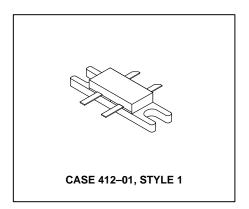

The RF TMOS Line **Power Field Effect Transistor**N-Channel Enhancement Mode

Designed primarily for wideband large—signal output and driver stages to 500 MHz.


- Guaranteed Performance at 400 MHz, 28 Vdc
- Output Power = 20 W
- Minimum Gain = 15 dB
- Push-Pull Configuration Reduces Even Numbered Harmonics
- Excellent Thermal Stability, Ideally Suited for Class A Operation
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- 100% Tested for Load Mismatch at All Phase Angles with 30:1 VSWR

 Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF164W

20 W, to 500 MHz TMOS BROADBAND RF POWER FET

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Drain–Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	VDGR	65	Vdc
Gate-Source Voltage	V _{GS}	±40	Vdc
Drain Current — Continuous	ID	5.0	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	116 0.67	Watts W/°C
Storage Temperature Range	T _{stg}	−65 to +150	°C
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.5	°C/W

 $\label{eq:note_problem} NOTE - \underline{\textbf{CAUTION}} - MOS \ devices \ are \ susceptible \ to \ damage \ from \ electrostatic \ charge. \ Reasonable \ precautions \ in \ handling \ and \ packaging \ MOS \ devices \ should \ be \ observed.$

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)				-	-
Drain–Source Breakdown Voltage (V _{GS} = 0, I _D = 5.0 mA)	V(BR)DSS	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 V, V _{GS} = 0)	IDSS	_	_	1.0	mAdc
Gate–Source Leakage Current (V _{GS} = 40 V, V _{DS} = 0)	IGSS	_	_	1.0	μAdc
ON CHARACTERISTICS (1)					
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 10 mA)	VGS(th)	1.0	4.0	6.0	Vdc
Forward Transconductance (V _{DS} = 10 V, I _D = 0.75 A)	9fs	400	500	_	mmhos
DYNAMIC CHARACTERISTICS (1)					
Input Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{iss}	_	18	_	pF
Output Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{oss}	_	20	_	pF
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	C _{rss}	_	2.5	_	pF
FUNCTIONAL CHARACTERISTICS (Figure 1) (2)					
Common Source Power Gain (V _{DD} = 28 Vdc, P _{out} = 20 W, f = 400 MHz, I _{DQ} = 50 mA)	G _{ps}	15	17	_	dB
Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 20 W, f = 400 MHz, I _{DQ} = 50 mA)	η	45	50	_	%
Electrical Ruggedness (V _{DD} = 28 Vdc, P _{out} = 20 W, f = 400 MHz, I _{DQ} = 50 mA, Load VSWR 30:1 at all Phase Angles)	Ψ	No Degradation in Output Power Before and After Test			

NOTES:

- 1. Each side of device measured separately.
- 2. Measured in push-pull configuration.

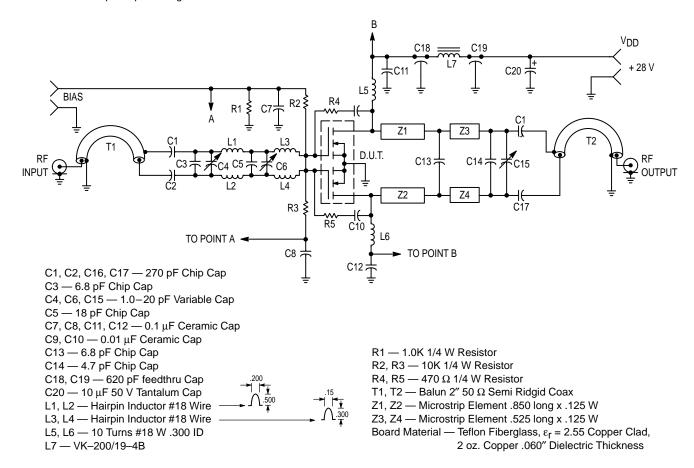


Figure 1. 400 MHz Test Circuit

TYPICAL CHARACTERISTICS

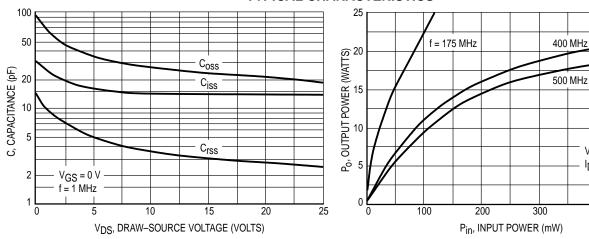


Figure 2. Capacitance versus Voltage

Figure 3. Output Power versus Input Power

 $V_{DS} = 28 V$ $I_{DQ} = 50 \text{ mA}$

400

500

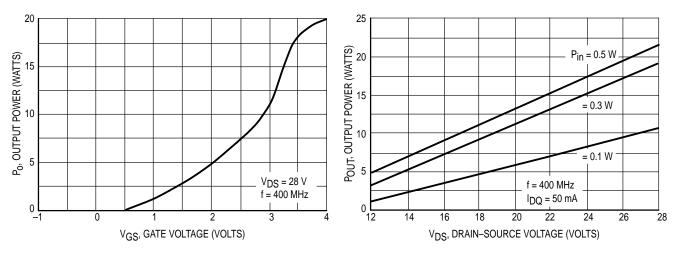


Figure 4. Output Power versus Gate Voltage

Figure 5. Output Power versus Voltage

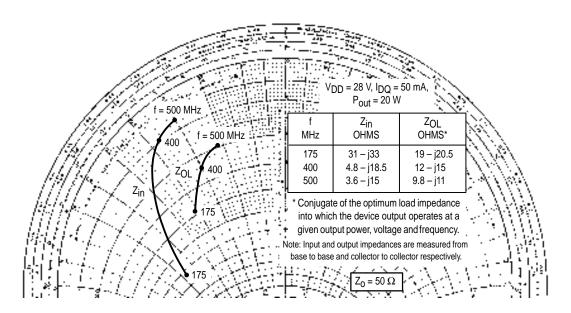
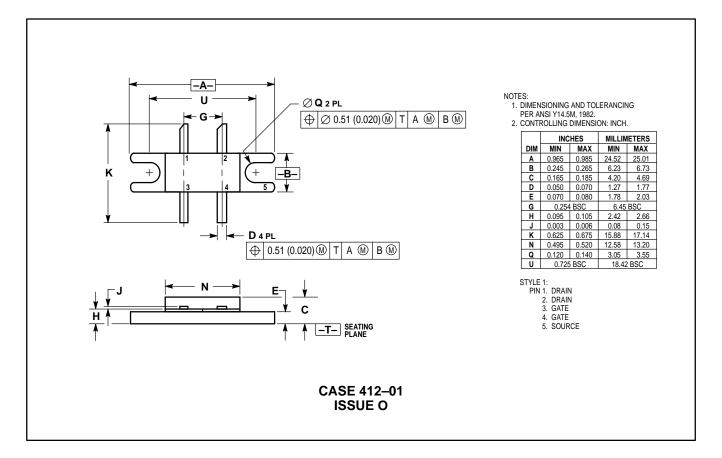



Figure 6. Series Equivalent Input/Output Impedances

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

