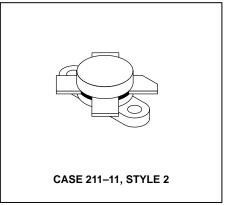

# The RF MOSFET Line **RF Power Field-Effect Transistor**N-Channel Enhancement-Mode


Designed primarily for linear large—signal output stages up to 150 MHz frequency range.

- Specified 28 Volts, 30 MHz Characteristics
   Output Power = 150 Watts
   Power Gain = 15 dB (Typ)
   Efficiency = 40% (Typ)
- Superior High Order IMD
- IMD<sub>(d3)</sub> (150 W PEP) −30 dB (Typ)
- IMD<sub>(d11)</sub> (150 W PEP) -60 dB (Typ)
- 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR



# **MRF140**

150 W, to 150 MHz N-CHANNEL MOS LINEAR RF POWER FET



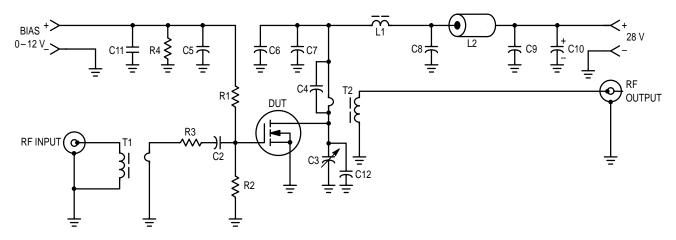
# **MAXIMUM RATINGS**

| Rating                                                             | Symbol           | Value       | Unit          |
|--------------------------------------------------------------------|------------------|-------------|---------------|
| Drain-Source Voltage                                               | V <sub>DSS</sub> | 65          | Vdc           |
| Drain-Gate Voltage                                                 | V <sub>DGO</sub> | 65          | Vdc           |
| Gate–Source Voltage                                                | VGS              | ±40         | Vdc           |
| Drain Current — Continuous                                         | ΙD               | 16          | Adc           |
| Total Device Dissipation @ T <sub>C</sub> = 25°C Derate above 25°C | PD               | 300<br>1.7  | Watts<br>W/°C |
| Storage Temperature Range                                          | T <sub>stg</sub> | -65 to +150 | °C            |
| Operating Junction Temperature                                     | TJ               | 200         | °C            |

# THERMAL CHARACTERISTICS

| Characteristic                       | Symbol | Max | Unit |
|--------------------------------------|--------|-----|------|
| Thermal Resistance, Junction to Case |        | 0.6 | °C/W |

**Handling and Packaging** — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.




# **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = 25°C unless otherwise noted.)

| Characteristic                                                                                                                                            | Symbol                                      | Min                            | Тур        | Max    | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|------------|--------|------|
| OFF CHARACTERISTICS                                                                                                                                       |                                             |                                |            |        |      |
| Drain–Source Breakdown Voltage (V <sub>GS</sub> = 0, I <sub>D</sub> = 100 mA)                                                                             | V <sub>(BR)DSS</sub>                        | 65                             | _          | _      | Vdc  |
| Zero Gate Voltage Drain Current (VDS = 28 Vdc, VGS = 0)                                                                                                   | IDSS                                        | _                              | _          | 5.0    | mAdc |
| Gate-Body Leakage Current (VGS = 20 Vdc, VDS = 0)                                                                                                         | IGSS                                        | _                              | _          | 1.0    | μAdc |
| ON CHARACTERISTICS                                                                                                                                        |                                             |                                |            |        |      |
| Gate Threshold Voltage (V <sub>DS</sub> = 10 V, I <sub>D</sub> = 100 mA)                                                                                  | V <sub>GS(th)</sub>                         | 1.0                            | 3.0        | 5.0    | Vdc  |
| Drain–Source On–Voltage (V <sub>GS</sub> = 10 V, I <sub>D</sub> = 10 Adc)                                                                                 | V <sub>DS(on)</sub>                         | 0.1                            | 0.9        | 1.5    | Vdc  |
| Forward Transconductance (V <sub>DS</sub> = 10 V, I <sub>D</sub> = 5.0 A)                                                                                 | 9fs                                         | 4.0                            | 7.0        | _      | mhos |
| DYNAMIC CHARACTERISTICS                                                                                                                                   |                                             |                                |            |        |      |
| Input Capacitance (V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0, f = 1.0 MHz)                                                                              | C <sub>iss</sub>                            | _                              | 450        | _      | pF   |
| Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)                                                                                                     | Coss                                        | _                              | 450        | _      | pF   |
| Reverse Transfer Capacitance (V <sub>DS</sub> = 28 V, V <sub>GS</sub> = 0, f = 1.0 MHz)                                                                   | C <sub>rss</sub>                            | _                              | 100        | _      | pF   |
| FUNCTIONAL TESTS (SSB)                                                                                                                                    |                                             |                                |            |        |      |
| Common Source Amplifier Power Gain (30 MHz) $(V_{DD} = 28 \text{ V}, P_{Out} = 150 \text{ W} (PEP), I_{DQ} = 250 \text{ mA})$ (150 MHz)                   | G <sub>ps</sub>                             | _<br>_                         | 15<br>6.0  | _<br>_ | dB   |
| Drain Efficiency<br>(V <sub>DD</sub> = 28 V, P <sub>out</sub> = 150 W (PEP), f = 30; 30.001 MHz,<br>I <sub>D</sub> (Max) = 6.5 A)                         | η                                           | _                              | 40         | _      | %    |
| Intermodulation Distortion (1)<br>(V <sub>DD</sub> = 28 V, P <sub>out</sub> = 150 W (PEP), f1 = 30 MHz,<br>f2 = 30.001 MHz, I <sub>DQ</sub> = 250 mA)     | IMD <sub>(d3)</sub><br>IMD <sub>(d11)</sub> | _<br>_                         | -30<br>-60 | _<br>_ | dB   |
| Load Mismatch<br>(V <sub>DD</sub> = 28 V, P <sub>out</sub> = 150 W (PEP), f = 30; 30.001 MHz,<br>I <sub>DQ</sub> = 250 mA, VSWR 30:1 at all Phase Angles) | Ψ                                           | No Degradation in Output Power |            |        |      |

# NOTE:

<sup>1.</sup> To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.



C2, C5, C6, C7, C8, C9 — 0.1  $\mu F$  Ceramic Chip or Monolythic with Short Leads

C3 — Arco 469

C4 — 820 pF Unencapsulated Mica or Dipped Mica with Short Leads

C10 — 10  $\mu$ F/100 V Electrolytic

C11 — 1  $\mu\text{F}$ , 50 V, Tantalum

C12 — 330 pF, Dipped Mica (Short leads)

L1 — VK200/4B Ferrite Choke or Equivalent, 3.0  $\mu H$ 

L2 — Ferrite Bead(s), 2.0 μH

R1, R2 — 51 Ω/1.0 W Carbon

R3 — 1.0  $\Omega$ /1.0 W Carbon or Parallel Two 2  $\Omega$ , 1/2 W Resistors

R4 — 1 k $\Omega$ /1/2 W Carbon

T1 — 16:1 Broadband Transformer

T2 — 1:25 Broadband Transformer

Figure 1. 30 MHz Test Circuit (Class AB)



Figure 2. Power Gain versus Frequency

Figure 3. Output Power versus Input Power

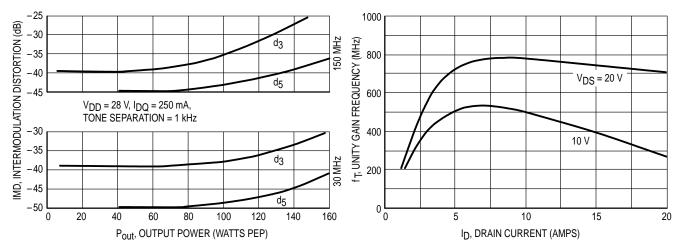



Figure 4. IMD versus Pout

Figure 5. Common Source Unity Gain Frequency versus Drain Current

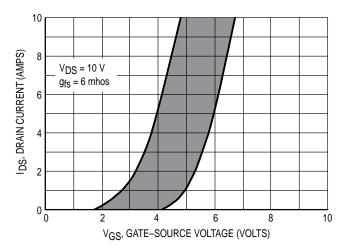



Figure 6. Gate Voltage versus Drain Current

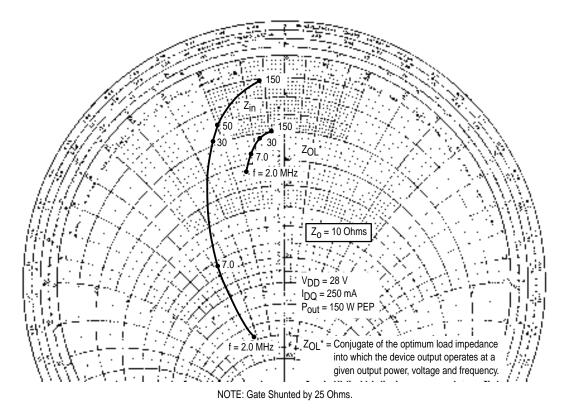



Figure 7. Series Equivalent Impedance

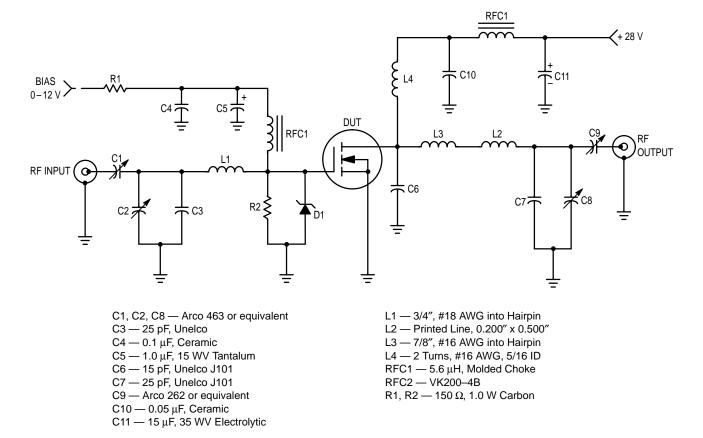
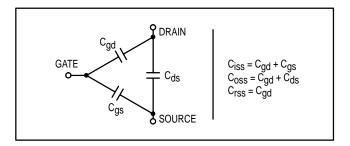



Figure 8. 150 MHz Test Circuit (Class AB)


## RF POWER MOSFET CONSIDERATIONS

#### **MOSFET CAPACITANCES**

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate—to—drain ( $C_{gd}$ ), and gate—to—source ( $C_{gs}$ ). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain—to—source ( $C_{ds}$ ).

These capacitances are characterized as input  $(C_{iss})$ , output  $(C_{oss})$  and reverse transfer  $(C_{rss})$  capacitances on data sheets. The relationships between the inter–terminal capacitances and those given on data sheets are shown below. The  $C_{iss}$  can be specified in two ways:

- 1. Drain shorted to source and positive voltage at the gate.
- Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.



# **LINEARITY AND GAIN CHARACTERISTICS**

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to  $f_{\mathsf{T}}$  for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## **DRAIN CHARACTERISTICS**

One figure of merit for a FET is its static resistance in the full—on condition. This on–resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate—source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

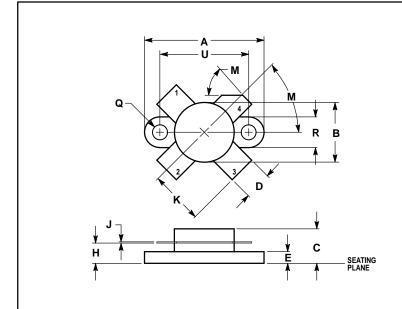
# **GATE CHARACTERISTICS**

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 10<sup>9</sup> ohms — resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated V<sub>GS</sub> can result in permanent damage to the oxide layer in the gate region.

**Gate Termination** — The gates of these devices are essentially capacitors. Circuits that leave the gate open—circuited or floating should be avoided. These conditions can result in turn—on of the devices due to voltage build—up on the input capacitor due to leakage currents or pickup.


**Gate Protection** — These devices do not have an internal monolithic zener diode from gate—to—source. If gate protection is required, an external zener diode is recommended.

# **EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY**

| Collector                                      | . Drain                                 |
|------------------------------------------------|-----------------------------------------|
| Emitter                                        | . Source                                |
| Base                                           | . Gate                                  |
| V(BR)CES                                       |                                         |
| V <sub>CBO</sub>                               | 200                                     |
| IC                                             | . I <sub>D</sub>                        |
| ICES                                           | . I <sub>DSS</sub>                      |
| IEBO                                           |                                         |
| VBE(on)                                        | · VGS(th)                               |
| VCE(sat) · · · · · · · · · · · · · · · · · · · |                                         |
| C <sub>ib</sub>                                |                                         |
| C <sub>ob</sub>                                | . C <sub>oss</sub>                      |
| h <sub>fe</sub>                                |                                         |
| $R_{CE(sat)} = \frac{V_{CE(sat)}}{I_C}$        | $r_{DS(on)} = \frac{V_{DS(on)}}{I_{D}}$ |
| •                                              |                                         |

MOTOROLA RF DEVICE DATA MRF140

## PACKAGE DIMENSIONS



#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.

|     | INCHES |         | MILLIM | IETERS |
|-----|--------|---------|--------|--------|
| DIM | MIN    | MAX     | MIN    | MAX    |
| Α   | 0.960  | 0.990   | 24.39  | 25.14  |
| В   | 0.465  | 0.510   | 11.82  | 12.95  |
| C   | 0.229  | 0.275   | 5.82   | 6.98   |
| D   | 0.216  | 0.235   | 5.49   | 5.96   |
| Е   | 0.084  | 0.110   | 2.14   | 2.79   |
| Η   | 0.144  | 0.178   | 3.66   | 4.52   |
| 7   | 0.003  | 0.007   | 0.08   | 0.17   |
| K   | 0.435  |         | 11.05  |        |
| М   | 45°    | 45 °NOM |        | NOM    |
| Q   | 0.115  | 0.130   | 2.93   | 3.30   |
| R   | 0.246  | 0.255   | 6.25   | 6.47   |
| U   | 0.720  | 0.730   | 18.29  | 18.54  |

STYLE 2: PIN 1. SOURCE 2. GATE

3. SOURCE

**CASE 211-11 ISSUE N** 

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,  $\hbox{6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. } 03-3521-8315 \\$ 

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298



