2.0 AMPERES
20 VOLTS
RDS(on) = 0.160 OHM


MMDF2P01Z

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) *

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Vol (VGS = 0 Vdc, ID = 0.25 mAdd Temperature Coefficient (Posit	:)	V _{(BR)DSS}	20	— TBD	_	Vdc mV/°C
Zero Gate Voltage Drain Current (VDS = 20 Vdc, VGS = 0 Vdc) (VDS = 20 Vdc, VGS = 0 Vdc, TJ = 125°C)		IDSS	_ _ _	_ _ _	2.0 10	μAdc
Gate–Body Leakage Current (VGS = ± 8.0 Vdc, VpS = 0 Vdc)		IGSS	_	_	5.0	
ON CHARACTERISTICS ⁽¹⁾					•	
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 0.25 mAdc) Threshold Temperature Coeffic		VGS(th)	0.7 —	0.9 TBD	1.1	Vdc mV/°C
Static Drain-to-Source On-Resi ($V_{GS} = 4.5 \text{ Vdc}$, $I_D = 2.4 \text{ Adc}$) ($V_{GS} = 2.7 \text{ Vdc}$, $I_D = 1.2 \text{ Adc}$)		R _{DS(on)}	<u> </u>	120 170	160 190	mΩ
Forward Transconductance (V _{DS} = 2.5 Vdc, I _D = 1.0 Adc)		9FS	3.0	4.0	_	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	_	345	690	pF
Output Capacitance	(V _{DS} = 10 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	_	360	720	
Transfer Capacitance		C _{rss}	_	125	250	
SWITCHING CHARACTERISTICS	s(2)					_
Turn-On Delay Time		t _{d(on)}	_	60	85	ns
Rise Time	$(V_{DS} = 6.0 \text{ Vdc}, I_{D} = 2.4 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc},$	t _r	_	325	455	
Turn-Off Delay Time	$R_{G} = 6.0 \Omega$	td(off)	_	400	560	
Fall Time		tf	_	485	680	
Turn-On Delay Time		t _d (on)	_	120	170	ns
Rise Time	$(V_{DS} = 6.0 \text{ Vdc}, I_{D} = 2.4 \text{ Adc},$	t _r	_	1060	1490	
Turn-Off Delay Time	$V_{GS} = 2.7 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$	t _d (off)	_	225	315	
Fall Time		t _f	_	530	740	
Gate Charge (see figure 8)	(V _{DS} = 10 Vdc, I _D = 2.4 Adc, V _{GS} = 4.5 Vdc)	Q _T	_	10	14	nC
		Q ₁	_	0.65	_	1
		Q ₂	_	4.8	_	
		Q ₃	_	3.3	_	
SOURCE-DRAIN DIODE CHARA	CTERISTICS					
Forward On-Voltage	$(I_S = 2.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 2.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}	<u>-</u> -	1.2 TBD	1.5 —	Vdc
Reverse Recovery Time	$(I_S = 2.4 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, \\ dI_S/dt = 100 \text{ A/}\mu\text{s})$	t _{rr}		500	_	ns
		ta	_	150	_	
		t _b	_	350	_	
Reverse Recovery Storage Char	Q _{RR}	_	2.8	_	μС	

^{*} Negative sign for P–Channel device omitted for clarity
(1) Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
(2) Switching characteristics are independent of operating junction temperature.

PACKAGE DIMENSIONS

MMDF2P01Z

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

