
��������	�
��
���
	�������	��
����
	����
�	��	�

August 2000 Mixed Signal Products

User’s Guide

SLAU048

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

 Trademarks

iii Read This First

Preface

Read This First

About This Manual

This document describes the MSP430-family hardware and software installa-
tion and setup. It explains operation and EPROM programming

How to Use This Manual

This document contains the following chapters:

� Chapter 1 – Installation and Setup

� Chapter 2 – Operation

� Chapter 3 – Hardware

� Chapter 4 – EPROM Programming

� Chapter 5 – Flash Memory

� Appendix A– Schematics

Notational Conventions

This document uses the following conventions.

� Program code and program examples are shown in a special type-
face similar to a typewriter’s.

Here is an example of programming code:

long int VerifyFile(char* lpszFileName, long int
iFileType)

Trademarks

Microsoft Windows is a trademark of Microsoft Corporation.

 Running Title—Attribute Reference

v Chapter Title—Attribute Reference

Contents

1 Installation and Setup 1-1.
1.1 Installing the Software 1-2.
1.2 Installing the Hardware 1-3.

2 Operation 2-1.
2.1 Programming the MSP430 Devices 2-2.

2.1.1 Basic Procedure 2-2.
2.1.2 Description of the MSP-PRGS430 GUI 2-3.
2.1.3 Error Messages 2-5.

2.2 Content of the PRGS430.ini File 2-8.
2.3 Use of a [Project].ini File 2-8.
2.4 Command Line Options 2-9.

2.4.1 General Definitions 2-9.
2.4.2 Return Values / Error Codes in the .ini File 2-11.

2.5 Software / Hardware Layers 2-12.
2.6 PRGS430.DLL—Description 2-13.

2.6.1 Return Values / Error Codes From the PRGS430.DLL 2-22.

3 Hardware 3-1.
3.1 Specifications 3-2.
3.2 Basic Hints 3-2.
3.3 Programming Adapter Target Connector Signals 3-3.
3.4 MSP-PRGS430 Circuit Diagrams 3-5.
3.5 Location of Components, MSP-PRGS430 3-5.
3.6 Interconnection of MSP-PRGS430 to MSP430C313DL/430P313SDL,

MSP430C311SDL/P315SDL, or ’E313FZ 3-6.
3.7 Interconnection of MSP-PRGS430 to MSP430C325PG, C325PM,

MSP430P325PG, or ’P325PM 3-9.
3.8 Interconnection of MSP-PRGS430 to MSP430C336PJM/337PJM or

MSP430E337CQFP 3-12.
3.9 Interconnection of MSP-PRGS430 to MSP430C111DW, MSP430C112DW,

MSP430P112DW, or MSP430E112JL 3-13.
3.10 Interconnection of MSP-PRGS430 to the MSP430F13xPM, MSP430C13xPM,

MSP430F14xPM, or MSP430C14xPM 3-14.

4 EPROM Programming 4-1.
4.1 EPROM Operation 4-2.

4.1.1 Erasure 4-2.
4.1.2 Programming Methods 4-2.
4.1.3 EPROM Control Register EPCTL 4-3.
4.1.4 EPROM Protect 4-4.

4.2 FAST Programming Algorithm 4-4.

Contents

vi

4.3 Programming an EPROM Module Through a Serial Data Link Using the
JTAG Feature 4-5.

4.4 Programming an EPROM Module With Controller’s Software 4-6.
4.4.1 Example 4-6.

4.5 Code 4-8.

5 Flash Memory 5-1.
5.1 Flash Memory Organization 5-2.

5.1.1 Why Is a Flash Memory Module Divided Into Several Segments? 5-5.
5.2 Flash Memory Data Structure and Operation 5-5.

5.2.1 Flash Memory Basic Functions 5-6.
5.2.2 Flash Memory Block Diagram 5-6.
5.2.3 Flash Memory, Basic Operation 5-6.
5.2.4 Flash Memory Status During Code Execution 5-8.
5.2.5 Flash Memory Status During Erase 5-8.
5.2.6 Flash Memory Status During Write (Programming) 5-10.

5.3 Flash Memory Control Registers 5-13.
5.3.1 Flash Memory Control Register FCTL1 5-13.
5.3.2 Flash Memory Control Register FCTL2 5-15.
5.3.3 Flash Memory Control Register FCTL3 5-16.

5.4 Flash Memory, Interrupt, and Security Key Violation 5-18.
5.4.1 Example of an NMI Interrupt Handler 5-20.
5.4.2 Protecting One-Flash Memory-Module Systems From Corruption 5-20.

5.5 Flash Memory Access via JTAG and Software 5-22.
5.5.1 Flash Memory Protection 5-22.
5.5.2 Program Flash Memory Module via Serial Data Link Using

JTAG Feature 5-22.
5.5.3 Programming a Flash Memory Module via Controller Software 5-22.

A Schematics A-1.

 Running Title—Attribute Reference

vii Contents

Figures

1–1 ADT430 Program Icons 1-2.
1–2 Program Adapter 1-3.
2–1 MSP430 Programmer Dialog Box 2-3.
2–2 Communication Error Box 2-6.
2–3 Communication Error Box for Blown Fuse 2-6.
2–4 Erase Check Error Message 2-6.
2–5 Data Error 2-6.
3–1 25-Pin Sub-D at the Programming Adapter 3-3.
3–2 14-Pin Connector at the End of the Interconnect Cable 3-3.
3–3 MSP-PRGS430 Components 3-5.
3–4 MSP-PRGS430 Used to Program the MSP430P313DL Device 3-6.
3–5 MSP-PRGS430 Used to Program the MSP430P315SDL Device 3-7.
3–6 MSP-PRGS430 Used to Program the MSP430E313FZ Device 3-8.
3–7 MSP-PRGS430 Used to Program the MSP430P325PG or

MSP430P325APG Devices 3-9.
3–8 MSP-PRGS430 Used to Program the MSP430P325PM or

MSP430P325APM Devices 3-10.
3–9 MSP-PRGS430 Used to Program the MSP430E325FZ Device 3-11.
3–10 MSP-PRGS430 Used to Program the MSP430x33xPJM

or the MSP430E337CQFP Devices 3-12.
3–11 MSP-PRGS430 Used to Program the MSP430x11xIDW

or the MSP430E112QJL Devices 3-13.
3–12 Interconnection of MSP-PRGS430 to MSP430x13xPM and

MSP430x14xPM 3-14.
4–1 EPROM Control Register EPCTL 4-3.
4–2 EPROM Programming With Serial Data Link 4-5.
4–3 EPROM Programming With Controller’s Software 4-6.
5–1 Interconnection of Flash Memory Module(s) 5-2.
5–2 Flash Memory Module1 Disabled, Module2 Can Execute Code Simultaneously 5-3.
5–3 Flash Memory Module Example 5-4.
5–4 Segments in Flash Memory Module, 4K-Byte Example 5-5.
5–5 Flash Memory Module Block Diagram 5-6.
5–6 Block Diagram of the Timing Generator in the Flash Memory Module 5-7.
5–7 Basic Flash EEPROM Module Timing During the Erase Cycle 5-9.
5–8 Basic Flash Memory Module Timing During Write (Single Byte or Word) Cycle 5-11.
5–9 Basic Flash Memory Module Timing During a Segment-Write Cycle 5-11.
5–10 Basic Flash Memory Module Timing During Segment-Write Cycle 5-19.
5–11 Signal Connections to MSP430 JTAG Pins 5-22.

Running Title—Attribute Reference

viii

Tables

2–1 MSP430 Function Buttons and Descriptions 2-4.
2–2 Error Messages 2-7.
2–3 Command Line Options 2-9.
3–1 MSP430 Hardware Specifications 3-2.
3–2 Target Connector Signal Functions 3-4.
3–3 Programming Adapter Signal Levels 3-4.
5–1 Control Bits for Write or Erase Operation 5-8.
5–2 Conditions to Read Data From Flash Memory 5-12.

1-1

Installation and Setup

This chapter describes the process of installing and programming the hard-
ware and software for the MSP430–PRGS430 programming adapter used
with the MSP430 family of microcontrollers.

Topic Page

1.1 Installing the Software 1-2.

1.2 Installing the Hardware 1-3.

Chapter 1

Installing the Software

1-2 Installation and Setup

1.1 Installing the Software

To install the MSP-PRGS430 software, perform the following steps:

1) Insert the MSP-PRGS430 CD-ROM in the computer’s CD drive. It should
start automatically. A setup routine will check if you have an HTML browser
installed on your computer. The MSP430 start page will then be displayed.
(Alternatively, use a browser to open the file index.htm that is located in
the root directory of the MSP430 CD-ROM. The MSP430 start page will
then be displayed.)

2) Select Software

3) Select Serial Programming Adapter

4) Select Save it to disk. A Save As dialog will be displayed.

5) Use the Save As dialog to save PRGS430_inst.exe to the computer. Note
the directory path to this saved file.

6) Navigate to this saved file (PRGS430_inst.exe), and execute it. A
welcoming message will be displayed.

7) Follow the setup instructions on the screen. The setup program guides
you through the installation process.

8) After you run setup, the MSP430 program icons are displayed. Double-
click the Read me PRGS430 icon, shown in Figure 1–1, to obtain impor-
tant information about the program device hardware and software.

Figure 1–1. ADT430 Program Icons

9) The appropriate program group and icons are added to the Windows pro-
gram manager.

10) To start the programming adapter software, double-click the Program
Device icon in the ADT430 program group.

Installing the Hardware

1-3Installation and Setup

1.2 Installing the Hardware

To install the programming adapter hardware, perform the following steps:

1) Using the 9-pin SUB-D connector, connect the programming adapter to
the serial port (COM1–COM4) of the PC.

2) Connect an external power supply to the programming adapter. The
voltage of the power supply must be between 14 V and 20 V dc and must
provide a minimum of 200 mA of power. The center terminal of the supply
connector at the programming adapter is the plus pole.

3) The red LED on the programming adapter lights if the power supply is
properly connected. If the LED does not light and the power supply is
properly connected, check the F1 fuse on the programming adapter
printed wire board (PWB).

4) The MSP430 devices, in a socket or on a PWB, should be connected to
the programming adapter through the 14-pin cable.

The programming adapter provides the selected supply voltage VCC at pin
14 of the 25-pin SUB-D connector, or at pin 2 of the 14-pin connector to
supply the MSP430 device. The signal name is VCC_MSP.

The voltage at MSP_VCC should be set to the same voltage level of the
external VCC if the device is supplied externally, for example, during
in-circuit programming.

Figure 1–2. Program Adapter

RS232 from PC

Power supply

JTAG connector
for the MSP430

RS232 Out
May be connected to
an EVK

2-1Operation

Operation

This section describes the programming procedure for MSP430 devices and
the error messages you may encounter during the procedure.

Topic Page

2.1 Programming the MSP430 Devices 2-2.

2.2 Content of the PRGS430.ini File 2-8.

2.3 Use of a [Project].ini File 2-8.

2.4 Command Line Options 2-9.

2.5 Software/Hardware Layers 2-12.

2.6 PRGS430.DLL—Description 2-13.

Chapter 2

Programming the MSP430 Devices

2-2 Operation

2.1 Programming the MSP430 Devices

2.1.1 Basic Procedure

The following steps should be used to program the MSP430 devices:

1) Click on the Program Device icon in the ADT430 program group. The
MSP430 program device dialog box appears.

The status line at the bottom of the window shows the actual or the most
recent activity (see Figure 2–1)

The status line displays the message Connecting to adapter... until the
programming adapter is detected and the baud rate is set.

2) Select the correct device and supply voltage

3) Select the name of the object file

4) Select the additional options to program, if necessary (using Erase Flash/
Erase Check/Verify...)

5) Click on the Program button to start programming
The status line at the bottom of the window shows the actual or most recent
activity (see Figure 2–1)

Programming the MSP430 Devices

2-3Operation

Figure 2–1. MSP430 Programmer Dialog Box

2.1.2 Description of the MSP-PRGS430 GUI

An MSP430 device is commonly programmed as follows:

1) Select the file which contains the data to program from the MSP430
Programmer dialog box (see Figure 2–1).

2) Select the device. An error message appears on the screen if the device
selected is different or not connected.

3) Set the required supply voltage, communication port COMx, and baud
rate. The device configuration and memory type are selected
automatically according to the selected device.

4) Use the program button to start the programming operation.

Table 2–1 describes the function of the buttons for different options and com-
binations for the MSP430 Programmer dialog box.

Programming the MSP430 Devices

2-4 Operation

Table 2–1.MSP430 Function Buttons and Descriptions

Button Name Sub-Functions Description

File Name Selects the name of the file to program (intel-hex or TI-txt format)

Device Select Selects the MSP430 device type to program via-pull-down menu

Supply Voltage Selects the supply voltage for the MSP430

VCC switch off If selected (default), the supply voltage will be switched off after each
MSP430 access; otherwise, the supply voltage remains connected.

Program An object code is programmed to the on-chip memory using the select
options.

With Erase Flash Memory will be erased before programming (only with flash devices).
The following options are possible:
– Main and Information Memory
– Main Memory only

With Erase Check Erase check will be performed before programming operation is
executed.

With Verify Each section is verified after it is programmed, or an error message
is displayed if verification fails.

With Blow Fuse The code-protection fuse is blown after the entire object code, with
verify, is programmed. This action is irreversible and disables future
on-chip memory access (reading or programming). This step will not
be performed if verify is disabled or verify fails. A warning is displayed.

Erase Flash Erase operation can be done only with flash devices, according to the
selected option.

By file Only the memory locations corresponding to the selected object file
are erased. All other memory locations keep their old data (smart
erase).

By device The entire flash memory of the device is erased.

By range An erase is performed depending on the values entered in the range
fields.

Erase Check Checks if memory locations are erased.

By file Checks only the memory locations used by the selected object file.

By device Checks the entire programmable memory of the device. (No RAM will
be checked).

By range An erase check is performed according to the range of memory
locations in the range for Erase Check/Readout field.

Programming the MSP430 Devices

2-5Operation

Table 2–1.MSP430 Function Buttons and Descriptions (Continued)

Button Name Sub-Functions Description

Verify Verify the data in the MSP430 device according to the selected option

By file A verification of the memory locations vs. the selected object file is
performed

By device
performed.

By range Verify memory locations defined in the range field versus the data in
the selected file. The defined range should not contain memory
locations outside the data stored in the selected file, otherwise an
error will be reported.

Blow Fuse The on-chip security fuse is irreversibly disabled and any access
such as reading or programming of the MSP430 is impossible.

Read Out Read out data from MSP430 device. When this function is executed,
a dialog box will appear; the file name for the data to store should be
selected.

By device Read out the entire memory of the device and store the data into the
file selected in the file name field.

By range Read out the memory locations selected by the range field and store
the data in the file selected in the file name field.

Reset The reset of a MSP430 can be performed in two ways. After reset, the
MSP430 may remain under JTAG control or can be released to
operate normally and execute the program.

PUC A software reset of the chip is generated.

RST/NMI Generates a hardware reset by applying a low pulse on RST/NMI pin.

With JTAG-release JTAG will be released after the execution of the reset (via JTAG or
RST/NMI).

COM Port Selects the Com port to which the programming adapter is connected

Baud Rate Selects the baud rate for communication with the programming
adapter hardware

Help Help is available for programming MSP430 devices, command
buttons, selectors, and the object file format used.
The Help menu can be found in the system menu of the serial
programming adapter software (right click on the symbol at the upper
left corner of the program window) or with the F1 function key.

2.1.3 Error Messages

One of the following messages may show up if JTAG communication is not
established correctly:

If the MSP430 device to program could not be found, the following
message appears (Figure 2–2):

Programming the MSP430 Devices

2-6 Operation

Figure 2–2. Communication Error Box

If the fuse is already blown, the error message shown in Figure 2–3 appears.

Figure 2–3. Communication Error Box for Blown Fuse

Additional message boxes appear for general error messages such as Erase
Check (Figure 2–4).

Figure 2–4. Erase Check Error Message

When a read error is detected in the input file, such as a format error, the follow-
ing message will be displayed (Figure 2–5):

Figure 2–5. Data Error

Programming the MSP430 Devices

2-7Operation

Table 2–2.Error Messages

Error Type Error Message

Communication Communication failed!

Communication Adapter not connected!

Communication Synchronization with adapter failed!

Communication The present adapter is not a MSP-PRGS430!

Communication Missing setting of VCC!

MSP430 Target not connected!

MSP430 Wrong JTAG version!

MSP430 PUC failed!

MSP430 Wrong target!

MSP430 Target fuse is blown!

MSP430 Blown fuse failed!

MSP430 Supply voltage to low!

MSP430 Fuse not released for this device!

Setting Unknown target!

Setting No target selected!

Setting Wrong VCC selected!

Setting Wrong baud rate!

Setting Communication port error!

Setting The selected range is invalid!

Setting Wrong argument!

Setting Error at target address (during erase check or verify)

Setting Unknown command line option

Setting Command line option out of valid range

System DEVICE.CFG corrupted

System General error!

System File type could not be detected!

System Unexpected end of file!

System PROJECT.INI corrupted!

System Filename mismatch

System Error in DEVICE.CFG

Windows Error during file I/O

Content of the PRGS430.ini File

2-8 Operation

2.2 Content of the PRGS430.ini File

The last settings of the PRGS430 graphical user interface (GUI) will be stored
in the .ini file before exiting the program. This information is stored under the
[Program Device System] section.

Additionally, the following parameters are in the [Options] section and may be
modified:

[Options]

\BlowFuse = 1 → The blow fuse button in the GUI is disabled to prevent acci-
dental blow of the irreversible fuse.

LastResult = 0 → If the program is called with command-line parameter, the
error code which is returned to the system when exiting the program will also
be stored here.

2.3 Use of a [Project].ini File

Some default options could be changed within a [Project].ini file. This file has
to be in the same directory as the object code file. The following variables could
be defined or redefined there.

The name of the file should have the same name as the object file with the ex-
tension .ini.

[ProgramDevice]
UserMemProtect = Start, Size
UserMemProtect2 = Start, Size
UserMemProtect3 = Start, Size
UserMemProtectn = Start, Size
DisableTIMemProtect = 0

Memory ranges defined in the UserMemProtect and UserMemProtect [n]
option will be read out and reprogrammed after erase (Flash devise only). [n]
could be a number greater or equal then 2 and have to be in ascending order.

If a memory protection is activated in the device definition file from Texas
Instruments, it could be switched off with the DisableTIMemProtect = 1 option.

Command Line Options

2-9Operation

2.4 Command Line Options

2.4.1 General Definitions

0: Off 1: First selectable option
1: On 2: Second selectable option

3: Third selectable option

The PRGS430.ini file options are used if they are not specified in the command
line. The command line option overwrites the ini file options.

The program will exit automatically if a command is passed via the command
line and the command was executed. There will only be a small status window
opened during the execution.

Only one command identifier (/CMD:) is allowed within the command line.
Otherwise the execution will be canceled and an error will be returned.

If an error in the command line parameter is detected the program will exit with
an error message.

filename may also contain a path. If special characters are used then the string
has to be inside quotes (for example, \\server\adt430\PRG files\test.txt).
If an error is detected within the filename, the operation will be canceled and
an error will be returned

Table 2–3.Command Line Options

Commands:

/cmd:PRG Program command

/cmd:VFY Verify command

/cmd:ERS Erase command

/cmd:CHK Erase check command

/cmd:READ Read out command

/cmd:RST Reset command

/cmd:BLOW Blow fuse command

Options:

/COM:x Specifies the serial port: /COM:1, /COM:2 /COM:3, or /COM:4

/BR:xxxxxx Sets baud rate to be used: 9600/19200/38400/57600/115200, e.g. /BR:57600

/Dev: Selects the device according to the name in the device.cfg file, e.g. /Dev:MSP430F1121

/SVolt:x.x Selects supply voltage MSP_VCC of the programming adapter. The voltage is supplied/SVolt:x.x Selects su ly voltage MSP_VCC of the rogramming ada ter. The voltage is su lied
between GND and MSP VCC, e.g., /Svolt: 3.0

/SVoff:{0,1} Switches off supply voltage MSP_VCC after execution
0: Disable (do not switch off)
1: Enable (switch off)

filename Specifies name of the object file to be programmed or verified

/FILE filename (Second way to define the filename – space separated)

Command Line Options

2-10 Operation

Table 2–3.Command Line Options (Continued)

Options for Program Command:

/PE:{0,1,2} Option program with erase (flash only)
0: Without erase
1: Main and Info memory
2: Main memory only

/PC:{0,1} Option program with erase check
0: Disable
1: Enable

/PV:{0,1} Option program with verify
0: Disable
1: Enable

/PB:{0,1} Option program with blow fuse (only valid with verify successful)
0: Disable
1: Enable

Options for Erase/Erase Check and Verify Command

/E:{1,2,..} Option erase/erasecheck/verify by file/device/range
1: File
2: Device
3: Range

/ERange:0xXXX,
0xYYYY

Option erase/erasecheck/verify range (start: 0xXXXX, length: 0xYYYY)

Options for Read Out Command:

/RO:{1,2} Option read out by device/range
1: Device
2: Range

/RRange:0xXXXX,
0xYYYY

Option read out range (start: 0xXXXX, length: 0xYYYY)

/Rfile:file-
name,{1,2}

Specifies read out file name
1: TI–TXT
2: Intel–Hex
(Default directory should be the last object file directory)

Log Options:

/Log:filename Specifies Log file name
(Default directory should be the PRGS430.exe directory)

/ALog:{0,1} Option accumulative Log file
0: Disable
1: Enable

Example:

PRGS430.exe ”C:\adt430\test\test.txt” /Dev:MSP430F1121 /cmd:PRG /PE:1
/PC:0 /PV:1 /COM:2

This command programs the file test.txt, located in the directory C:adt430\test,
into a MSP430F149 device. The device will be erased before programming.
The erase check is disabled. The code will be verified after programming. The
programming adapter is connected to ComPort 2. The baud rate is not passed
with the command line, so the setting in the PRGS430.ini file will be used.

2-11Operation

2.4.2 Return Values / Error Codes in the .ini File

The error code will be returned to the PC operating system and is also stored
in the ’PRGS430.ini’

File in the [Options] section:

LastResult=0

0 Ok

2 Communication failed!

3 Target not connected!

4 Adapter not connected!

5 Wrong JTAG version!

6 PUC failed!

7 Synchronization with adapter failed!

8 The present adapter is not a MSP–PRGS430!

9 Unknown target!

10 Wrong target!

11 No target selected!

12 Target fuse is blown!

13 Blow fuse failed!

14 Missing setting of Vcc!

15 Wrong Vcc selected!

16 Wrong baudrate!

17 Communication port error!

18 DEVICE.CFG corrupted!

19 General error!

20 The selected range is invalid!

21 Wrong argument!

22 Error during file I/O.

23 File type could not be detected!

24 Unexpected end of file!

25 PROJECT.INI corrupted!

26 Vcc Voltage to low for selected function!

27 Fuse not release for this device!

101 Error at target address (during erase check or verify)

102 Unknown command line option

103 Command line option out of valid range

104 Filename mismatch

105 Error in device.cfg

Software / Hardware Layers

2-12 Operation

2.5 Software / Hardware Layers

PRGS430.EXE PRGS430.INI

PRGS430.DLL

CommandLine

MSP430

DEVICE.CFG

PRGS430

[Project] .INI

RS232

JTAG

PC – Software

Serial Programming Adapter

Target Socket or Application

Function

GUI

PRGS430.DLL—Description

2-13Operation

2.6 PRGS430.DLL—Description

The PRGS430.dll is used to communicate with the MSP–PRGS430 hardware
and the connected MSP430 device.

This dll could be used separately using the following conventions:

/FN0001/ InitCom

long int InitCom(char* lpszComPort, long int lBaudRate)

InitCom initializes (opens) the given communications port, establishes
communication with the PRGS430 hardware, and sets the baud rate of the
MSP–PRGS430. If successful, the MSP–PRGS430 is reset and Vcc is set to
0.0 V (the voltage should be set after the first user action to validate the correct
value).

lBaudRate: valid baud rates are: 9600, 19200, 38400, 56800, and 115200
baud. The default baud rate after installation is 115200 baud.

lpszComPort: the name of the communication port—COM1, COM2, COM3,
or COM4.

Example: lFuncReturn = InitCom(”COM1” 115200)

/FN0002/ ReleaseCom

long int ReleaseComm (void)

This new function is the counterpart to InitCom. It allows to close a communica-
tion with the MSP-PRGS430 hardware.

Vcc will be set to 0 and all outputs will be set to the HI-Z state.

Example: lFuncReturn = ReleaseComm()

/FN0003/ SetDeviceType

Example:
lFuncReturn = SetDeviceType(char* lpszDeviceName)

Selects the device type.

lpszDeviceName: name of the device in file device.cfg.

Example: lFuncReturn = SetDeviceType(”MSP430F1121”)

/FN0004/ InitTarget

long int InitTarget(char* lpszDeviceName)

Initializes the JTAG access to the target device, detects the device type, and
reports when the detected device does not match the parameter DeviceName
passed.

lpszDeviceName: name of the device in file device.cfg.

Example: lFuncReturn = InitTarget (”MSP430F1121”)

PRGS430.DLL—Description

2-14 Operation

/FN0005/ ReleaseTarget

long int ReleaseTarget(void)

This function releases the JTAG access to the target device. All JTAG signals
from the serial programming adapter will be switched to high impedance. The
device will start program execution if it is still connected to Vcc.

Example: lFuncReturn = ReleaseTarget()

/FN0006/ Erase

long int Erase(long int wStart, long int wLength, long int Flags)

This function erases flash memory (if available). The protection of areas can
be disabled by setting the DISABLE_TI_MEM_PROTECT–Bit in Flags.

wStart: start address of the area to be erased. Allowed values : 0x0000 to
0xFFFE (see memory map of the corresponding device)

wLength: length of the area. Allowed values : 0x0000 to 0xFFFE (see memory
map of the corresponding device)

Flags

DISABLE_TI_MEM_PROTECT (0x01)

If this bit is set, the memory protection settings in device.cfg are ignored.

Example:
lFuncReturn = Erase(long:0xF000, long:0x1000, long:1)

/FN0007/ EraseFile

long int EraseFile(char* lpszFileName, long int Flags, char* lpszProjectIni)

EraseFile() erases all addresses used in the specified file.

iFlags:

FILETYPE_AUTO (0x00) – Autodetection of file type (intel–hex or ti–
text)

FILETYPE_TI_TXT (0x01) – File type is TI txt

FILETYPE_INTEL_HEX (0x02) – File type is intel hex

lpszProjectIni: name of the {project}.ini file, if protection settings from this file
shall be used. If there should be no protection, replace lpszProjectIni by NULL.

Example:
lFuncReturn = EraseFile(”text.txt”, long:0, NULL)

/FN0008/ EraseCheck

long int EraseCheck(long int wStart, long int wLength)

Performs an erase check of an area of the target’s memory.

PRGS430.DLL—Description

2-15Operation

wStart: Start address of the memory area. Allowed values : 0x0000 – 0xFFFE
(see memory map of the corresponding device).

wLength: Size of the area. Allowed values : 0x0000 – 0xFFFE (see memory
map of the corresponding device).

The function EraseCheck() simply uses PatternCheck() with 0xFFFF as pat-
tern.

EraseCheck(long int wStart, long int wLength)

{

return PatternCheck(wStart, wLength, 0xFFFF);

}

Example:
lFuncReturn = EraseCheck(long:0xF000, long:0x1000)

/FN0009/ EraseCheckFile

long int EraseCheckFile(char* lpszFileName, long int iFileType)

This function checks if all memory addresses, which are in the file, are erased.

lpszFilName: Name of the file

iFileType:

FILETYPE_AUTO (0x00) – autodetection of file type (intel–hex or
ti–text)

FILETYPE_TI_TXT (0x01) – file type is TI txt

FILETYPE_INTEL_HEX (0x02) – file type is intel hex

Example:
lFuncReturn = EraseCheckFile(”test.txt”, long:0)

/FN00010/ PatternCheck

long int PatternCheck(long int wStart, long int wLength, long int wPattern)

Checks a memory range with word pattern passed.

wStart: Start address of the memory area. Allowed values : 0x0000 – 0xFFFE
(see memory map of the corresponding device).

wLength: Size of the area. Allowed values : 0x0000 – 0xFFFE (see memory
map of the corresponding device).

wPattern: Word pattern for check

Example: lFuncReturn = PatternCheck(long:0xF000,
long:0x1000, long:0xFFFF)

PRGS430.DLL—Description

2-16 Operation

/FN00011/ VerifyData

long int VerifyData(long int wStart, long int wLength, void* lpData)

This function verifies the content of the device with the data stored at passed
pointer to data.

wStart: Start address of memory area. Allowed values : 0x0000 – 0xFFFE (see
memory map of the corresponding device).

wLength: Length of the memory area to be checked. Allowed values : 0x0000
– 0xFFFE (see memory map of the corresponding device).

lpData: Pointer to buffer with data bytes in it

Example:
lFuncReturn = VerifyData(long:0xF000, long:0x1000, void* lpData)

/FN00012/ VerifyFile

long int VerifyFile(char* lpszFileName, long int iFileType)

This function checks if the memory contents of the target device are equal to
the file contents.

lpszFileName: Name of the file

iFileType

FILETYPE_AUTO (0x00) – autodetection of file type (intel–hex or
ti–text)

FILETYPE_TI_TXT (0x01) – file type is TI txt

FILETYPE_INTEL_HEX (0x02) – file type is intel hex

Example: lFuncReturn = VerifyFile(”test.txt”, long:0)

/FN00013/ VerifyFileRange

long int VerifyFileRange(char* lpszFileName, long int iFileType, long int
wStart, long int wLength)

This function evaluates if the memory contents of the target device are equal
to the file contents in a passed range.

lpszFileName: Name of the file

iFileType:

FILETYPE_AUTO (0x00) – autodetection of file type (intel–hex or
ti–text)

FILETYPE_TI_TXT (0x01) – file type is TI txt

FILETYPE_INTEL_HEX (0x02) – file type is intel hex

wStart: Start address of memory area. Allowed values : 0x0000 – 0xFFFE (see
memory map of the corresponding device).

PRGS430.DLL—Description

2-17Operation

wLength: Length of the memory area to be checked. Allowed values : 0x0000
– 0xFFFE (see memory map of the corresponding device).

Example: lFuncReturn = VerifyFileRange(”test.txt”,
long:0, long:0xF000, long:0x1000)

/FN0014/ ProgramData

long int ProgramData(long int wStart, long int wLength, void* lpData, long int
Flags)

This function writes data into an MSP430 device. Protection of ranges of
memory locations defined in the DEVICE.CFG file can be disabled by setting
the DISABLE_TI_MEM_PROTECT–Bit in Flags.

wStart: Start address of the range which is to be erased. Allowed values :
0x0000 – 0xFFFE (see memory map of the corresponding device).

wLength: Length of the range

Allowed values : 0x0000 – 0xFFFE (see memory map of the corresponding
device)

lpData: Pointer to the Data to be programmed

Flags: The bits in Flags control the operation of ProgramData()..

iFlags:

DISABLE_TI_MEMPROTECT (0x01)

PGM_WITH_ERASE (0x02)

PGM_WITH_ERASECHECK (0x04)

Example: lFuncReturn = ProgramData(long:0xF000,
long:0x1000, void* lpData, long:7)

/FN0015/ ProgramFile

long int ProgramFile(char* lpszFileName, long int iFileType,

 long int iFlags, char* lpszProjectIni)

This function writes data from the file to the MSP430 device. The protection
of ranges of memory locations defined in the DEVICE.CFG file can be disabled
by setting the DISABLE_TI_MEM_PROTECT–Bit in Flags.

lpszFileName: Name of the file to be written into the target

iFileType:

FILETYPE_AUTO (0x00) – autodetection of file type (intel–hex or ti–
text)

FILETYPE_TI_TXT (0x01) – file type is TI txt

FILETYPE_INTEL_HEX (0x02) – file type is intel hex

PRGS430.DLL—Description

2-18 Operation

iFlags:

DISABLE_TI_MEMPROTECT (0x01)

PGM_WITH_ERASE (0x02)

PGM_WITH_ERASECHECK (0x04)

lpszProjectIni

Name of the {project}.ini file, if protection settings from this file shall be used.
If no protection is required, replace lpszProjectIni by NULL.

The added features do not need to be used – for ProgramFile according to
older specification just call ProgramFile(FileName, FileType, 0, NULL); if no
{project}.ini file or erase check, should be used just call:

Example: lFuncReturn = ProgramFile(FileName, 0, 0, NULL); // with
autodetect file type

Note: If an erase or erase-check function reports an error, the function
ProgramFile() is aborted before programming is started.

/FN0016/ BlowFuse

long int BlowFuse(long int Flags)

This function blows the security fuse of the target device.

Flags:

Bitmap to control the operation of BlowFuse().

NO_INHIBIT 1

If this bit is set in Flags, BlowFuse() suppresses the inhibition from *.ini files.
This flag should always be set to ensure execution.

Example: lFuncReturn = BlowFuse(long:1)

/FN0017/ SetVcc

long int SetVcc(long int iVoltage)

This function sets the MSP_Vcc voltage of the programming adapter to the giv-
en value.

iVoltage: Vcc in millivolts. (3000 –> 3V)

The correct MSP430 device should be selected before using this function.

The voltage range is limited to the voltage range allowed for the selected
MSP430 device.

Example: lFuncReturn = SetVcc(Long:3000)

/FN0018/ ReadOutData

long int ReadOutData(long int wStart, long int wLength, void* lpBuffer)

PRGS430.DLL—Description

2-19Operation

Reads out data from the device and writes it to the buffer passed.

wStart: Start address of the area to be read out. Allowed values : 0x0000 –
0xFFFE (see memory map for the corresponding device).

wLength: Length of the area. Allowed values : 0x0000 – 0xFFFE (see memory
map for the corresponding device).

lpBuffer: Pointer points to a buffer that receives the data. The buffer must be
large enough to hold the entire data; otherwise, a fatal error of the operating
system may occur!

Example: lFuncReturn = ReadOutData(long:0xF000,
long:0x1000, void* lpBuffer)

/FN0019/ ReadOutFile

long int ReadOutFile(long int wStart, long int wLength, char* lpszFileName,
long int iFileType)

Read out data from the device and writes it to a file.

wStart: Start address of the area to be read out. Allowed values : 0x0000 –
0xFFFE (see memory map of the corresponding device).

wLength: Length of the area. Allowed values : 0x0000 – 0xFFFE (see memory
map of the corresponding device).

lpszFileName: Name of the file to receive data. If the file does not exist, it will
be created; If the file already exists, it will be overwritten.

iFileType:

FILETYPE_TI_TXT (0x01) – file type is TI txt

FILETYPE_INTEL_HEX (0x02) – file type is intel hex

Example: lFuncReturn = ReadOutFile(long:0xF000,
long:0x1000, ”test.out”, long:1)

/FN0020/ Reset

long int Reset(long int Flags)

This function provides the reset functionality for the target.

Flags: Flags is a bitmap and determines the type of reset.

PUC 0x01

RST_NMI 0x02

WITH_RELEASE 0x04

Reset | PUC means that the Jtag sends the command to the MSP430.

Reset | RST_NMI performs a reset via the RST/NMI pin of the MSP430. The
JTAG will also be reset.

PRGS430.DLL—Description

2-20 Operation

If the WITH_RELEASE option is selected, the device will be released from the
JTAG access after the reset.

Example: lFuncReturn = Reset(long:5)

/FN0022/ GetProgressInfo

long int GetProgressInfo(long int &iPercent, char* lpszStatus,

 long int iMaxLen)

This function can be polled (typically approximately 10 times per second or
less) by the program software, and the progress bar can be updated while an
operation is in progress.

iPercent: The state of the progress bar (0 to 100%) is written into this integer.

lpszStatus: Points to a buffer to receive the status string.

iMaxLen: The size of the buffer.

/FN0023/ GetDeviceCfgInfo

long int GetDeviceCfgInfo(long int InfoCmd, long int InfoIdx, void* lpBuf)

InfoType:

DEVICE_COUNT (0x01)
GetDeviceCfgInfo returns number of devices in Device.cfg; InfoIdx and lpBuf
are ignored.

SELECT_DEVICE (0x02)
Selects the given device for further commands (device number in InfoIndex,
first device is number 0; lpBuf is ignored).

DEVICE_NAME (0x03)
Fills the name of the selected device into lpBuf; InfoIdx is ignored.

DEVICE_ID (0x04)
Fills the DeviceID into lpBuf, InfoIdx is ignored.

DEVICE_DEFAULTOPTIONS (0x05)
Fills the default options into lpBuf, InfoIdx is ignored.

DEVICE_MEMDEF_COUNT (0x06)
GetDeviceCfgInfo() returns the number of memory definitions for selected de-
vice; lpBuf and InfoIdx are ignored.

DEVICE_MEMDEF (0x07)
Fills the definition of a memory definition (index passed by InfoIdx) into lpBuf.

DEVICE_MEMPROTECT_COUNT(0x08)
GetDeviceCfgInfo() returns the number of memory-protection definitions for
the selected device; lpBuf and InfoIdx are ignored.

DEVICE_MEMPROTECT (0x09)
Fills the definition of a memory protection definition (index passed by InfoIdx)
into lpBuf.

PRGS430.DLL—Description

2-21Operation

DEVICE_VCC (0x0A)
GetDeviceCfgInfo() returns the Vcc setting for selected device in millivolts;
lpBuf and InfoIdx are ignored

DEVICE_VPP (0x0B)
GetDeviceCfgInfo() returns the Vpp setting for selected device in millivolts;
lpBuf and InfoIdx are ignored.

DEVICE_VFUSE (0x0C)
GetDeviceCfgInfo() returns the blow-fuse setting for the selected device; lpBuf
and InfoIdx are ignored.

PRGS430.DLL—Description

2-22 Operation

2.6.1 Return Values / Error Codes From the PRGS430.DLL

Status Return Value Comment

OK 0

SUCCESS –1 Operation ok

ERR_COMMUNICATION –2 Communication error (SSP)

ERR_TARGET_NOT_CONNECTED –3 No target connected

ERR_SPA430_NOT_CONNECTED –4 No SPA430 connected

ERR_WRONG_JTAG_VERSION –5 JTAG version above 3

ERR_PUC_FAILED –6 PUC did not succeed

ERR_SPA430_SYNC_FAILED –7 Could not sync SPA430

ERR_NO_SPA430 –8 Adapter is not SPA430

ERR_UNKNOWN_TARGET –9 Target type unknown

ERR_WRONG_TARGET –10 Target type does not match

ERR_NO_TARGET_SELECTED –11 No target selected (missing SetDeviceType() call)

ERR_TARGET_FUSE_BLOWN –12 No target access because of blown fuse

ERR_BLOW_FUSE_FAILED –13 Blown-fuse command failed

ERR_VCC_NOT_SET –14 No Vcc selected (missing SetVolt() call)

ERR_WRONG_VCC –15 Vcc out of allowed range

ERR_WRONG_BAUDRATE –16 Invalid baud rate

ERR_COMPORT –17 Error accessing the communications port

ERR_DEVICE_CFG –18 Device.cfg corrupted

ERR_GENERAL –19 General error (should not occur!)

ERR_RANGE –20 Wrong range specified

ERR_ARGUMENT –21 Wrong argument

ERR_FILE_IO –22 Error during file I/O

ERR_FILE_DETECT –23 File type could not be detected

ERR_FILE_END –24 Unexpected end of file

ERR_PROJECT_INI –25 Error reading {project}.ini

ERR_VCC_BELOW_VCCMINPROG –26 Vcc to low for selected function

ERR_FUSE_NOT_RELEASED –27 Fuse not release for this device

STATUS_CONNECTSPA 1 Connecting to SPA430

STATUS_CONNECTTARGET 3 Connecting to target

STATUS_RELEASETARGET 5 Releasing target

STATUS_RELEASESPA 7 Releasing SPA430

STATUS_RESETTARGET 9 Resetting target

STATUS_ERASE 11 Erasing target

STATUS_ERASECHECK 13 Erase checking target

STATUS_PATTERNCHECK 15 Pattern checking target

STATUS_VERIFY 17 Verifying target

STATUS_PROGRAM 19 Programming target

STATUS_READOUT 21 Reading out target

STATUS_BLOWFUSE 23 Blowing fuse

3-1Hardware

Hardware

This chapter describes the hardware for the MSP430 family of micro-
controllers, including specifications, components of the programming
adapters, and connection of the programming adapter to the MSP430 device
families.

Topic Page

3.1 Specifications 3-2.

3.2 Basic Hints 3-2.

3.3 Programming Adapter Target Connector Signals 3-3.

3.4 MSP-PRGS430 Circuit Diagrams 3-5.

3.5 Location of Components, MSP-PRGS430 3-5.

3.6 Interconnection of MSP-PRGS430 to MSP430C313DL/
430P313SDL, MSP430C311SDL/P315SDL or ’E313FZ 3-6.

3.7 Interconnection of MSP-PRGS430 to MSP430C325PG,
C325PM, MSP430P325PG or ’P325PM 3-9.

3.8 Interconnection of MSP-PRGS430 to MSP430C336PJM/P337PJM
or MSP430E337CQFP 3-12.

3.9 Interconnection of MSP-PRGS430 to MSP430C111dW,
MSP430C112DW, MSP430P112DW or MSP430E112JL 3-13.

3.10 Interconnection of MSP-PRGS430 to the MSP430F13xPM,
MSP430C13xPM, MSP430F14xPM or MSP430C14xPM 3-14.

Chapter 3

Specifications

3-2 Hardware

3.1 Specifications

The specifications for the MSP430 hardware are shown in Table 3–1.

Table 3–1.MSP430 Hardware Specifications

Temperature range 10°C–45°C

Humidity 40%–70%

Power supply 14 V–20 V, 200 mA minimum

Dimensions 150 mm (W) × 30 mm (H) × 95 mm (D)

3.2 Basic Hints

These basic hints are useful for programming MSP430 devices or MSP430
devices on printed wire boards (PWB).

� All VCC pins of an MSP430 device are tied together and connected to the
most positive terminal of the supply.

� All VSS pins of an MSP430 device are tied together and connected to the
most negative terminal of the supply.

� The interface should supply the MSP430 with proper conditions according
to the device data sheet in terms of current, voltage levels, and timing con-
ditions.

� MSP430x3xx, MSP430x14x family: Six interconnections are needed as
minimum:

TMS, TCK, TDI/VPP, TDO/TDI, VSS, and XOUT.

� MSP430x11x family: Seven interconnections are needed as minimum:
TMS, TCK, TDI, TDO/TDI, VSS, Test/VPP, and XOUT.

� Short cables to interconnect the interface to the MSP430 device or PWB;
less than 20 cm is recommended.

� Ensure low-impedance interconnections: Especially for the path of the
programming and fuse blow voltage – TDI/VPP (MSP430x3xx family) or
Test/VPP (MSP430x11x family, or TDI (MSP430x13x/14x family).

� When a device with a transparent window (MSP430E3xx family) is
programmed, the window should be already covered with an opaque label
while the device is programmed. Since ambient light contains the correct
wavelength for erasure, keep the transparent window covered after the
device is programmed.

Programming Adapter Target Connector Signals

3-3Hardware

3.3 Programming Adapter Target Connector Signals

The target connector signals for the programming adapter ensure commu-
nication between programming adapter and MSP430 devices and supply low
energy to systems without extra supply sources.

Figure 3–1 and Figure 3–2 show the target connector signals for the program-
ming adapter.

Figure 3–1. 25-Pin Sub-D at the Programming Adapter

1

2

3

4

5

14

15

16

17

TDO

TDI

TMS

TCK

GND

25-Pin Sub-D at the
Programming Adapter

6

7

8

9

10

19

20

21

22

RST/NMI
(ACLKEN)

18

11

12

13

24

25

(SENSE)

23

(SMCLK)

(ACLK)

(SIG20)

(SMCLKEN)

VCC_MSP

XOUT / TCLK

Test/VPP

(TCLKEN)

Figure 3–2. 14-Pin Connector at the End of the Interconnect Cable

2 1

14 13

VCC_MSP

XOUT

Test/VPP

(ACLK)

(ACLKEN)

NC

TDO

TDI

TMS

TCK

GND

RST/NMI

NC

14-Pin Connector/Female at the
End of the Interconnect Cable

NC

Table 3–2 lists the target connector signals and describes their requirement
statuses and functions.

Programming Adapter Target Connector Signals

3-4 Hardware

Table 3–2.Target Connector Signal Functions

Signal/Terminal Name Required Function/Comment

TMS Mandatory Test mode select functions according to IEE1149.1.

TCK Mandatory Test clock functions according to IEE1149.1.

TDI/VPP Mandatory Test data input functions according to IEE1149.1, but with
additional programming voltage.

TDO/TDI Mandatory Test data output functions according to IEE1149.1, but
additional data input is used when programming voltage
is applied by TDI/VPP.

GND Mandatory GND is the most negative terminal.

VCC_MSP Mandatory Voltage source is used with MSP430 devices or PWBs.
The voltage level is set through by software.

XOUT Mandatory Signal supplies the MSP430 system with clock signals.

RST/NMI Optional If not connected, RST/NMI pin must be held high

Test/VPP Mandatory
(depending on device)

Signal used with MSP430x11x devices to select pin or
JTAG function or to apply VPP.

The output signal levels of the programming adapter are near GND or
VCC_NSP.

� The RST/NMI terminal of the device must be high; otherwise the access
to the device via JTAG system may fail.

� The programming procedure (handling of the SW) is described in
Chapters 1 and 2 of this manual.

� The connections from the MSP430 terminals must follow EMI rules; such
as short lines and ground planes. If TMS line receives one negative pulse
by EMI strike, the fuse current is activated (with fuse version 1.0). The fuse
current flows from TDI(/VPP) pin to GND (or VSS).

Table 3–3.Programming Adapter Signal Levels

Signal/Pin Signal/Pin Levels

TMS VSS or VCC_MSP

TCK VSS or VCC_MSP

TDI/VPP VSS or VCC_MSP or VPP

TDO/TDI VSS or VCC_MSP

XOUT VSS or VCC_MSP

RST/NM VSS or VCC_MSP

Test/VPP VSS or VCC_MSP or VPP

MSP-PRGS430 Circuit Diagrams

3-5Hardware

3.4 MSP-PRGS430 Circuit Diagrams

The MSP-PRGS430 circuit diagrams are found in Appendix A.

3.5 Location of Components, MSP-PRGS430

Figure 3–3. MSP-PRGS430 Components

Note: Do not use J2 Pin 9 as RST/NMI pullup.

Interconnection of MSP-PRGS430 to MSP430C313DL/430P313SDL, MSP430C311SDL/P315SDL, or ’E313FZ

3-6 Hardware

3.6 Interconnection of MSP-PRGS430 to MSP430C313DL/430P313SDL,
MSP430C311SDL/P315SDL, or ’E313FZ

The circuit diagrams in Figure 3–5 show the connections required to program
the MSP430P313DL device with programming adapter MSP-PRGS430 in a
separate socket.

Figure 3–4. MSP-PRGS430 Used to Program the MSP430P313DL Device

VSS

MSP430C313DL

TDO
TDI

TMS
TCK

7
VCC

8

12
Xout

J1

Socket for DL–Package, 56SSOP
e.g. Yamaichi, Order–# IC51–0562–1387

1

3
4

2
1

5
7

3

9

2

6
8

Connector, male, for TI’s programming adapter
e.g.3M, Order–# 2514–6002

RST/NMI 5

MSP430P313DL

~68 kΩ
for OTP/EPROM

devices (P/E)

100 nF
+

–
10 µF

11

The RST/NMI terminal on the MSP430 device has to be held high by an exter-
nal resistor during access of the device through JTAG. In a noisy environment,
consider using an additional capacitor from RST/NMI to VSS.

Interconnection of MSP-PRGS430 to MSP430C313DL/430P313SDL, MSP430C311SDL/P315SDL, or ’E313FZ

3-7Hardware

Figure 3–5. MSP-PRGS430 Used to Program the MSP430P315SDL Device

48

11

7
6

4
3
2
1

9
7
5
3
1

8
6

2

VSS

MSP430C311SDL

TDO TDI
TMS
TCK

VCC

Xout

J1

Socket for DL–Package, 48SSOP
e.g. Yamaichi, Order–# IC51–1387.KS–15186

Connector, male, for TI’s programming adapter
e.g.3M, Order–# 2514–6002

RST/NMI

MSP430P315SDL

~68 kΩ
for OTP/EPROM

devices (P/E)

100 nF
+

–
10 µF

11

The RST/NMI terminal on the MSP430 device has to be held high by an exter-
nal resistor during access of the device through JTAG. In a noisy environment,
consider using an additional capacitor from RST/NMI to VSS.

Interconnection of MSP-PRGS430 to MSP430C313DL/430P313SDL, MSP430C311SDL/P315SDL, or ’E313FZ

3-8 Hardware

Figure 3–6. MSP-PRGS430 Used to Program the MSP430E313FZ Device

VS

S

TD
O

T

DI

TM

S

TC
K

7VC

C

J1

Socket for FZ–Package, 68CLCC

e.g. Yamaichi, Order–# IC51–0684–390–1

1

3
4

2
1

5
7

3

9

2

6
8

MSP430E313FZ

(68 pin CLCC) 5

16 12 +

–
10 µF100 nF

VSS

TDO
TDI

TMS
TCK

VCCXout

RST/NMI

~68 kΩ
for OTP/EPROM

devices (P/E)

Connector, male, for TI’s programming adapter
e.g.3M, Order–# 2514–6002

11

Note: The supply voltage is applied by TI’s programming adapter. The MSP430 device is put into a
socket without any additional application-specific components.

The RST/NMI pin on the MSP430 device has to be held high by an external
resistor during access of the device through JTAG. Any reset event disturbs
the proper data sequences and produces unpredictable results. In a noisy en-
vironment, consider using an additional capacitor from RST/NMI to VSS.

Interconnection of MSP-PRGS430 to MSP430C325PG, C325PM, MSP430P325PG, or ’P325PM

3-9Hardware

3.7 Interconnection of MSP-PRGS430 to MSP430C325PG, C325PM,
MSP430P325PG, or ’P325PM

The circuit diagrams in Figure 3–19 show the connections required to program
the MSP430C325PG, MSP430P325PG, or MSP430P325APG device with
programming adapter PRGS430 in a separate socket.

Ensure that both positive terminals AVCC and DVCC are connected. In addi-
tion, ensure that both negative terminals AVSS and DVSS are connected.

Figure 3–7. MSP-PRGS430 Used to Program the MSP430P325PG or MSP430P325APG
Devices

VS
S

TD
O

TD

I

TM

S

TC
K

63VC
C

J1

Socket for PG–Package, 64PQFP
e.g. Yamaichi, Order–# IC51–0644–820–2

55

57
58

56
1

5
7

3

9

2

6
8

Connector, male, for TI’s programming adapter
e.g.3M, Order–# 2514–6002

MSP430C325PG

(64 pin PQFP)

59

10 1 +

–
10 µF

100 nF

64

2

MSP430P325PG

AVSS

TDO
TDI

TMS
TCK

Xout

RST/NMI

DVSS

AVCCDVCC

~68 kΩ
for OTP/EPROM

devices (P/E)

optional

MSP430P325APG

11

The RST/NMI pin on the MSP430 device has to be held high by an external
resistor during access of the device through JTAG. Any reset event disturbs
the proper data sequences and produces unpredictable results. In a noisy en-
vironment, consider using an additional capacitor from RST/NMI to VSS.

Interconnection of MSP-PRGS430 to MSP430C325PG, C325PM, MSP430P325PG, or ’P325PM

3-10 Hardware

Figure 3–8. MSP-PRGS430 Used to Program the MSP430P325PM or MSP430P325APM
Devices

62 J1

Socket for PM–Package, 64PQFP
e.g. Yamaichi, Order–# IC51–0644–807

54

56
57

55
1

5
7

3

9

2

6
8

Connector, male, for TI’s programming adapter
e.g.3M, Order–# 2514–6002

58

9 1
+

–
10 µF

100 nF

63
64

VS
S

TD
O

TD
I

TM
S

TC
K

VC
C

MSP430C325PM

(64 pin PQFP)

MSP430P325PM

TDO
TDI

TMS
TCK

RST/NMI

AVSS
DVSS
AVCC
DVCC

Xout

~68 kΩ
for OTP/EPROM

devices (P/E)

MSP430P325APM

11

The RST/NMI pin on the MSP430 device has to be held high by an external
resistor during access of the device through JTAG. Any reset event disturbs
the proper data sequences and produces unpredictable results. In a noisy en-
vironment, consider using an additional capacitor from RST/NMI to VSS.

Interconnection of MSP-PRGS430 to MSP430C325PG, C325PM, MSP430P325PG, or ’P325PM

3-11Hardware

Figure 3–9. MSP-PRGS430 Used to Program the MSP430E325FZ Device

6 J1

Socket for FZ–Package, 68CLCC
e.g. Yamaichi, Order–# IC51–0684–390–1

66

68
1

67
1

5
7

3

9

2

6
8

Connector, male, for TI’s programming adapter
e.g.3M, Order–# 2514–6002

2

18

+

–
10 µF100 nF

7

9

VS

S

TD
O

T

DI

TM

S

TC
K

VC

C

TDO
TDI

TMS
TCK

RST/NMI

AVSS
DVSS

AVCC
DVCCXout

MSP430E325FZ

~68 kΩ
for OTP/EPROM

devices (P/E)

10

11

The RST/NMI pin on the MSP430 device has to be held high by an external
resistor during access of the device through JTAG. Any reset event disturbs
the proper data sequences and produces unpredictable results. In a noisy en-
vironment, consider using an additional capacitor from RST/NMI to VSS.

Interconnection of MSP-PRGS430 to MSP430C336PJM/337PJM or MSP430E337CQFP

3-12 Hardware

3.8 Interconnection of MSP-PRGS430 to MSP430C336PJM/337PJM or
MSP430E337CQFP

The circuit diagram in Figure 3–10 show the connections required to program
the MSP430C336PJM, MSP430P337PJM, or MSP430E337CQFP devices
with programming adapter PRGS430 in a separate socket. Since the device
is not connected to a power supply in this configuration, the necessary supply
comes from the PRGS430.

Ensure that the two positive terminals, VCC1 and VCC2, as well as the three
negative terminals, VSS1, VSS2, and VSS3, are connected.

Figure 3–10. MSP-PRGS430 Used to Program the MSP430x33xPJM
or the MSP430E337CQFP Devices

98

J1

Socket for PJM/CQFP–Package, 100PQFP/100CQFP
e.g. Yamaichi, Order–# IC 201–1004–028

92

94
95

93
1

5
7

3

9

2

6
8

Connector, male, for TI’s programming adapter

e.g.3M, Order–# 2514–6002

96

1 +

–
10 µF100 nF

100

VSS2

VSS3

VCC2

52

2829

VS
S

TD
O

T

DI

TM
S

TC
K

VC
C

MSP430C336PJM

(100 pin PQFP)
MSP430P337PJM TDO/TDI

TDI/VPP
TMS
TCK

RST/NMI

Xout

MSP430C337PJM

MSP430E337CQFP
(100 pin CQFP)

VSS1
VCC1

VSS3

VSS2
VCC2

~68 kΩ
for OTP/EPROM

devices (P/E)

11

The RST/NMI pin on the MSP430 device must be held high by an external re-
sistor during access of the device through JTAG. Any reset event disturbs the
proper data sequences and produces unpredictable results.

Interconnection of MSP-PRGS430 to MSP430C111DW, MSP430C112DW, MSP430P112DW, or MSP430E112JL

3-13Hardware

3.9 Interconnection of MSP-PRGS430 to MSP430C111DW, MSP430C112DW,
MSP430P112DW, or MSP430E112JL

The circuit diagram in Figure 3–11 shows the connections required to program
with the programming adapter PRGS430 in a separate socket. Special atten-
tion must be given to the design for the four JTAG pins, TDO/TDI, TDI, TMS,
and TCK, since they are shared between the application’s hardware and the
programming adapter. The programming adapter should be able to drive the
device correctly, but the application should continue working properly.

The RST/NMI pin on the MSP430 device must be held high by an external re-
sistor. In a noisy environment, consider using an additional capacitor from
RST/NMI to VSS.

Figure 3–11. MSP-PRGS430 Used to Program the MSP430x11xIDW
or the MSP430E112QJL Devices

MSP430C112IDW

7

17

J1

Socket for DW–Package, 20SSOP

e.g. Yamaichi, Order–# IC51–0562–1387

Note: The supply voltage is applied
by TI’s programming adapter.
The MSP430 device is put into
a socket without any additional
application-specific components.

1

4

2
1

5
7

3

9

2

6
8

Connector, male, for

e.g.3M, Order–# 2514–6002

5

MSP430P112IDW

MSP430C111IDW
MSP430E112QJL

VSS

TDO/TDI
TDI
TMS
TCK

VCC

Xout

RST/NMI

Test/VPP

18
19
20

~68 kΩ
for OTP/EPROM

devices (P/E)

TI’s programming adapter

100 nF
– 10 µF

+

MSP430F112IDW
MSP430F110IDW
MSP430F101IDW
MSP430F121IDW

11

Interconnection of MSP-PRGS430 to the MSP430F13xPM, MSP430C13xPM, MSP430F14xPM, or MSP430C14xPM

3-14 Hardware

3.10 Interconnection of MSP-PRGS430 to the MSP430F13xPM,
MSP430C13xPM, MSP430F14xPM, or MSP430C14xPM

The following circuit diagram shows the connections required to program the
MSP430F13xPM, MSP430C13xPM, MSP430F14xPM or MSP430C14xPM
devices with TI’s Programming Adapter MSP-PRGS430 e.g. in a separate
socket.

The RST/NMI pin on the MSP430 device is held high by the resistor in the
PRG430B or by an external resistor when MSP-PRGS430 is used. In a noisy
environment an additional capacitor from RST/NMI to VSS should be consid-
ered. Ensure that both positive terminals AVCC and DVCC as well as both
negative terminals AVSS and DVSS are connected together.

Figure 3–12. Interconnection of MSP-PRGS430 to MSP430x13xPM and MSP430x14xPM

62 J1

Socket for PM–Package, 64PQFP
e.g. Yamaichi, Order–# IC51–0644–807

54

56
57

55
1

5
7

3

9

2

6

Connector, male, for TI’s Programming Adapter
e.g.3M, Order–# 2514–6002

58

9 1

+

–100nF63
64

VSS

TDO
TDI

TMS
TCK

VCC

MSP430C13xPM

(64 pin PQFP)

MSP430C14xPM

TDO
TDI

TMS
TCK

RST/NMI

AVSS

DVCCXout 10 µF

DVSS
AVCC

The supply voltage is applied by TI’s programming adapter.Note:

11
MSP430F13xPM
MSP430F14xPM

Interconnection of MSP-PRGS430 to MSP430x13xPM, MSP430x14xPM

4-1EPROM Programming

EPROM Programming

This chapter describes the MSP430 EPROM module. The EPROM module is
erasable with ultraviolet light and electrically programmable. Devices with an
EPROM module are offered in a windowed package for multiple programming
and in an OTP package for one-time programmable devices.

Topic Page

4.1 EPROM Operation 4-2.

4.2 FAST Programming Algorithm 4-4.

4.3 Programming an EPROM Module Through a Serial Data Link
Using the JTAG Feature 4-5.

4.4 Programming an EPROM Module With Controller’s Software 4-6.

4.5 Code 4-8.

Chapter 4

EPROM Operation

4-2 EPROM Programming

4.1 EPROM Operation

The CPU acquires data and instructions from the EPROM. When the
programming voltage is applied to the TDI/VPP terminal, the CPU can also
write to the EPROM module. The process of reading the EPROM is identical
to the process of reading from other internal peripheral modules. Both
programming and reading can occur on byte or word boundaries.

4.1.1 Erasure

The entire EPROM may be erased before programming begins. Erase the
EPROM module by exposing the transparent window to ultraviolet light.

Note: EPROM Exposed to Ambient Light (1)

Since normal ambient light contains the correct wavelength for erasure,
cover the transparent window with an opaque label when programming a
device. Do not remove the table until it has to be erased. Any useful data in
the EPROM module must be reprogrammed after exposure to ultraviolet
light.

The data in the EPROM module can be programmed serially through the
integrated JTAG feature, or through software included as a part of the
application software. The JTAG features an internal mechanism for security,
provided by the implemented fuse. Once the security fuse is activated, the
device cannot be accessed through the JTAG functions. The JTAG is
permanently operating in the bypass mode.

Refer to the appropriate data sheet for more information on the fuse imple-
mentation.

4.1.2 Programming Methods

The application must provide an external voltage supply to the TDI/VPP
terminal to provide the necessary voltage and current for programming. The
minimum programming time is noted in the electrical characteristics of the
device data sheets.

The EPROM control register EPCTL controls the EPROM programming, once
the external voltage is supplied. The erase state is a 1. When EPROM bits are
programmed, they are read as 0.

The programming of the EPROM module can be done for single bytes, words,
blocks of individual length, or the entire module. All bits that have a final level
of 0 must be erased before the EPROM module is programmed. The program-
ming can be done on single devices or even in-system. The supply voltage
should be in the range required by the device data sheet but at least the maxi-
mum supply voltage of the target application. The levels on the JTAG terminals
are defined in the device data sheet, and are usually CMOS levels.

EPROM Operation

4-3EPROM Programming

Example 4–1.MSP430 On-Chip Program Memory Format

D E F 0

9 A B C

5 6 7 8

1 2 3 4

D E

F 0

9 A

B C

5 6

7 8

1 2

3 4

xxxAh

xxx8h

xxx6h

xxx4h

xxxBh

xxxAh

xxx9h

xxx8h

xxx7h

xxx6h

xxx5h

xxx4h

Word Format Byte Format

4.1.3 EPROM Control Register EPCTL

Figure 4–1. EPROM Control Register EPCTL

7 0

r–0

EPCTL
054h

r–0 r–0 r–0 r–0 rw–0 rw–0r–0

VPPS EXE

For bit 0, the executable bit EXE initiates and ends the programming to the
EPROM module. The external voltage must be supplied to the TDI/VPP or
Test/VPP before the EXE bit is set. The timing conditions are noted in the data
sheets.

For bit 1, when the VPPS bit is set, the external programming voltage is con-
nected to the EPROM module. The VPPS bit must be set before the EXE bit
is set. It can be reset together with the EXE bit. The VPPS bit must not be
cleared between programming operations.

Note:

Ensure that no VPP is applied to the programming voltage pin (TDI/VPP or
Test/VPP) when the software in the device is executed or when the JTAG is
not fully controlled. Otherwise, an undesired write operation may
occur.

EPROM Operation

4-4 EPROM Programming

4.1.4 EPROM Protect

The EPROM access through the serial test and programming interface JTAG
can be inhibited when the security fuse is activated. The security fuse is acti-
vated by serial instructions shifted into the JTAG. Activating the fuse is not re-
versible and any access to the internal system is disrupted. The by-pass func-
tion described in the standard IEEE 1149.1 is active.

4.2 FAST Programming Algorithm

The FAST programming cycle is normally used to program the data into the
EPROM. A programmed logical 0 can be erased only by ultraviolet light.

Fast programming uses two types of pulses: prime and final. The length of the
prime pulse is typically 100 �s (see the latest data sheet). After each prime
pulse, the programmed data are verified. If the verification fails 25 times, the
programming operation was false. If correct data are read, the final program-
ming pulse is applied. The final programming pulse is 3 times the number of
prime pulses applied.

Example 4–2.Fast Programming Subroutine

Start Of Subroutine

VPP at TDI/VPP is Switched to EPROM: Set VPPS Bit
Load Loop Into R_Count, Loop = 25

Write Data From BurnByte To EPROM
Program One Prime Pulse (typ. 100 µs)

Verify Byte
YesNo

Final Programming Pulse
Applied:

3-Times N Prime Pulse

R_Count = R_Count –1

R_Count >0
Yes

No

Invert Data in BurnByte
Use Invert BurnByte for

Error Indication

End Of Subroutine: RET

EPROM Operation

4-5EPROM Programming

4.3 Programming an EPROM Module Through a Serial Data Link Using the
JTAG Feature

The hardware interconnection of the JTAG terminals is established through
four separate terminals, plus the ground or VSS reference level. The JTAG ter-
minals are TMS, TCK, TDI(/VPP), and TDO(/TDI).

Figure 4–2. EPROM Programming With Serial Data Link

TMS

TCK

TDI/VPP†

TDO/TDI‡

Xout/TCLK

VCC/DVCC

AVCC

VSS/DVSS

AVSS

MSP430Xxxx68 k

VCC/
DVCC

1 k

27

SN74HCT125
Level Shifter

SN74HCT125

VPP§

(12.5 V/70 mA)

TMS

TCK

TDI

TDO

TCLK

Switches shown for programming situation

† TDI in standard mode, VPP input during programming
‡ TDO in standard mode, data input TDI during programming
§ See electrical characteristics in the latest data sheet

EPROM Operation

4-6 EPROM Programming

4.4 Programming an EPROM Module With Controller’s Software

The procedure for programming an EPROM module is as follows:

1) Connect the required supply to the TDI/VPP terminal.

2) Run the proper software algorithm.

The software algorithm that controls the EPROM programming cycle cannot
run in the same EPROM module to which the data are being written. It is impos-
sible to read instructions from the EPROM and write data to it at the same time.
The software needs to run from another memory such as a ROM module, a
RAM module, or another EPROM module.

Figure 4–3. EPROM Programming With Controller’s Software

TMS†

TCK†

TDI/VPP‡

TDO/TDI§

VSS/DVSS

AVSS

MSP430Xxxx68 k

VPP§

(11.5 V/70 mA) 68 k

† Internally a pullup resistor is connected to TMS and TCK
‡ ROM devices of MSP430 have an internal pullup resistor at pin TDI/VPP.

MSP430Pxxx or MSP430Exxx have no internal pullup resistor. They should be terminated
according to the device data sheet.

§ The TDO/TDI pin should be terminated according to the device data sheet.

VSS

VSS

4.4.1 Example

The software example writes one byte into the EPROM with the fast program-
ming algorithm. The code is written position-independent, and will have been
loaded to the RAM before it is used. The programming algorithm runs during
the programming sequence in the RAM, thus avoiding conflict when the
EPROM is written. The data (byte) that should be written is located in the RAM
address BurnByte. The target address of the EPROM module is held in the
register pointer defined with the set directive. The timing is adjusted to a cycle
time of 1�s. When another cycle time/processor frequency is selected, the
software should be adjusted according to the operating conditions.

EPROM Operation

4-7EPROM Programming

Example 4–3.Programming EPROM Module With Controller’s Software

yyyy

DE

F0

9A

BC

56

78

12

34

DE

F0

9A

BC

56

78

12

34

xxxxR9

Example: Write data in yyyy into location xxxx
BumByte = (yyyy) = (9Ah)
R9 = xxxx

The target EPROM module cannot execute the programming code sequence
while the data are being written into it. In the example, a subroutine moves the
programming code sequence into another memory, for example, into the
RAM.

Example 4–4.Subroutine

Start Of Subroutine: Load_Burn_Routine

Source Start Address Of The Code Sequence>>R7
Destination Start Address Of The Code Sequence>> R10

Move One Word: (R7) >> (R10)
Increment Source and Dest. Pointer in R7 and R10

End Of Source Code?

End Of Subroutine: RET

Yes

No

Code

4-8 EPROM Programming

4.5 Code

;–––
; Definitions used in Subroutine :
; Move programming code sequence into RAM (load_burn_routine)
; Burn a byte into the EPROM area (Burn_EPROM)
;–––

EPCTL .set 054h ; EPROM Control Register
VPPS .set 2 ; Program Voltage bit
EXE .set 1 ; Execution bit
BurnByte .set 0220h ; address of data to be written
Burn_orig .set 0222h ; Start address of burn

; program in the RAM
loops .set 25
r_timer .set r8 ; 1us = 1 cycle
pointer .set r9 ; pointer to the EPROM address

; r9 is saved in the main routine
; before subroutine call is executed

r_count .set r10
lp .set 3 ; dec r_timer : 1 cycle : loop_t100

; jnz : 2 cycles : loop_t100
ov .set 2 ; mov #(100–ov)/lp,r_timer : 2 cycles

; Load EPROM programming sequence to another location e.g. RAM, Subroutine

;––– The address of Burn_EPROM (start of burn EPROM code) and
;––– the address of Burn_end (end of burn EPROM code) and
;––– the start address of the location of the destination
;––– code area (RAM_Burn_EPROM) are known at assembly/linking time

RAM_Burn_EPROM .set Burn_orig
load_burn_routine

push r9
push r10
mov #Burn_EPROM,R9 ; load pointer source
mov #RAM_Burn_EPROM,R10 ; load pointer dest.

load_burn1
mov @R9,0(R10) ; move a word
incd R10 ; dest. pointer + 2
incd R9 ; source pointer + 2
cmp #Burn_end,R9 ; compare to end_of_table
jne load_burn1
pop r9
pop r10
ret

; Program one byte into EPROM, Subroutine

;––– Burn subroutine: position independent code is needed
; since in this examples it is shifted to RAM >> only
;–– relative addressing, relative jump instructions, is used!
;––– The timing is correct due to 1us per cycle

Burn_EPROM
dint ; ensure correct burn timing
mov.b #VPPS,&EPCTL ; VPPS on
push r_timer ; save registers
push r_count ; programming subroutine
mov #loops,r_count ; 2 cycles = 2 us

Repeat_Burn
mov.b &BurnByte,0(pointer) ; write to data to EPROM

Code

4-9EPROM Programming

; 6 cycles = 6 us
bis.b #EXE,&EPCTL ; EXE on

; 4 cycles = 4 us
; total cycles VPPon to EXE
; 12 cycles = 12 us (min.)

mov #(100–ov)/lp,r_timer ;:programming pulse of 100us
wait_100 ;:starts, actual time 102us

dec r_timer ;:
jnz wait_100 ;:
bic.b #EXE,&EPCTL ;:EXE / prog. pulse off

mov #4,r_timer ;:wait min. 10 us
wait_10 ;:before verifying

dec r_timer ;:programmed EPROM
jnz wait_10 ;:location, actual 13+ us

cmp.b &BurnByte,0(pointer) ; verify data = burned data
jne Burn_EPROM_bad ; data ‡ burned data > jump

; Continue here when data correctly burned into EPROM location
mov.b &BurnByte,0(pointer) ; write to EPROM again
bis.b #EXE,&EPCTL ; EXE on
add #(0ffffh–loops+1),r_count

; Number of loops for
; successful programming

final_puls
mov #(300–ov)/lp,r_timer ;:programming pulse of

wait_300 ;:3*100us*N starts
dec r_timer ;:
jnz wait_300 ;:
inc r_count ;:
jn final_puls ;:
clr.b &EPCTL ;:EXE off / VPPS off
jmp Burn_EPROM_end

Burn_EPROM_bad
dec r_count ; not ok : decrement

; loop counter
jnz Repeat_Burn ; loop not ended : do

; another trial
inv.b &BurnByte ; return the inverted data

; to flag
; failing the programming
; attempt the EPROM address
; is unchanged
;

Burn_EPROM_end
pop r_count
pop r_timer
eint
ret

Burn_end

5-1Flash Memory

Flash Memory

This chapter describes the MSP430 flash memory module. The flash memory
module is electrically erasable and programmable. Devices with a flash
memory module are multiple-time programmable devices (MTP). They can be
erased and programmed off-board, or in a system via the MSP430’s JTAG pe-
ripheral module or via the processor’s resources.

Software running on an MSP430 device can erase and program the flash
memory module. This active software may run in RAM, in ROM, or in the flash
memory. The flash memory may be a different memory module or the same
memory module. The active software may not be in a memory location which
is actively erased.

Topic Page

5.1 Flash Memory Organization 5-2.

5.2 Flash Memory Data Structure and Operation 5-5.

5.3 Flash Memory Control Registers 5-13.

5.4 Flash Memory, Interrupt, and Security Key Violation 5-18.

5.5 Flash Memory Access via JTAG and Software 5-22.

Chapter 5

Flash Memory Organization

5-2 Flash Memory

5.1 Flash Memory Organization

The flash memory may have one or more modules of different sizes as shown
in Figure 5–1. A module is a physical memory unit that operates independent
from other modules. In an MSP430 configuration with more than one flash
memory module, all modules are located in one linear-address range.

Figure 5–1. Interconnection of Flash Memory Module(s)

ROM RAM

CPU
Incl. 16 Reg.

Test
JTAG

Flash
Memory

Module 1

MAB, 16 Bit

MDB, 16 Bit

TDI

TDO/TDI

TMS

TCK

Test/VPP
Flash

Memory

Module 2

To Other
Peripheral
Modules

Optional

Independent modules, such as Module1 and Module2, are intended to
execute software code from one module while simultaneously programming
or erasing another module.

Note: Flash Memory Module(s) in MSP430 Devices

Different devices may have one or more flash memory modules.

If the active software and the target programming location are in the same flash
memory module, the program execution is halted (flag BUSY=1) until the pro-
gramming cycle is completed (flag BUSY=0). Then it proceeds with the next
instruction. The active software may also erase segments of the flash memory
module. The user should be careful not to erase memory locations that are
necessary to execute the software correctly.

A flash memory module, being programmed or erased, can not be accessed.

Flash Memory Organization

5-3Flash Memory

Figure 5–2 shows the flash memory Module1 in program or erase operation.
During this operation the module is disconnected from the memory address
bus and memory data bus. When a second module (here Module2) is
implemented, program code in this module can be executed while Module1 is
disconnected.

Figure 5–2. Flash Memory Module1 Disabled, Module2 Can Execute Code
Simultaneously

ROM RAM

CPU
Incl. 16 Reg.

Test
JTAG

Flash
Memory

Module 1

MAB, 16 Bit

MDB, 16 Bit

TDI

TDO/TDI

TMS

TCK

Test/VPP
Flash

Memory

Module 2

To Other
Peripheral
Modules

Optional

One MSP430 flash memory module will have, in addition to its code segments,
extra flash memory called information memory. The implementation is shown
in Figure 17–3.

Flash Memory Organization

5-4 Flash Memory

Figure 5–3. Flash Memory Module Example

FFFFh

 Flash Memory

F000h

010FFh

01000h

 4Kbyte + 256Byte

 ONE module

4-kbyte
Flash

Memory

256-byte
Flash Memory

A module has several segments. The information memory has two segments
of 128 bytes each. In the example in Figure 5–4, the 4-kB module has eight
segments of 512 bytes (Segment0 to Segment7), and two 128-byte segments
(SegmentA and SegmentB). Segment0 to Segment7 can be erased
individually or as a group. SegmentA and SegmentB can be erased
individually or as a group with segments 0 to 7.

The segment structure is described in the device’s data sheet. The information
memory can be located directly below the main memory’s address, or at a
different address but will be in the same module.

Note:

Flash memory modules may have different numbers of segments. Segment
are numbered from 0 up to n, e.g., segment 0 to segment n.

Flash Memory Data Structure and Operation

5-5Flash Memory

Figure 5–4. Segments in Flash Memory Module, 4K-Byte Example

FFFFh

 Flash Memory

F000h

010FFh

01000h

One Module

Segment0

Segment1

Segment2

Segment3

Segment4

Segment5

Segment6

Segment7

SegmentA

SegmentB

FFFFh

 Flash Memory

F000h

010FFh

01000h

 4Kbyte + 256Byte
One Module

FE00h
FDFFh
FC00h

Several Segments

256-byte
Flash

4-kbyte
Flash

Main Memory

Information
Memory

5.1.1 Why Is a Flash Memory Module Divided Into Several Segments?

Once a bit in flash memory has been programmed, it cannot be erased without
erasing a whole segment. For this reason, the MSP430 flash memory modules
have been heavily segmented to allow erasing and reprogramming of smaller
memory segments.

5.2 Flash Memory Data Structure and Operation

The flash memory can be read and written (programmed) in bytes or words.
Bits can be written as 0s once between erase cycles. The read access does
not differ from access to masked ROM or RAM. Flash memory has restrictions
in write operation:

� The default (erased) level for all bits is 1. Bits that are not programmed to
0s can be programmed to 0s at any time.

� The smallest memory portion to be erased is a segment. No single byte
or word erase is possible.

� Access to a flash memory module is only possible when the module is not
in a write or erase operation. For example, program code can not be
executed in a module while it is processing a write or erase operation. The
access limitation has no critical impact on program execution, but an
access violation can be flagged in some situations (see flash memory
register section in this chapter).

Flash Memory Data Structure and Operation

5-6 Flash Memory

5.2.1 Flash Memory Basic Functions

The basic functions of flash memory are to:

� Supply program code and data during program execution

� Erase, under software or JTAG control, parts of a module (one segment),
multiple segments, or an entire module.

� Write data to a memory location under software or JTAG control. A double-
speed programming sequence is implemented within a 64-byte section of
the address range xx00h to xx3fh.

5.2.2 Flash Memory Block Diagram

The flash memory module has a minimum of three control registers, a timing
generator, a voltage generator to supply program and erase voltages, and the
flash memory itself. Data and address are latched when execution of a write
(program) or erase operation is in progress.

Figure 5–5. Flash Memory Module Block Diagram

Enable
Data Latch

Enable
Address
Latch

Address Latch Data Latch

MAB
MDB

FCTL1

FCTL2

FCTL3

Timing
Generator

Programming
Voltage

Generator

Flash
Memory

Array

5.2.3 Flash Memory, Basic Operation

The flash memory module works in read mode most of the time, the address
and data latch are transparent, and the timing generator and programming
voltage generator are off. The flash memory module changes its mode of
operation when data is written (programmed) to the module, or when the flash
memory, or parts of it, are erased. In these situations, flash control registers
FCTL1, FCTL2, and FCTL3 need to be set up properly to ensure correct write

Flash Memory Data Structure and Operation

5-7Flash Memory

or erase operation. Once these registers are set up and write or erase is
started, the timing generator controls the entire operation and applies all
signals internally. If the BUSY control signal is set, it indicates that the timing
generator is active and a write or erase cycle is active. The segment write
mode also uses a second control bit WAIT. There are three basic parts to a
write or erase cycle: preparation of program/erase voltage, control timing for
the program or erase operation, and the switch-off sequence of the
program/erase voltage. Once a write or erase function is started, the software
should not access the flash memory until the BUSY signal indicates, with 0,
that it can be accessed again. In critical situations where flash programming
or erase should be immediately stopped, the emergency exit bit EMEX can be
set. The current operation may be incomplete or the result may be incorrect.

Two different clock sources (ACLK, MCLK, or SMCLK) can be selected to
clock the timing generator. The connected clock sources applied to the timing
generator may vary with the device, see data sheet for details. The clock
source selected should be active from the beginning of write or erase until the
operation is fully completed.

Figure 5–6. Block Diagram of the Timing Generator in the Flash Memory Module

0

2
3

SSEL1
SSEL0

1

FN5 FN0

fx

PUC...........
Write ‘1’ to

EMEX

Flash Timing Generator
Divider, 1–64

Busy Wait

ACLK
MCLK

SMCLK
SMCLK

Reset

The selected clock source should be divided to meet the frequency require-
ment fx of the flash timing generator.

If the clock signals are not available throughout the duration of the write or
erase operation, or their frequencies change drastically, the result of the write
or erase may be marginal, or the flash memory module may be stressed above
the limits of reliable operation.

Table 5–1 shows all useful combinations of control bits for proper write and
erase operation:

Flash Memory Data Structure and Operation

5-8 Flash Memory

Table 5–1.Control Bits for Write or Erase Operation

FUNCTION PERFORMED SEGWRT WRT Meras Erase BUSY WAIT Lock

Write word or byte 0 1 0 0 0 0 0

Write word or byte in same segment, segment

write mode

1 1 0 0 0 1 0

Erase one segment by writing to any address

in the target segment (0 to n or A or B)

0 0 0 1 0 0 0

Erase all segments (0 to n) but not the informa-

tion memory (SegmentA and SegmentB)

0 0 1 0 0 0 0

Erase all segments (0 to n and A and B) by writ-

ing to any address in the flash memory module

0 0 1 1 0 0 0

Note: A write to flash memory performed with any other combination of bits SEGWRT, WRT, Meras, Eras, BUSY, WAIT, and
Lock will result in an access violation. ACCVIFG is set and an NMI is requested if ACCVIE=1.

5.2.4 Flash Memory Status During Code Execution

The flash memory module delivers data for code execution in the same
manner as any masked ROM or RAM. The flash memory module should be
in read mode, with no write (programming) or erase operation active. By
default, power-on reset (POR) puts the flash memory into read mode. No
control bits need to be defined in the flash memory control registers after POR
for code execution.

5.2.5 Flash Memory Status During Erase

The default bit level of the flash memory is 1. Any successful erase sets all bits
of a segment or a block to this default level. Once a bit is programmed to the
0-level, only the erase function can reset it back to 1. Erase can be performed
for one segment, a group of segments, or for an entire module. This can vary
for each device configuration, and the exact implementation should be noted
in the data sheet.

The erase operation starts with the following sequence:

1) Set the correct input-clock frequency of the timing generator by selecting
the clock source and predivider.

2) Reset the LOCK control bit, if set.

3) Watch the BUSY bit. Continue to the next steps only if the BUSY bit is
reset.

4) Set the erase control bit Erase to erase a segment, or

5) Set the mass-erase control bit MEras to erase a group of segments or

6) Set the mass-erase (MEras) and erase (Erase) control bits to erase the
entire flash memory

7) Execute a dummy write to any address in the range to be erased.

Flash Memory Data Structure and Operation

5-9Flash Memory

The dummy write starts the erase cycle. An example of dummy write is
CLR &0F012h.

Note that a dummy write is ignored in a segment where the selected operation
can not be executed successfully.

An example of such a situation can take place when Segment 1 is to be erased:
the control bits are set properly, but the dummy write is sent to the information
memory. No flag indicates this unsuccessful erase situation.

Figure 5–7. Basic Flash EEPROM Module Timing During the Erase Cycle

BUSY

Generate
Erase Voltage

Erase Operation Active

Entire Erase Cycle Timing Erase Voltage
Remove

Time of Increased Current Consumption From Supply, VCC

Mass Erase: t(erase) = 5296/fx; Page Erase: t(erase) = 4817/fx

The erase cycle completes successfully when none of the following restric-
tions is violated:

� The selected clock source is available until the cycle is completed

� The predivider should not be modified during the operation

� No further access to the flash memory module is performed while BUSY
is set

� No read of data from this block
� No write into this block
� No further erase of this block

An access will result in setting the KEYV bit and requesting an NMI inter-
rupt. The NMI interrupt routine should handle such violations.

� The supply voltage should be within the devices’ electrical specifications
defined in the respective data sheet; however, slight variations can be
tolerated.

Control bit BUSY indicates an active erase cycle. It is set immediately after a
dummy write starts the timing generator. It remains set until the entire erase
cycle is completed and the erased segment or block is ready to be accessed
again. The BUSY bit can not be set by software. But it can be reset. In case
of emergency, set the emergency exit (EMEX) bit and the erase operation will
be stopped immediately; BUSY bit is reset. One example of stop erase by soft-
ware is when the supply voltage drops drastically and the operating conditions
of the controller are exceeded. Another example is when the timing of the
erase cycle gets out of control, for example, when the clock-source signal is
lost.

Flash Memory Data Structure and Operation

5-10 Flash Memory

Note:

When the erase cycle is stopped before its normal completion by the hard-
ware, the timing generator is stopped and erasure of the flash memory can
be marginal. An incomplete erasure can be verified. But an erase level of 1
can be inconsistently read as valid when supply voltage, temperature, ac-
cess time (instruction execution, data read), and frequency vary.

5.2.6 Flash Memory Status During Write (Programming)

The flash memory erase bit level is 1. Bits can only be written (programmed)
to a 0-level. Once a bit is programmed, only the erase function can reset it back
to the 1-level. The byte or word 0-level can not be written (programmed) in one
cycle. Any bit can be programmed from 1 to 0 at any time, but not from 0 to 1.

Two slightly different write operations can be performed: write a single byte or
word of data, or write a sequence of bytes or words. A write sequence of bytes
or words can be performed as multiple sequential, or as a segment write. The
segment write is approximately twice as fast as a multiple sequential write al-
gorithm.

The write (program) operation starts with the following sequence:

� Set the correct input clock frequency of the timing generator by selecting
the clock source and predivider.

� Reset the LOCK control bit, if set

� Watch the BUSY bit. Continue with the next steps only if the BUSY bit is
reset.

� Set the write-control bit WRT when a single byte of word data is to be writ-
ten.

� Set the write WRT and SEGWRT control bits when segment write is cho-
sen to write multiple bytes or words to the flash memory module.

� Writing the data to the selected address starts the timing generator.
The data is written (programmed) while the timing generator proceeds.

Note:

Whenever the write cycle is stopped before its normal ending by the hard-
ware, the timing generator is stopped and the data written to the flash
memory can be marginal. The data may be incorrect, which can be verified,
or the data are verified to be correct but the programming is marginal. Read-
ing of the data may be inconsistently valid when varying the supply voltage,
the temperature, the access time (instruction execution, data read), or the
time.

Flash Memory Data Structure and Operation

5-11Flash Memory

Figure 5–8. Basic Flash Memory Module Timing During Write (Single Byte or Word) Cycle

ÎÎ
ÎÎ

Î
Î

BUSY

Generate
Programming Voltage

Programming Operation Active

Entire Programming Cycle Timing Programming Voltage
Remove

Time of Increased Current Consumption From Supply, VCC

t(prog) = 33/fx

Figure 5–9. Basic Flash Memory Module Timing During a Segment-Write Cycle

t(prog3) = 5/fx

BUSY

WAIT

Generate
Programming Voltage

Programming Operation Active

Entire Programming Cycle Timing

Programming Voltage

t(prog_all) ∼=< 25ms

Remove

Time of Increased Current Consumption From Supply, VCC

t(prog1) = 30/fx t(prog2) = 20/fx t(prog2) = 20/fx

Write to Flash e.g., MOV #123h, &Flash

SEGWRT bit

The segment write can be used on sequential addresses of the memory
module. One segment is 64 bytes long, starting at 0xx00h, 0xx40h, 0xx80h,
or 0xxC0h, and ending at 0xx3Fh, 0xx7Fh, 0xxBFh, or 0xxFFh. Examples of
sequential segment addresses are:

0F000h to 0F03Fh, 0F040h to 0F07Fh,0F080h to 0F0BFh,
0F0C0h to 0F0FFh, 0F100 to 0F13Fh,

The segment-write (program) operation at the 64-byte boundaries needs spe-
cial software support (test of address 0xx3Fh, 0xx7Fh, 0xxBFh, or 0xxFFh was
successful):

� Wait until the WAIT bit is set, indicating that the write of the last byte or word
was completed.

� Reset control bit SEGWRT.

� The BUSY bit remains set until the programming voltage is removed from
the flash memory module and overstress is avoided.

� Wait the recovery time t(rcv) before another segment write is started.

Flash Memory Data Structure and Operation

5-12 Flash Memory

The write cycle is successfully completed if none of the following restrictions
is violated:

� The selected clock source is available until the cycle is completed.

� The predivider is not modified.

� The access to the flash memory module is restricted as long as BUSY is
set.

The conditions to read data from the flash memory with and without access
violation are listed in Table 5–2.

Table 5–2.Conditions to Read Data From Flash Memory

Flash Operation Instruction
Fetch

(see Note 1)

BUSY WAIT Data on Memory Data
Bus (MDB)

Action

Byte/word program
cycle (see Note 2)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

Flash read mode 0 0 Memory contents from
applied address

PC = PC + 2

Page erase cycle
(see Note 3)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

Mass-erase cycle
(see Note 3)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

All erase (mass and in-
formation memory)

No 1 0 3FFF Access violation

Yes 1 0 3FFF → JMP $ Nothing

Segment write
(see Note 4)

N.A. 1 0 3FFF Access violation and
LOCK (see Note 5)

No 1 1 3FFF Nothing

Yes 1 1 3FFF Access violation and
LOCK (see Note 5)

Notes: 1) Instruction fetch refers to the fetch part of an instruction, and reads one word. The instruction fetch reads the first
word of instructions with more than one word. The JMP instruction has one word. The data fetched (3FFFh) is used
by the CPU as an instruction.

2) Ensure that the programmed data does not result in unpredictable program execution, such as destruction of
executable code sequences.

3) If the PC points to the memory location being erased, no access violation indicates this situation. After erase, no
executable code is available and an unpredictable situation occurs.

4) Any software located in a flash memory module can not use the SEGWRT mode to program the same flash memory
module. Using the byte or word programming mode allows programming data in the flash memory module holding
the software code currently executing.

5) The access violation sets the LOCK bit to 1. Setting the LOCK bit allows completion of the active segment write
operation in the normal manner.

Flash Memory Control Registers

5-13Flash Memory

� The supply voltage should be within the devices’ electrical conditions and
can only vary slightly, as specified in the applicable data sheet

The control bit BUSY indicates that the write or segment-write cycle is active.
It is set by the instruction that writes data to the flash memory module and
starts the timing generator. It remains set until the write cycle is completed and
the programming voltage is removed. In the write mode the BUSY bit indicates
if the flash memory is ready for another write operation. In segment write mode
the WAIT bit indicates if the flash memory is ready for another write operation
and the BUSY bit indicates the segment write operation is completed. In case
of emergency, the emergency exit bit EMEX is set and stops the write cycle
immediately. The programming voltage is switched off. One situation where
the write cycle should be stopped by software is when the supply voltage drops
drastically and the controller’s operating conditions may be exceeded. Anoth-
er case is when the flash memory timing gets out of control, as when the clock-
source signal is lost.

Note:

Whenever the write cycle is stopped before its normal ending by the hard-
ware, the timing generator is stopped and the data written in flash memory
may be marginal. Data reading may be inconsistently valid when varying the
supply voltage, the temperature, the access time (instruction execution, data
read), or the time.

5.3 Flash Memory Control Registers

Defining the correct control bits of three control registers enables write (pro-
gram), erase, or mass-erase. All three registers should be accessed using
word instructions only. The control registers are protected against false write
or erase cycles via a key word. Any violation of this keyword sets the KEYV
bit and requests a nonmaskable interrupt (NMI). The keyword is different from
the keyword used with the Watchdog Timer.

All control bits are reset during PUC. PUC is activated after VCC is applied, a
reset condition is applied to the RST/NMI pin or watchdog, or a flash operation
was not performed normally.

5.3.1 Flash Memory Control Register FCTL1

Any write to control register FCTL1 during erase, mass-erase, or write (pro-
gramming) will end in an access violation with ACCVIFG=1. In an active seg-
ment-write mode, the control register can be written if wait mode is active
(WAIT=1). In an active segment write mode and while WAIT=0, writing to con-
trol register FCTL1 will also end in an access violation with ACCVIFG=1.

Read access is possible at any time without restrictions.

Any write to control register FCTL1 during erase, mass-erase, or write (pro-
gramming) will end in an access violation with ACCVIFG=1. In an active seg-

Flash Memory Control Registers

5-14 Flash Memory

ment write mode, the control register can be written if wait mode is active
(WAIT=1). In an active segment write mode and while WAIT=0, writing to con-
trol register FCTL1 will also end in an access violation with ACCVIFG=1.

Read access is possible at any time without restrictions.

The control bits of control register FCTL1 are:
7 0

rw–0 rw–0 r0 r0 r0 rw–0 rw–0 r0
0128h

FCTL1
15 8

FCTL1 read:
FCTL1 write:

0 9 6 h
0 A 5 h

EraseMEras
SEG
WRT WRT res. res.res.res.

Erase 0128h, bit1, Erase a segment

0: No segment erase is started.

1: Erase of one segment is enabled. The segment n to be erased is
defined by a dummy write into any address within the segment.
The erase bit is automatically reset when the erase operation is
completed.

Note: Instruction fetch access during erase is allowed. Any other
access to the flash memory during erase results in setting the
ACCVIFG bit, and an NMI interrupt is requested. The NMI
interrupt routine should handle such violations.

MEras 0128h, bit2, Mass-erase, Segment0 to Segmentn are erased together.

0: No erase is started

1: Erase of Segment0 to Segmentn is enabled. When a dummy write
into any address in Segment0 to Segmentn is executed, mass-
erase is started. The MEras bit is automatically reset when the
erase operation is completed.

Note: Instruction fetch access during mass-erase is allowed. Any other
access to the flash memory during erase results in setting the
ACCVIFG bit, and an NMI interrupt is requested. The NMI
interrupt routine should handle such violations.

WRT 0128h, bit6, The bit WRT should be set to get a successful write execution.

If bit WRT is reset and write access to the flash memory is performed,
an access violation occurs and ACCVIFG is set.

Note: Instruction fetch access during erase is allowed. Any other
access to the flash memory during erase results in setting the
ACCVIFG bit, and an NMI interrupt is requested. The NMI
interrupt routine should handle such violations.

SEGWRT 0128h, bit7, Bit SEGWRT can be used to reduce total programming time.

The segment-write bit SEGWRT is useful if larger sequences of data
have to be programmed. If programming of one segment is completed,
a reset and set sequence should be performed to enable access to the
next segment. The WAIT bit should be high before the next write
instruction is executed. See also paragraph 16.1.1 and Figure 5–9.

0: No segment write accelerate is selected.

1: Segment write is used. This bit needs to be reset and set between
segment borders.

Flash Memory Control Registers

5-15Flash Memory

5.3.2 Flash Memory Control Register FCTL2

A PUC resets the flash timing generator. The generator is also reset if the
emergency exit bit EMEX is set.

The timing generator generates the timing necessary to write, erase, and
mass-erase from a selected clock source. Two control bits SSEL0 and SSEL1
in control register FCTL2 can select one of three clock sources. The clock
source selected should be divided to meet the frequency requirements for fx,
as specified in the device’s data sheet.

Writing to control register FCTL2 should not be attempted if the BUSY bit is set;
otherwise an access violation will occur (ACCVIFG=1). Read access to FCTL2
is possible at any time without restrictions.

7 0

rw–0 rw–1 rw–0 rw–0 rw–0 rw–0 rw–1 rw–0
012Ah

FCTL2
SSEL1

15 8

FCTL2 read:
FCTL2 write:

0 9 6 h
0 A 5 h

SSEL0 FN5 FN4 FN3 FN2 FN1 FN0

The control bits are:

FN0
to

012Ah, bit0, These six bits define the division rate of the clock signal. The division
rate can be 1 to 64, depending on the digital value of FN5 to FN0

FN5 012Ah, bit5, plus one

SSEL0 012Ah, bit0, Determine the clock source

SSEL1 0: ACLK

1: MCLK

2,3 SMCLK

Flash Memory Control Registers

5-16 Flash Memory

5.3.3 Flash Memory Control Register FCTL3

There are no restrictions on modifying this control register. The control bits are
reset or set (WAIT) by a PUC, but key violation bit KEYV is reset by POR.

7 0

KEYV

15 8

BUSYLock
ACCV

IFG
EMEXres.res.

FCTL3

012Ch

FCTL3 read:
FCTL3 write:

096h
0A5h

r0 r0 rw–0 rw–1 r–1 rw–0 rw–(0) r(w)–0

WAIT

BUSY 0128h, bit0, The bit BUSY shows if an access to the flash memory is possible
(BUSY=0), or if an access violation can occur. The BUSY bit is read
only, but a write operation is allowed. The BUSY bit should be tested
before each write and erase cycle. The flash-timing generator
hardware immediately sets the BUSY bit after the start of a write
operation, a segment-write operation, a segment erase, or a mass-
erase. Once the timing generator has completed its function, the BUSY
bit is reset by hardware.

The program and erase timing are shown in Figures 5–7, 5–8, and 5–9.

0: Flash memory is not busy. Read, write, erase and mass-erase are
possible without any violation of the internal flash timing. The
BUSY bit is reset by POR and by the flash timing generator.

1: Flash memory is busy. Remains in busy state if segment write
function is in wait mode.

The conditions for access to the flash memory during BUSY=1 are
described in paragraph 5.2.6.

KEYV, 012Ch, bit1, Key Violated.

0: Key 0A5h (high byte) was not violated.

1: Key 0A5h (high byte) was violated. Violation occurs when a write
access to register FCTL1, FCTL2 or FCTL3 is executed and the
high byte is not equal to 0A5h. If the security key is violated, bit
KEYV is set and a PUC is performed. The KEYV bit can be used
to determine the source that forced a start of the program at the
reset vector’s address. The KEYV bit is not automatically reset and
should reset by software.

Note:Any key violation results in a PUC, independent of the state of the
KEYV bit. To avoid endless software loops, the flash memory
control registers should not be written during a key violation
service routine.

Note:The software can set the KEYV bit. A PUC is also performed if
it is set by software.

Flash Memory Control Registers

5-17Flash Memory

ACCVIFG bit2, Access violation interrupt flag

The access-violation interrupt flag is set when the flash memory
module is improperly accessed while a write or erase operation is
active. The violation situations are described in paragraph 5.2.3. When
the access-violation interrupt-enable bit is set, the interrupt-service
request is accepted and the program continues at the NMI
interrupt-vector address.

Reading the control registers will not set the ACCVIFG bit.

Note:The proper interrupt-enable bit ACCVIE is located in interrupt-
enable register IE1 of the special-function register. Software can
set the ACCVIFG bit; in this case, an NMI is also executed.

WAIT 012Ch, bit3, Wait. In the segment write mode the WAIT bit indicates that the flash
memory is ready to receive the (next) data for programming. The WAIT
bit is read only, but a write to the WAIT bit is allowed.

The WAIT bit is automatically reset if the SEGWRT bit is reset or the
LOCK bit is set. Segment-write operation is completed, and then the
WAIT bit returns to 1.

Condition, SEGWRT=1 (see Figure 5-9):
After each successful write operation, the BUSY bit is reset to indicate
that another byte or word can be written (programmed). The BUSY bit
does not indicate the condition when the timing generator has
completed the entire programming. The high-voltage portion and
voltage generator remain active. The maximum time t(CPT) should not
be violated.

0: Segment-write operation has started and programming is in
progress.

1: Segment-write operation is active and programming of data is
completed. Waiting for the next data to be programmed.

Lock 012Ch, bit4, The lock bit can be set during any write, erase of a segment, or
mass-erase request. The active sequence is completed normally. In
segment-write mode, if the lock bit is set and SEGWRT and WAIT are
set, the SEGWRT and WAIT bits are reset and the mode ends
normally. The WAIT bit is 1 after segment-write mode has ended.
Software or hardware can control the lock bit. If an access violation
occurs (see conditions described in paragraph 16.1.1), the ACCVIFG
and the lock bit are set.

0: Flash memory can be read, programmed, erased, and mass-
erased.

0: Flash memory can be read but not programmed, erased, or
mass-erased. A current program, erase, or mass-erase operation
is completed normally. The access-violation interrupt flag
ACCVIFG is set when the flash memory module is accessed while
the lock bit is set.

Flash Memory, Interrupt, and Security Key Violation

5-18 Flash Memory

EMEX 012Ch, bit5, Emergency exit. The emergency exit should only be used when a flash
memory write or erase operation is out-of-control.

0: No function.

0: Stops the active operation immediately and shuts down all internal
parts of the flash memory controller. Current consumption
immediately drops back to the active mode. All bits in control
register FCTL1 are reset. Since the EMEX bit is automatically reset
by hardware, the software always reads EMEX as 0.

5.4 Flash Memory, Interrupt, and Security Key Violation

One NMI vector is used for three non-maskable interrupt (NMI) events, RST/
NMI, oscillator fault (OFIFG), and flash-access violation (ACCVIFG). The soft-
ware can determine the source of the interrupt request by testing interrupt
flags NMIIFG, OFIFG, and ACCVIFG. They remain set until reset by software.

Flash Memory, Interrupt, and Security Key Violation

5-19Flash Memory

Figure 5–10. Basic Flash Memory Module Timing During Segment-Write Cycle

Clear

S

PO
RRST/NMI

S

Clear

Clear

NMIIFG

NMIIE

Clear

S

PUC

OSCFault

OFIFG

OFIE

FCTL1.1

ACCV

IE1.5

IFG1.4

IE1.4

IFG1.4

IE1.4

NMIES
TMSEL

NMI EQU

PUC

POR

KEYV

Flash Module
Flash Module

Flash Module

PUC POR

Counter

S

Clear

Clear

WDTQn

WDTIFG
IRQ

WDTIE

IFG1.0

IE1.0

PUC

POR

IRQA

TIMSEL

WDT

Watchdog Timer Module
NMI_IRQA

IRQA: Interrupt Request Accepted

NMIRS

System Reset
Generator

PORVCC

ACCVIE

ACCVIFG

PUC

Flash Memory, Interrupt, and Security Key Violation

5-20 Flash Memory

5.4.1 Example of an NMI Interrupt Handler

yes

no
OFIFG=1

yes

no
ACCVIFG=1

yes

Reset ACCVIFG

no
NMIIFG=1

Reset NMIIFG

Example1:

BIS #(NMIIE+OFIE+ACCVIE), &IE1
Example2:
BIS Mask,&IE1 ; Mask enables only

 ; interrupt sources

Reset OFIFG

Start of NMI Interrupt Handler
Reset by HW:

OFIE, NMIE, NMIIFG

User’s Software,
Oscillator Fault

Handler

User’s Software,
Flash Access

Violation Handler

User’s Software,
External NMI

Handler

Optional

Set NMIIE, OFIE,
ACCVIE Within One

Instruction

RETI
End of NMI Interrupt

Handler

The NMI handler takes care of all sources requesting a nonmaskable interrupt.
The NMI interrupt is a multiple-source interrupt per MSP430 definition. The
hardware resets the interrupt-enable flags: the external nonmaskable interrupt
enable NMIIE, the oscillator fault interrupt enable OFIE, and the flash memory
access-violation interrupt enable. The individual software handlers reset the
interrupt flags and reenables the interrupt enable bits according to the applica-
tion needs. After all software is processed, the interrupt enable bits have to be
set if another NMI event is to be accepted. Setting the interrupt enable bits
should be the last instruction before the return-from-interrupt instruction RETI.
If this rule is violated, the stack can grow out of control while other NMI re-
quests are already pending. Setting the interrupt enable bits can be accom-
plished by using a bit-set-instruction BIS using immediate data or a mask. The
mask data can be modified anywhere via software (for example in RAM); this
constitutes the nonmaskable interrupt processing.

5.4.2 Protecting One-Flash Memory-Module Systems From Corruption

MSP430 configurations having one flash memory module use this module for
program code and interrupt vectors. When the flash memory module is in a
write, erase, or mass-erase operation and the program accesses it, an access
violation occurs. This violation will request an interrupt service; however, when
the interrupt vector is read from the flash memory, 03FFFh will be read inde-
pendent of the data in the flash memory at the vector’s memory location.

Flash Memory, Interrupt, and Security Key Violation

5-21Flash Memory

To protect the software from this error situation, all interrupt sources have to
be disabled since all interrupt requests will fail. The flash memory returns the
vector 03FFFh. Before the interrupt enable bits are modified, they can be
stored in RAM to be restored when the flash memory is ready for access again.

The following interrupt enable bits should be reset to stop all interrupt service
requests:

� GIE = 0

� NMIIE = ACCVIE = OFIE = 0

Additionally the watchdog should be halted to prevent its expiration when flash
memory is busy:

� WDTHOLD = 1

When the flash memory is ready, the interrupt sources can be enabled again.
Before they are enabled, critical interrupt flags should be checked and, if nec-
essary, served or reset by software.

� GIE = 1 or left disabled, or be restored to the previous level

� NMIIE = ACCVIE = OFIE = 1 or left disabled, or be restored to the previous
level

� WDTHOLD = 0 or left disabled, or be restored to the previous level

Flash Memory Access via JTAG and Software

5-22 Flash Memory

5.5 Flash Memory Access via JTAG and Software

5.5.1 Flash Memory Protection

Flash memory access via the serial test and programming interface JTAG can
be inhibited when the security fuse is activated. The security fuse is activated
via serial instructions shifted into the JTAG. Activating the fuse is not revers-
ible, and any access to the internal system is disrupted. The bypass function
described in the IEEE1149.1 standard is active.

5.5.2 Program Flash Memory Module via Serial Data Link Using JTAG Feature

The hardware interconnection to the JTAG pins is done via four separate pins,
plus the ground or VSS reference level. The JTAG pins are TMS, TCK, TDI
(/VPP), and TDO (/TDI).

Figure 5–11. Signal Connections to MSP430 JTAG Pins

TMS

TCK

TDI

TDO/TDI

MSP430Fxxx

TMS

TCK

TDI

TDO

Level Shifter

XOUT/TCLKTCLK

EN1

68 kΩ

TESTTest/VPP

EN2

VCC

SN74AHC244
VCC

VCC/DVCC
AVCC

VSS/DVSS
AVSS

5.5.3 Programming a Flash Memory Module via Controller Software

No special external hardware is required to program a flash memory module.
The power supply at pin VCC should supply the higher current during write
(program) and erase modes. The software algorithm is simple. The embedded
timing generator in the flash memory module controls the program and erase
cycles. Software can not run in the same flash memory module where data is
to be written. Such background software needs to run on other memory
device, such as a ROM module, a RAM module, or another flash memory
module.

Flash Memory Access via JTAG and Software

5-23Flash Memory

5.5.3.1 Example: Programming One Word Into a Flash Memory Module via Software
Execution Outside This Module

This example assumes that the code to program the flash location is not
executed from the target flash memory module.

BUSY = 1
yes

yes

no

no

BUSY = 1

Lock = 1

Lock = 0, WRT = 1
Write Data to Flash Address

Disable all Interrupt Sources
and Watchdog

Restore or Enable Required
Interrupt Sources and Watchdog

Fxkey .set 03300h
Fwkey .set 0A500h
; No interrupt request may happen while the flash is programmed

Test_Busy1
BIT #BUSY,&FCTL3
JNZ Test_Busy1

MOV #Fwkey,&FCTL3 : Clear lock bit
MOV #(Fwkey+WRT),&FCTL1: : Enable write to flash
MOV #123h,&0FF1Eh : Write a word to flash

Test_Busy2
BIT #BUSY,&FCTL3 ; still busy?
JNZ Test_Busy2 ; yes, repeat busy test
MOV #Fwkey,&FCTL1 : Reset write bit
XOR #(Fxkey+Lock),&FCTL3 : Change lock bit to 1

; Enable those interrupt sources that should be accepted

The BUSY bit can be tested before the write to the flash memory module is
done, or after a write (program) starts:

� For flash memory locations that hold data, it is a good practice to test the
BUSY bit before the write is executed. This has some time benefits, since
the write process is executed via the flash memory timing generator with-
out further CPU intervention. It is important that the clock source remains
active until BUSY is reset by the flash memory hardware.

The power or clock management, responsible for entering low-power
modes, has to make sure that it does not switch off the clock source used
by the flash controller.

� For flash memory blocks that hold program code, it is a good practice to
test the BUSY bit after the write is executed. The program can only pro-
ceed if the module can be accessed again. No special attention is needed
during execution of software code. Every write to the flash memory mod-
ule has to leave the programming cycle with the BUSY bit reset.

Testing the BUSY bit before writing to a flash memory block that holds pro-
gram code ensures that the active program will not access the flash
memory module. Two types of access are visible: execute program code,
or read and write data on this flash memory module.

Flash Memory Access via JTAG and Software

5-24 Flash Memory

5.5.3.2 Example: Programming One Word Into the Same Flash Memory Module via Software

The program execution waits after the write-to-flash instruction (MOV
#123h,&0FF1Eh) until the busy bit is reset again. If no other write-to-flash
instruction method is used the BUSY bit test may not be needed to ensure cor-
rect flash-write handling.

Lock = 0, WRT = 1
Write Data to Flash Address

Disable all interrupt sources
and Watchdog

Restore or Enable Required
Interrupt Sources and

Watchdog

Fxkey .set 03300h
Fwkey .set 0A500h

; No interrupt request may happen while the flash is programmed

MOV #(Fwkey+WRT),&FCTL1: : Enable Write to flash
MOV #123h,&0FF1Eh : Write a word to flash

MOV #Fwkey,&FCTL1 : Reset Write bit
XOR #(Fxkey+Lock),&FCTL3 : Change Lock bit to 1

WRT = 0, Lock = 1

; Enable those interrupt sources that should be accepted

Flash Memory Access via JTAG and Software

5-25Flash Memory

5.5.3.3 Example, Programming Byte Sequences Into a Flash Memory Module via Software

Sequences of data, bytes, or words can use the segment-write feature. This
reduces the programming time by about one half.

yes

no

no

yes

Set Pointer for Start and End
Clear Lock Bit

SEG WRT = WRT =0

End of Segment Write

no

yes

Fxkey .set 03300h
Fwkey .set 0A500h
Frkey .set 09600h

Test_Busy1

BIT
JNZ

#BUSY,&FCTL3 ; Flash busy? SEGWRT ended?
Test_Busy1

MOV #(Fwkey+WRT+SEGWRT),&FCTL1; Segment write

Test_WAIT1

RAM2FLASH

MOV #Start_Ptr,Rx
MOV #End_Ptr,Ry
MOV #Fkey,&FCTL3

CMP Rx,Ry ; All data programmed?
JZ End_Seg_Write

MOV.B @Rx+,(Flash_Start_Ptr–Start_ptr–1) (Rx)
; Program data: in this example one byte

BIT #03Fh,Rx
JNZ Test_Wait1

; Segment border?

Test_Wait2

BIT #WAIT,&FCTL3 ; Test if data written

JZ Test_Wait2

MOV #Fwkey,&FCTL1 ; Stop segment write
JMP Test_busy1 ; Segment write ends if busy=0

End_Seg_Write

; All data are programmed

MOV #Fwkey,&FCTL1 ; Stop segment write

Test_Busy2

BIT #BUSY,&FCTL3 ; Segment write ended?

JNZ Test_Busy2
XOR #(Fxkey+Lock),&FCTL3 ; Change Lock bit to ’1

; Ensure that neither Watchdog Timer, nor
; interrupts nor Low–Power Modes may corrupt
; proper execution

yes

no

Busy ?

SEG WRT = WRT =1

BIT
JNE

#WAIT,&FCTL3
Test_WAIT1

; Clear lock bit

WAIT = 1

Write Byte to Flash

Segment
border?

yes

no

WAIT = 1

Busy ?
yes

no

SEG WRT = WRT =0

All data
Programmed?

Flash Memory Access via JTAG and Software

5-26 Flash Memory

5.5.3.4 Example, Erase Flash Memory Segment or Module via Software Execution
Outside This Flash Module

The following sequence can be used to erase a segment, or mass-erase a
block of segments.

yes

BIC #(Fwkey+Lock),&FCTL3 ;Reset Lock bit

Test_Busy1

Test_Busy2

XOR #(Fxkey+Lock),&FCTL3

Dummy Write
CLR &0F000h

BUSY = 1

yes
BUSY = 1

Erase or ‘Mass’ Erase

Segment Erase: Erase = 1
or

Mass Erase: MEras = 1

End of Erase or
‘Mass’ Erase

BIT #BUSY,&FCTL3
JNZ Test_Busy1

MOV #(Fwkey+Erase),&FCTL1 ; select segment erase

BIT #BUSY,&FCTL3
JNZ Test_Busy2

5.5.3.5 Example, Erase Flash Memory Segment Module in the Same Flash Memory Module
via Software

Lock = 0,Eras=1 (or MEras=1)
Dummy Write to Flash Address in the

Target Segment

Disable all interrupt sources
and Watchdog

Restore or Enable Required
Interrupt Sources and Watchdog

MOV #(Fwkey+Eras),&FCTL1 ;Enable Erase of Flash
CLR &0FA00h ;Dummy Write to Flash

;Erase Segment 2

XOR #(Fwkey+Lock),&FCTL3 : Change Lock bit to 1

; The erase bit Eras is automatically reset
 Lock = 1

; Enable those interrupt sources that should be accepted

; Disable all possible interrupt sources and watchdog

; Program execution in information memory if MEras=1 (Eras=0)

5.5.3.6 Code for Write (Program), Erase, and Mass-Erase

Software that is active during write, erase, or mass-erase may not run in the
flash memory module where it is written or erased. Software that controls
write, erase, or mass-erase can be located in the flash memory module and
copied during execution into RAM. In this case the code should be written posi-
tion-independent, and should be loaded (for instance, to RAM) before it is
used. The algorithm runs in RAM during the programming sequence to avoid
conflict when the flash memory is written or erased.

Flash Memory Access via JTAG and Software

5-27Flash Memory

The target flash memory module can not execute the programming code se-
quence while data is being written to it. In the following example, a subroutine
moves the programming-code sequence to another memory such as RAM.

Source Start Address of The Code Sequence >> R7
Destination Start Address of The Code Sequence >> R10

Move One Word: (R7) >> (R10)
Increment Source and Destination Pointer in R7 and R10

Start-of-Subroutine: Load_Flash_Routine

End-of-Subroutine: RET

End-of-Source Code ?

;--

; Definitions used in Subroutine:

; Move programming code sequence into RAM (load_flash_routine)
;--
Flash_ram .set 0222h ; Start address of flash

; program in the RAM
; program in the RAM

Prg_source_start .set 0xxxxh ; Start address of code

; in the flash to be prg’ed

Prg_source_end .set 0yyyyh ; End address of code

; in the flash to be prg’ed

Prg_dest_start .set Flash_ram

load_flash_routine ; The code of the program which moves

; Flash access code (write, erase,..)

; starts at label load_flash_routine

push r9

push r10

mov #Prg_source_start,R9 ; load pointer source

mov #Prg_dest_start,R10 ; load pointer destination

load_flash_prg

mov @R9,0(R10) ; move a word

incd R10 ; destination pointer + 2

incd R9 ; source pointer + 2

cmp # Prg_source_end,R9 ; compare to end_of_code

jne load_ flash_prg

pop r9

pop r10
ret

A-1Schematics

Schematics

This appendix contains the schematic diagrams for the serial programming
adapter.

Topic Page

A.1 Serial Programming Adapter Schematics A-3.

Appendix A

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Trademarks

	Contents
	Figures
	Tables
	Installation and Setup
	Installing the Software
	Installing the Hardware

	Operation
	Programming the MSP430 Devices
	Basic Procedure
	Description of the MSP-PRGS430 GUI
	Error Messages

	Content of the PRGS430.ini File
	Use of a [Project].ini File
	Command Line Options
	General Definitions
	Return Values / Error Codes in the .ini File

	Software / Hardware Layers
	PRGS430.DLL—Description
	Return Values / Error Codes From the PRGS430.DLL

	Hardware
	Specifications
	Basic Hints
	Programming Adapter Target Connector Signals
	MSP-PRGS430 Circuit Diagrams
	Location of Components, MSP-PRGS430
	Interconnection of MSP-PRGS430 to MSP430C313DL/430P313SDL, MSP430C311SDL\
/P315SDL, or ’E313FZ
	Interconnection of MSP-PRGS430 to MSP430C325PG, C325PM, MSP430P325PG, or\
 ’P325PM
	nterconnection of MSP-PRGS430 to MSP430C336PJM/337PJM or MSP430E337CQFP
	Interconnection of MSP-PRGS430 to MSP430C111DW, MSP430C112DW, MSP430P112\
DW, or MSP430E112JL
	Interconnection of MSP-PRGS430 to the MSP430F13xPM, MSP430C13xPM, MSP430\
F14xPM, or MSP430C14xPM

	EPROM Programming
	EPROM Operation
	Erasure
	Programming Methods
	EPROM Control Register EPCTL
	EPROM Protect

	FAST Programming Algorithm
	Programming an EPROM Module Through a Serial Data Link Using the JTAG Fe\
ature
	Programming an EPROM Module With Controller s Software
	Example

	Code

	Flash Memory
	Flash Memory Organization
	Why Is a Flash Memory Module Divided Into Several Segments?

	Flash Memory Data Structure and Operation
	Flash Memory Basic Functions
	Flash Memory Block Diagram
	Flash Memory, Basic Operation
	Flash Memory Status During Code Execution
	Flash Memory Status During Erase
	Flash Memory Status During Write (Programming)

	Flash Memory Control Registers
	Flash Memory Control Register FCTL1
	Flash Memory Control Register FCTL2
	Flash Memory Control Register FCTL3

	Flash Memory, Interrupt, and Security Key Violation
	Example of an NMI Interrupt Handler
	Protecting One-Flash Memory-Module Systems From Corruption

	Flash Memory Access via JTAG and Software
	Flash Memory Protection
	Program Flash Memory Module via Serial Data Link Using JTAG Feature
	Programming a Flash Memory Module via Controller Software
	Example: Programming One Word Into a Flash Memory Module via Software Ex\
ecution Outside This Module
	Example: Programming One Word Into the Same Flash Memory Module via Soft\
ware
	Example, Programming Byte Sequences Into a Flash Memory Module via Softw\
are
	Example, Erase Flash Memory Segment or Module via Software Execution Out\
side This Flash Module
	Example, Erase Flash Memory Segment Module in the Same Flash Memory Modu\
le via Software
	Code for Write (Program), Erase, and Mass-Erase

	Schematics

