Amplifier Transistors NPN Silicon #### **MAXIMUM RATINGS** | Rating | Symbol | MPS918 | MPS3563 | Unit | |---|-----------------------------------|-------------|---------|----------------| | Collector-Emitter Voltage | VCEO | 15 | 12 | Vdc | | Collector-Base Voltage | VCBO | 30 | 30 | Vdc | | Emitter-Base Voltage | VEBO | 3.0 | 2.0 | Vdc | | Collector Current — Continuous | IC | 50 | | mAdc | | Total Device Dissipation @ T _A = 25°C
Derate above 25°C | PD | 350
2.8 | | mW
mW/°C | | Total Device Dissipation @ T _C = 25°C
Derate above 25°C | PD | 0.85
6.8 | | Watts
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------------|-----|------| | Thermal Resistance, Junction to Ambient | $R_{\theta JA}^{(1)}$ | 357 | °C/W | | Thermal Resistance, Junction to Case | $R_{ heta JC}$ | 147 | °C/W | ## **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |--|-------------------|----------|------------|----------|------| | OFF CHARACTERISTICS | | | | | | | Collector-Emitter Breakdown Voltage ⁽²⁾ (IC = 3.0 mAdc, I _B = 0) | MPS918
MPS3563 | V(BR)CEO | 15
12 | _
_ | Vdc | | Collector-Base Breakdown Voltage ($I_C = 1.0 \mu Adc, I_E = 0$) ($I_C = 100 \mu Adc, I_E = 0$) | MPS918
MPS3563 | V(BR)CBO | 30
30 | | Vdc | | Emitter-Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0) | MPS918
MPS3563 | V(BR)EBO | 3.0
2.0 | _ | Vdc | | Collector Cutoff Current
(V _{CB} = 15 Vdc, I _E = 0) | MPS918
MPS3563 | ICBO | | 10
50 | nAdc | - 1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board. - 2. Pulse Test: Pulse Width $\leq 300 \,\mu s$; Duty Cycle $\leq 1.0\%$. Preferred devices are Motorola recommended choices for future use and best overall value. *Motorola Preferred Device ## MPS918 MPS3563 # **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued) | Characteristic | | Symbol | Min | Max | Unit | |--|-----------------------------|----------------------|------------|-------------------|------| | ON CHARACTERISTICS | | | | | | | DC Current $Gain^{(2)}$
(I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc)
(I _C = 8.0 mAdc, V _{CE} = 10 Vdc) | MPS918
MPS3563 | hFE | 20
20 | _
200 | _ | | Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) | MPS918 | VCE(sat) | _ | 0.4 | Vdc | | Base-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) | MPS918 | V _{BE(sat)} | _ | 1.0 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | | | | • | | | Current-Gain — Bandwidth Product ⁽²⁾ $(I_{C} = 4.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$ $(I_{C} = 8.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$ | MPS918
MPS3563 | fΤ | 600
600 |
1500 | MHz | | Output Capacitance (V _{CB} = 0 Vdc, I _E = 0, f = 1.0 MHz) (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) | MPS918
MPS918
MPS3563 | C _{obo} | | 3.0
1.7
1.7 | pF | | Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 1.0 MHz) | MPS918 | C _{ibo} | _ | 2.0 | pF | | Small–Signal Current Gain (I _C = 8.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) | MPS3563 | h _{fe} | 20 | 250 | _ | | Noise Figure (I _C = 1.0 mAdc, V_{CE} = 6.0 Vdc, R_S = 400 k Ω , f = 60 MHz) | MPS918 | NF | _ | 6.0 | dB | | FUNCTIONAL TEST | | | | • | | | Common–Emitter Amplifier Power Gain ($I_C = 6.0 \text{ mAdc}$, $V_{CB} = 12 \text{ Vdc}$, $f = 200 \text{ MHz}$) ($I_C = 8.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 200 \text{ MHz}$) ($G_{fd} + G_{re} < -20 \text{ dB}$) | MPS918
MPS3563 | G _{pe} | 15
14 | _ | dB | | Power Output
(I _C = 8.0 mAdc, V _{CB} = 15 Vdc, f = 500 MHz) | MPS918 | P _{out} | 30 | _ | mW | | Oscillator Collector Efficiency
(I _C = 8.0 mAdc, V _{CB} = 15 Vdc, P _{out} = 30 mW, f = 500 MHz) | MPS918 | η | 25 | _ | % | ^{2.} Pulse Test: Pulse Width $\leq 300~\mu s;$ Duty Cycle $\leq 1.0\%.$ #### **PACKAGE DIMENSIONS** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | INCHES | | MILLIM | IETERS | |-----|--------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.45 | 5.20 | | В | 0.170 | 0.210 | 4.32 | 5.33 | | С | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.016 | 0.022 | 0.41 | 0.55 | | F | 0.016 | 0.019 | 0.41 | 0.48 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.015 | 0.020 | 0.39 | 0.50 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | Р | | 0.100 | | 2.54 | | R | 0.115 | | 2.93 | | | ٧ | 0.135 | | 3.43 | | STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR #### MPS918 MPS3563 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and a material registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: **USA/EUROPE**: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315 **HONG KONG**: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298