
The RF Line **Microwave Power Transistors**

Designed primarily for large-signal output and driver amplifier stages in the 1.0 to 2.3 GHz frequency range.

- Designed for Class B or C, Common Base Power Amplifiers
- Specified 28 Volt, 2.0 GHz Characteristics: Power Gain — 5.2 to 9.0 dB, Min Collector Efficiency — 40%, Min
- · Gold Metallization for Improved Reliability
- Diffused Ballast Resistors
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRW2001 MRW2005

5.2-9.0 dB 1.0-2.3 GHz **MICROWAVE POWER TRANSISTORS**

CASE 328A-03, STYLE 1 (GP-13)

MAXIMUM RATINGS

Rating			Value	Unit	
Collector–Base Voltage		VCES	50	Vdc	
Emitter–Base Voltage		V _{EBO}	3.5	Vdc	
Collector Current — Continuous	MRW2001 MRW2005	IC	0.25 1.0	Adc	
Operating Junction Temperature		TJ	200	°C	
Storage Temperature Range		T _{stg}	-65 to +200	°C	

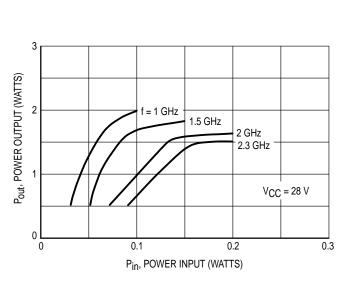
THERMAL CHARACTERISTICS

Characteristic			Max	Unit
Thermal Resistance, RF, Junction to Case	MRW2001 MRW2005	$R_{ heta JC}$	25 8.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS							
Collector–Emitter Breakdown Voltage		V(BR)CES				Vdc	
$(I_C = 10 \text{ mA}, V_{BE} = 0)$	MRW2001	, ,	50	_	_		
(IC = 40 mA, VBE = 0)	MRW2005		50	_	_		

(continued)



ELECTRICAL CHARACTERISTICS — **continued** ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (continued)						
Emitter–Base Breakdown Voltage ($I_E = 0.2 \text{ mA}, I_C = 0$) ($I_E = 0.5 \text{ mA}, I_C = 0$)	MRW2001 MRW2005	V _{(BR)EBO}	3.5 3.5	_ _	_ _	Vdc
Collector Cutoff Current (V _{CB} = 28 V, I _E = 0)	MRW2001 MRW2005	ICBO			0.5 0.5	mAdc
ON CHARACTERISTICS						
DC Current Gain (I _C = 100 mA, V _{CE} = 5.0 V) (I _C = 200 mA, V _{CE} = 5.0 V)	MRW2001 MRW2005	hFE	10 10		120 100	_
DYNAMIC CHARACTERISTICS						
Output Capacitance ($V_{CB} = 28 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$)	MRW2001 MRW2005	C _{ob}	_	_	4.0 7.0	pF
FUNCTIONAL TESTS						
Common–Base Amplifier Power Gain (V _{CE} = 28 V, P _{Out} = 1.0 W, f = 2.0 GHz)	MRW2001	GPB	9.0	_	_	dB
Common–Base Amplifier Power Gain (V _{CE} = 28 V, P _{out} = 5.0 W, f = 2.0 GHz)	MRW2005	G _{PB}	8.0	_	_	dB
Collector Efficiency (VCE = 28 V, P _{out} = 1.0 W, f = 2.0 GHz) (VCE = 28 V, P _{out} = 5.0 W, f = 2.0 GHz)	MRW2001 MRW2005	η	40	_	_	%
Load Mismatch (V _{CE} = 28 V, f = 2.0 GHz, Load VSWR = ∞ :1, All P _{out} = 1.0 W P _{out} = 5.0 W	Phase Angles) MRW2001 MRW2005	Ψ	No Degradation in Output Power			ver
Saturated Output Power (VCE = 28 V, f = 2.3 GHz) (VCE = 28 V, f = 1.5 GHz) (VCE = 28 V, f = 1.0 GHz)	MRW2001	P _{sat 1} P _{sat 2} P _{sat 3}	_ _ _	1.0 1.2 1.3	_ _ _	W
(V _{CE} = 28 V, f = 2.3 GHz) (V _{CE} = 28 V, f = 1.5 GHz) (V _{CE} = 28 V, f = 1.0 GHz)	MRW2005		_ _ _	5.0 6.5 7.5	_ _ _	

TYPICAL CHARACTERISTICS

MRW2001

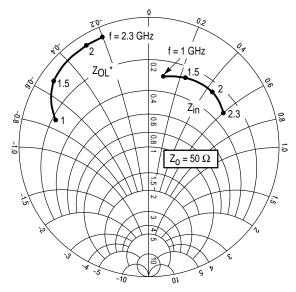


Figure 1. Output Power versus Input Power

Figure 2. Series Equivalent Input/Output Impedance V_{CC} = 28 V

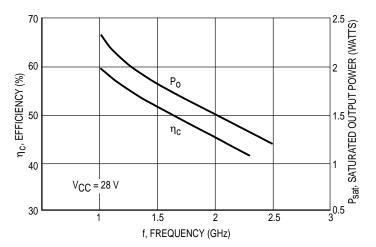
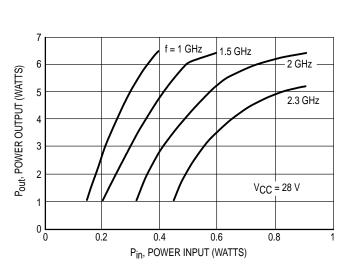



Figure 3. Power Output and Efficiency versus Frequency

TYPICAL CHARACTERISTICS

MRW2005

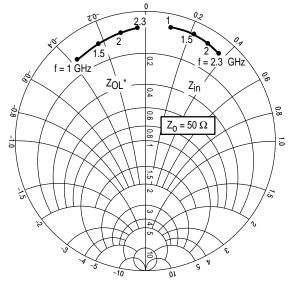


Figure 4. Output Power versus Input Power

Figure 5. Series Equivalent Input/Output Impedance $V_{CC} = 28 \text{ V}$

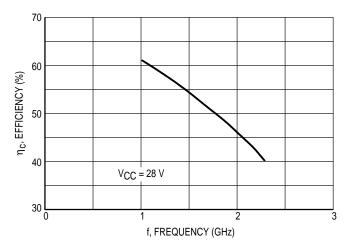


Figure 6. Power Output and Efficiency versus Frequency

The graph shown below displays MTTF in hours x ampere 2 emitter current for each of the "Super 2.0 GHz" devices. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ to the theoretical prediction for metal failure. Sample MTTF calculations based on operating conditions are included on the graph.

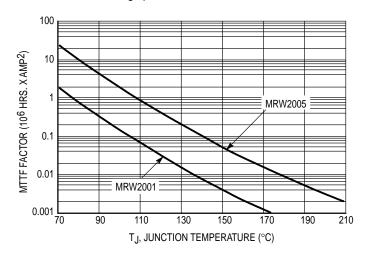
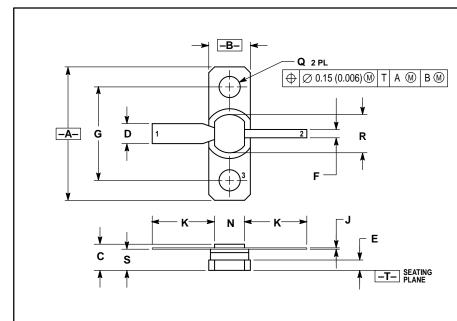



Figure 7. MTTF Factor

PACKAGE DIMENSIONS

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.795	0.805	20.20	20.45	
В	0.245	0.255	6.23	6.47	
С	0.145	0.170	3.69	4.31	
D	0.115	0.125	2.93	3.17	
Е	0.055	0.065	1.40	1.65	
F	0.045	0.055	1.15	1.39	
G	0.562	BSC	14.27 BSC		
J	0.003	0.006	0.08	0.15	
K	0.260	0.375	6.60	9.52	
N	0.175	0.185	4.45	4.69	
Q	0.120	0.135	3.05	3.42	
R	0.225	0.235	5.72	5.97	
S	0.120	0.130	3.05	3.30	

STYLE 1: PIN 1. EMITTER

2. COLLECTOR 3. BASE

CASE 328A-03 ISSUE D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

