MPR604TSU-02 MPC604/D
(IBM Order Number) (Motorola Order Number)

5/94
REV 1

PawerpPl

Advance Information
PowerPC™ 604 RISC Microprocessor
Technical Summar y

This document pnddes an gerview of the PaverPC 604™ microprocessdrincludes the
following:
* An overview of 604 features

» Details about the 604 harawne implementation. This includes descriptions of the
604’s execution units, cache implementation, memory management units
(MMUSs), and system interface.

» Adescription of the 604xecution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

In this document, the terms “PowerPC 604 Microprocessor” and “604” are used to denote
a microprocessor from the PowerPC Architecture™ family.

1.1 Overview

This section describes the features of the 604/jges a block diagram stwing the major
functional units, and describes briefly how those units interact.

The 604 is an implementation of theWwRasPC fimily of reduced instruction set computer
(RISC) microprocessors. The 604 implements thedPBC architecture as it is specified

for 32-bit addressing, which prioles 32-bit dictive (logical) addresses, igter data types

of 8, 16, and 32 bits, and floating-point data types of 32 and 64 bits (single-precision and

PowerPC, PowerPC Architecture, POWER Archiitecture, and PowerPC 604 are trademarks of International Business Machines Corp.

)
S
]
IS
1S
=
n
©
L
c
<
)
'_
<
o
(o]

This document contains information on a new product under development. Specifications and information herein are subject to change without notice.

© Motorola Inc. 1994
Instruction set and other portions hereof © International Business Machines Corp. 1991-1994

IBM Microlectronics @ MOTOROLA

double-precision). For 64-bit PowerPC implementations, the PowerPC architecture provides additional 64-
bit integer data types, 64-bit addressing, and related features.

The 604 is a superscalar processor capable of issuing four instructions simultanEpusgly as six
instructions can finish execution in parallel. The 604 has six execution units that can operate in parallel:

* Floating-point unit (FPU)

» Branch processing unit (BPU)

* Load/store unit (LSU)

» Three integer units (IUs):
— Two single-cycle integer units (SCIUS)
— One multiple-cycle integer unit (MCIU)

This parallel design, combined with thewgsPC architecture’specification of uniform instructions that

allows for rapid &ecution times, yields high fafiency and throughput. The 6@Yrename ifers,
reseration stations, dynamic branch prediction, and completion unit increase instruction throughput,
guarantee in-order completion, and ensure a precise exception model. (Note that the PowerPC architecture
specification refers to all exceptions as interrupts.)

The 604 has separate memory management units (MMUs) and separate 16-Kbyte on-chip caches for
instructions and data. The 604 implement® th28-entry two-way set (64-entry per set) assosati
translation lookaside uffers (TLBs), one for instructions and one for data, andiges support for
demand-paged virtual memory address translation anidble-sized block translation. The TLBs and the
cache use least-recently used (LRU) replacement algorithms.

The 604 has a 64-bit external data bus and a 32-bit address bus. The 604 interface protocol allows multiple
masters to compete for system resources through a cedaalad arbiter. Additionally, on-chip snooping

logic maintains data cache cohengrior multiprocessor applications. The 604 supports single-beat and
burst data transfers for memory accesses and memory-mapped I/O accesses.

The 604 uses an advanced, 3.3-V CMOS process technology and is fully compatible with TTL devices.

1.1.1 PowerPC 604 Micr oprocessor Features
This section summarizes features of the 604’s implementation of the PowerPC architecture.
Figure 1 preides a block diagram stving features of the 604. Note that this is a conceptual block diagram

intended to shw the basic features rather than an attempt tevdnmv these features are ysically
implemented on the chip.

2 PowerPC 604 RISC Microprocessor Technical Summary

SNg vliva 11g-¥9

SNd SS34dav lig-¢e

> 8yoeda g1.a
LINN < » okqy-or | SOEL [|fewe _|_ | -
JOV4d31NI SNd \ lvdada syS ng z¢ anand H
peo ysiuig
NN d = lajjng 19pioay
Y Anu3-91
ud ¥9
ayoe)d | 5 1INN
ahgy-gr | SUEL NOILITdINOD
A hd *—o
> ud ¢ce
ng 9 [+] g z€ . e
Ilm_own_n_ g ¢ce)
uone|noe > [/] /]
+ * |/ v3a Y snun o
nnuod <> : DI wn <> : Joba| &1oAD 1aBoju| BPAD
-buieold | ug v9 199 | eloigpeol |ugze [buls -odmynin
(8) s1ayng (zT) s1eyng A A
+ sweusy » awreuay
| (Anu3) uoness | ald ddd | (Anu3 2) uoness | SRS | (Anu3 z) uoners | [(Anu3 2) uoners]
uoleAIasay uoneAlasay uoneAlsssy uoneAIasay
g 8¢T
1Hd <
nun yoredsig ng 8et W RN Jandninin
y dO2/OV.LL %0010
Y A (DIOM g) Bnand J13)UaWal93Q/I81uN0D
- > uononansu| aseg awil
e gLl ol (8) :
ey uo || sieung Y
lvdi -aweuay
S4S) 4D ovig .
NAN | nun Buissadoid youelg [pyoeq [
ng v9 >
ng 8z1 % L1INN NOILONY1SNI

Figure 1. Block Diagram

PowerPC 604 RISC Microprocessor Technical Summary

Major features of the 604 are as follows:
» High-performance, superscalar microprocessor
— As many as four instructions can be issued per clock.
— As many as six instructions can start executing per clock (including three integer instructions)
— Single clock cycle execution for most instructions
» Six independent execution units and two register files
— BPU featuring dynamic branch prediction
— Speculative execution through two branches
— 64-entry fully-associative branch target address cache (BTAC)

— 512-entry branch history table (BHT) withavpits per entry for four lels of prediction—
not-taken, strongly not-taken, taken, strongly taken.

— Two single-cycle 1Us (SCIUs) and one multiple-cycle IU (MCIU)

— Instructions that execute in the SCIU take one cycle to execute; most instructions that
execute in the MCIU take multiple cycles to execute.

— Each SCIU has a two-entry reservation station to minimize stalls

— The MCIU has a two-entry reservation station and provides early exit (three cycles) for
16- x 32-bit and overflow operations.

— Thirty-two GPRs for integer operands
— Twelve rename buffers for GPRs
— Three-stage floating-point unit (FPU)
— Fully IEEE 754-1985 compliant FPU for both single- and double-precision operations
— Supports non-IEEE mode for time-critical operations
— Fully pipelined, single-pass double-precision design
— Hardware support for denormalized numbers
— Two-entry reservation station to minimize stalls
— Thirty-two 64-bit FPRs for single- or double-precision operands
— Load/store unit (LSU)
— Two-entry reservation station to minimize stalls
— Single-cycle, pipelined cache access
— Dedicated adder performs EA calculations
— Performs alignment and precision conversion for floating-point data
— Performs alignment and sign extension for integer data
— Four-entry finish load queue (FLQ) provides load miss buffering
— Six-entry store queue
— Supports both big- and little-endian modes
* Rename buffers
— Twelve GPR rename buffers
— Eight FPR rename buffers

4 PowerPC 604 RISC Microprocessor Technical Summary

Eight condition register (CR) rename buffers

The 604 rename buffers are described in Section 1.2.1.5, “Rename Buffers”

e Completion unit

The completion unit retires an instruction from the 16-entry reordfariwhen all instructions
ahead of it have been completed and the instruction has finished execution.

Guarantees sequential programming model (precise exception model)
Monitors all dispatched instructions and retires them in order

Tracks unresolved branches and removes speculatively executed, dispatched, and fetched
instructions if branch is mispredicted

Retires as many as four instructions per clock

» Separate on-chip instruction and data caches (Harvard architecture)

16-Kbyte, four-way set-associative instruction and data caches
LRU replacement algorithm
32-byte (eight word) cache block size

Physically indexed,; plysical tags. Note that the WerPC architecture refers toystical address
space as real address space.

Cache write-back or write-through operation programmable on a per page or per block basis

Instruction cache can prie four instructions per clock; data cache cawigetwo words per
clock

Caches can be disabled in software

Caches can be locked

Parity checking performed on both caches

Data cache coherency (MESI) maintained in hardware
Secondary data cache support provided

Instruction cache coherency maintained in software

Provides a no-DRRY/data streaming mode, which alle consecutie kurst read data transfers
to occur without intervening dead cycles. This mode also disables data retry operations.

» Separate memory management units (MMUSs) for instructions and data

Address translation facilities for 4-Kbyte page size, variable block size, and 256-Mbyte
segment size

Both TLBs are 128-entry and two-way set associative

TLBs are hardware reloadable. That is, the page table search is performed in hardware.
Separate IBATs and DBATSs (four each) also defined as SPRs.

Separate instruction and data translation lookaside buffers (TLBs)

LRU replacement algorithm

Hardware table search (caused by TLB misses) through hashed page tables

52-bit virtual address; 32-bit physical address

» Bus interface features include the following:

Selectable processor-to-bus clock frequency ratios (1:1, 1.5:1, 2:1, and 3:1)
A 64-bit split-transaction external data bus with burst transfers

PowerPC 604 RISC Microprocessor Technical Summary 5

— Support for address pipelining and limited out-of-order bus transactions

— Additional signals and signal redefinition for I/O controller irde& operations (referred to as
direct-store operations in the architecture specification)

» Multiprocessing support features include the following:

— Hardware enforced, four-state cache coherency protocol (MESI) for data cache. Bits are
provided in the instruction cache to indicate only whether a cache block is valid or invalid.

— Separate port into data cache tags for bus snooping

— Load/store with reservation instruction pair for atomic memory references, semaphores, and
other multiprocessor operations

* Power management
— NAP mode supports full shut down and supports snooping with early indication.
— Operating voltage of 3.3 0.3V

» Performance monitor can be used to help in debugging system designs and improving software
efficiency, especially in multiprocessor systems.

* In-system testability and debugging features through JTAG boundary-scan capability

1.2 PowerPC 604 Micr oprocessor Har dware
Implementation

This section praides an werview of the 604% hardvare implementation, including descriptions of the
functional units, shown in Figure 2, the cache implementation, MMU, and the system interface.

Note that Figur@ provides a more detailed block diagram than that presented in Rigusbaving the
additional data paths that contrtb to the impreed eficiengy in instruction &ecution and more clearly
shows the relationships between execution units and their associated register files.

6 PowerPC 604 RISC Microprocessor Technical Summary

branch Dispatch Unit

COMeSON | Fetch Unit |« (Four-instruction
dispatch)
instruction dispatch buses \
GPR op:erand bus:,es
GPR result buses A A
A A A 7 A FPR operalnd buses

| |
FPR result buses A
| |

l_ il w bl
Y YW | vYY | vV vvy y1Y v Y v
[Rs@] |[Rs@]|[Rs@]|[rRs@]| [RS@] [RS()]
y Y Y Y y Xso o Y rso o
GEES T3
Lsru| | [sciu| | Isciul | [mciu LSU x®| | ®||Fpy iz ®
J
L result status buses
! |
Completion 16-Kbyte data cache Result buses
Unit 4-way, 8 words/block Operand buses

Figure 2. Block Diagram—Internal Data Paths

1.2.1 Instruction Flo w

Seweral units on the 604 ensure the propewftd instructions and operands and guarantee the correct
update of the architectural machine state. These units include the following

» Fetch unit—Using the next sequential address or the address supplied by the BPU when a branch
is predicted or resolved, the fetch unit supplies instructions to the eight-word instruction buffer.

» Decode/dispatch unit—The decode/dispatch unit decodes instructions and dispatches them to the
appropriate execution unit. During dispatch, operands are provided to the execution unit (or
reservation station) from the register files, rename buffers, and result buses.

» Branch processing unit (BPU)—In addition to providing the fetcher with predicted target
instructions when a branch is predicted (and a misprediotepcaddress if a branch is incorrectly
predicted), the BPU executes all condition register logical and flow control instructions.

» Instruction completion unit—The completion unit retires executed instructions in program order
and controls the updating of the architectural machine state.

1.2.1.1 Fetch Unit
The fetch unit preides instructions to the eight-entry instruction queue by accessing the on-chip instruction
cache. Typically, the fetch unit continues fetching sequentially as many as four instructions at a time.

PowerPC 604 RISC Microprocessor Technical Summary

The address of the next instruction to be fetched is determined by several conditions, which are prioritized
as follows:

1. Detection of an exception. Instruction fetching begins at the exception vector.

2. The BPU recovers from an incorrect prediction when a branch instruction is in the execute stage.
Undispatched instructions are flushed and fetching begins at the correct target address.

3. The BPU recars from an incorrect prediction when a branch instruction is in the dispatch stage.
Undispatched instructions are flushed and fetching begins at the correct target address.

4. The BPU recovers from an incorrect prediction when a branch instruction is in the decode stage.
Subsequent instructions are flushed and fetching begins at the correct target address.

5. Afetch address is found in the BT. As a cache block is fetched, the branchdaaddress cache
(BTAC) and the branch history table (BHT) are searched with the fetch address. If it is found in the
BTAC, the target address from the BTAC is the first candidate for being the next fetch address.

6. If none of the preious conditionsxsts, the instruction is fetched from thexcneequential address.

1.2.1.2 Decode/Dispatch Unit

The decode/dispatch unit pides the logic for decoding instructions and issuing them to the appropriate
execution unit. The eight-entry instruction queue consists@fbwr-entry queues—a decode queue (DEQ)
and a dispatch queue (DISQ).

The decode logic decodes the four instructions in the decode queusafy branch instructions, these
decoded instructions along with the bits in the BBfE used during the decode stage for branch correction.

The dispatch logic decodes the instructions in the DISQ for possible dispatch. The dispatch logis resolv
unconditional branch instructions and predicts conditional branch instructions using the branch decode
logic, the BHT, and values in the CTR.

The 512-entry BHT pnddes two bits per entryindicating four leels of dynamic prediction—strongly not-
taken, not-taken, tah, and strongly ta. The history of a branchdirection is maintained in theseaw
bits. Each time a branch is takthe alue is incremented (with a maximumdwe of three meaning strongly-
taken); when it is not taken, the bélue is decremented (with a minimuwe of zero meaning strongly
not-taken). If the currentalue predicts tadn and the ne branch is ta&n agin, the BHT entry then predicts
strongly taken. If the next branch is not taken, the BHT then predicts taken.

The dispatch logic also allocates each instruction to the appropaigtien unit. A reorderdifer (ROB)

entry is allocated for each instruction, and depengdehecking is done between the instructions in the
dispatch queue. The renameffers are searched for the operands as the operands are fetched from the
register file. Operands that are written by other instructions ahead of this one in the dispatch quesre are gi
the tag of that instructios’rename wffer; otherwise, the renameffer or register file supplies either the
operand or a tag. As instructions are dispatched, the fetch unit is notified that the dispatch queue can be
updated with more instructions.

1.2.1.3 Branch Processing Unit (BPU)

The BPU is used for branch instructions and conditigrster logical operations. All branches, including
unconditional branches, are placed in a reg@m station until conditions are resetl’and thg can be
executed. At that point, branch instructions arecaited in order—the completion unit is notified whether
the prediction was correct.

The BPU alsoxecutes condition gister logical instructions, which flthrough the reseation station
like the branch instructions.

8 PowerPC 604 RISC Microprocessor Technical Summary

1.2.1.4 Completion Unit

The completion unit retires eguted instructions from the reordeiffier (ROB) in the completion unit and
updates rgister files and control gisters. The completion unit recognizesception conditions and
discards ay operations being performed on subsequent instructions in programTdrderompletion unit
can quickly remee instructions from a mispredicted branch, and the decode/dispatch gt be
dispatching from the correct path.

The instruction is retired from the reordesffier when it has finishedkecution and all instructions ahead
of it have been completed. The instructionésult is written into the appropriatgister file and is remead
from the rename uifers at or after completion. At completion, the 604 also updatesther resource
affected by this instruction. Seral instructions can complete simultaneoustpst exception conditions
are recognized at completion time.

1.2.1.5 Rename Buffers

To awid contention for a gen ragister location, the 604 pries rename mesters for storing instruction
results before the completion unit commits them to the architeqjéstareTwelve rename mgsters are
provided for the GPRs, twedvfor the FPRs, and eight each for the conditigister GPRs are described
in Section 1.3.2.1, “General-Purpose Registers (GPRBRs are described in Sectibr3.2.2, “Floating-
Point Rgisters (FPRs),and the condition mister is described in Sectidn3.2.3, “Condition Rgister
(CR).”

When the dispatch unit dispatches an instruction toésidion unit, it allocates a renamgister for the

results of that instruction. The dispatch unit alsovjgles a tag to thexecution unit identifying the result

that should be used as the operand. When the proper result is returned to the uffieamis tatched into

the reservation station. When all operands are available in the reservation station, the execution can begin.

The completion unit does not transfer instruction results from the rengisters to the registers until any
speculatie branch conditions preceding it in the completion queue are edsai the instruction itself is
retired from the completion queue withovteptions. If a speculaely executed branch is found tovea
been incorrectly predicted, the specuiglyy executed instructions folleing the branch are flushed from the
completion queue and the results of those instructions are flushed from the rename registers.

1.2.2 Execution Units

The following sections describe the 684irithmetic recution units—the tosingle-gcle 1Us, the multiple
cycle IU, and the FPUNhen the reseation station sees the proper result being written back, it will grab it directly
from one of the resultuses. Once all operands are in the regem station for an instruction, it is eligible to be
executedReseration stations temporarily store dispatched instructions that canngé@eted until all of

the source operands are valid.

1.2.2.1 Integer Units (IUs)

The two single-gcle IUs (SCIUs) and one multiplgxde 1U (MCIU) execute all intger instructions. These

are shown in Figure 1 and FiguteEach IU has a dedicated resuis bhat connects to renamaffiers and

to all reseration stations. Each IU has adsntry reseration station to reduce stalls. The reséion

station can recee instructions from the decode/dispatch unit and operands from the GPRs, the rename
buffers, or the result buses.

Each SCIU consists of three singlele sulunits—a fst adder/comparatoa sulbinit for logical
operations, and a subit for performing rotates, shifts, and count-leading-zero operations. Thesgetsub
handle all one-cycle arithmetic instructions; only one subunit can execute an instruction at a time.

PowerPC 604 RISC Microprocessor Technical Summary 9

The MCIU consists of a 32-bit integer multiplier/divider. The multiplier supports early exit on 16- x 32-bit
operations, and is responsible faeeuting themfspr andmtspr instructions, which are used to read and
write special-purpose gesters. Note that the load and store instructions that update their address base
register (specified by theA operand) pass the update results on the MECrgsult ns. Otherwise, the
MCIU’s result bus is dedicated to MCIU operations. (This option is indicated by specifying a period at the
end of the instruction mnemonic).

1.2.2.2 Floating-Point Unit (FPU)

The FPU, shan in Figurel and Figure, is a single-pass, double-precisio®&ution unit; that is, both
single- and double-precision operations require only a single pass, with a latency of three cycles.

As the decode/dispatch unit issues instructions to thesHld' reseration stations, source operand data
may be accessed from the FPRs, the floating-point renaffeed) or the resultuses. Results in turn are
written to the floating-point renameauffers and to the resation stations and are madeadable to
subsequent instructions. Instructions are executed from the reservation station in dispatch order.

1.2.2.3 Load/Store Unit (LSU)

The LSU, shwn in Figurel and Figure?, transfers data between the data cache and the neses, lvhich

route data to othexecution units. The LSU supports the address generation and handidigiament for
transfers to and from system memofye LSU also supports cache control instructions and load/store
multiple/string instructions. As noted algg load and store instructions that update the base addyisssrre

pass their results on the MCIU'’s result bus. This is the only exception to the dedicated use of result buses.

The LSU includes a 32-bit adder dedicated for EA calculation. Data alignment logic manipulates data to
support aligned or misaligned transfers with the data cache. The Ik&ld' and store queues are used to
buffer instructions that ha been recuted and areaiting to be completed. The queues are used to monitor
data dependencies generated by data dating and out-of-order instructionxexution ensuring a
sequential model.

The LSU allavs load operations to precede pending store operations andesesmivdependencies
incurred when a pending store is to the same address as the load. If such a dggeistebe LSU delays
the load operation until the correct data can bedoded. If only the lv-order 12 bits of the EAs match,
both addresses may be aliases for the saysqath address, in which case, the load operation is delayed
until the store has been written back to the cache, ensuring that the load operati@s tegieorrect data.

The LSU does not allow the following operations to be speculatively performed on unresolved branches:

» Store operations
« Loading of noncacheable data or cache miss operations
* Loading from I/O controller interface segments

1.2.3 Memory Management Units (MMUS)

The primary functions of the MMUs are to translate logicde(ive) addresses to psical addresses for
memory accesses, I/O accesses (most I/O accesses are assumed to be memory-mapped), and I/O controller
interface accesses, and to provide access protection on blocks and pages of memory.

The PeverPC MMUs and »eception model support demand-paged virtual memwistual memory
management permitgecution of programs lger than the size of phical memory; demand-paged implies
that indvidual pages are loaded intoysiical memory from system memory only whenyttzge first
accessed by an executing program.

10 PowerPC 604 RISC Microprocessor Technical Summary

The hashed page table is ariable-sized data structure that defines the mapping between virtual page
numbers and ptsical page numbers. The page table size isvepof 2, and its starting address is a multiple
of its size.

Address translations are enabled by setting bits in the MSR—MSR[IR] enables instruction address
translations and MSR[DR] enables data address translations.

The 6045 MMUs support up to 4 Petabyte$€p of virtual memory and Gigabytes (32) of physical

memory The MMUs support block address translations, 1/0 controller agerSgments, and page
translation of memory genents. Referenced and changed status are maintained by the processor for each
page to assist implementation of a demand-paged virtual memory system.

Separate Wt identical translation logic is implemented for data accesses and for instruction accesses. The
604 implements tev 128-entry two-way set associate translation lookasideulfers (TLBs), one for
instructions and one for data. These TLBs can be accessed simultaneously.

1.2.4 Cache Implementation

The PaverPC architecture does not define hadkwaspects of cache implementations: &le,
whereas the 604 implements separate data and instruction cachesdtdachitecture), other processors
may use a unified cache, or no cache at all. TheeFRC architecture defines the unit of coheyarx a
cache block, which for the 604 is a 32-byte (eight-word) line.

PowerPC implementations can control the following memory access modes on a page or block basis:

» Write-back/write-through mode

» Cache-inhibited mode

» Memory coherency

» Guarded memory (prevents access for speculative execution)

1.2.4.1 Instruction Cache

The 604$ 16-Kbyte, fouway set associate instruction cache is ghically indexed. Whin a single gcle,
the instruction cache priwles up to four instructions. Instruction cache cohereésnaot maintained by
hardware.

The PaverPC architecture defines a special set of instructions for managing the instruction cache. The
instruction cache can bevalidated entirely or on a cache-block basis. The instruction cache can be disabled
and irvalidated by setting the HIDO[16] and HIDO[20] bits, respatyi The instruction cache can be
locked by setting HIDO[18].

1.2.4.2 Data Cache

The 604$ data cache is a 16-Kbyte, fomay set associate cache. It is a pisically-indexed, nonblocking,
write-back cache with hardwe support for reloading on cache misseghiwone gcle, the data cache
provides double-word access to the LSU.

To ensure cache cohergnthe 604 data cache supports the ftate MESI (modifiedielusive/shared/
invalid) protocol. The data cache tags are dual-ported, so the process of snooping ddestraihef
transactions on the system intaxé. If a snoop hit occurs, the LSU is bledknternally for oneyle to

allow the eight-word block of data to be copied to the writeback buffer.

Like the instruction cache, the data cache canvadidated all at once or on a per cache block basis. The
data cache can be disabled angilidated by setting the HIDO[17] and HIDO[21] bits, respexdyi The
data cache can be locked by setting HIDO[19].

PowerPC 604 RISC Microprocessor Technical Summary 11

Each cache line contains eight contiguoosds from memory that are loaded from an eigbtd boundary
(that is, bits A27—A31 of the logical addresses are zero); thus, a cachevinemsses a page boundary
Accesses that cross a page boundary can incur a performance penalty.

To ensure coherep@mong caches in a multiprocessor (or multiple cachingzeleimplementation, the
604 implements the MESI protocol on a per cache-block basis. MESI stands for modifisil/e/shared/
invalid. These four states indicate the state of the cache block as follows:

« Modified (M)—The cache block is modified with respect to system memory; that is, data for this
address is valid only in the cache and not in system memory.

» Exclusive (E)—This cache block holds valid data that is identical to the data at this address in
system memory. No other cache has this data.

» Shared (S)—This cache block holds valid data that is identical to this address in system memory
and at least one other caching device.

« Invalid (I)—This cache block does not hold valid data.

I I I I I I I
128 Sets d
® T T [l T T I I
[] []
[l [| l
I I I I I I I
Block 0| Address Tag0 | | —State Words 0-7 L
I I I I I I I
Block 1| AddressTagl | [—State Words 0-7 L
l l l l l l l
| | | | | | |
Block 2| AddressTag?2 | [| [State Words 0-7 Hm
f f f f f f f
Block 3| AddressTag3 | [|State Words 0-7 i

|«——— 8 Words/Block ———

Figure 3. Cache Unit Organization

1.2.5 System Interface/Bus Interface Unit (BIU)

The 604 preides a ersatile bus intesice that allevs a wide ariety of system design options. The inded

includes a 72-bit data bus (64-bits of data and 8-bits of parity), a 36-bit address bus (32-bits of address and
4-bits of parity), and sufficient control signals to allow for a variety of system-level optimizations. The 604
uses one-beat and febeat data transactions, although it is possible for otrephrticipants to perform

longer data transfers. The 604 clocking structure supports pro¢edsa clock ratios of 1:1, 1.5:1, 2:1,

and 3:1, as described in Section 1.2.6, “Clocking.”

The system intesice is specific for each WerPC processor implementation. The 604 system auers
shown in Figure 4.

12 PowerPC 604 RISC Microprocessor Technical Summary

ADDRESS <+——>» <«—> DATA

ADDRESS ARBITRATION <——» < » DATA ARBITRATION
ADDRESS START <———» <— > DATA TRANSFER
ADDRESS TRANSFER «——»| PowerPC |« » pDATA TERMINATION
604
TRANSFER ATTRIBUTE <~———>| o o o |«— PROCESSOR STATE
ADDRESS TERMINATION <—» <« » TEST AND CONTROL
CLOCKS <——»
[L
+33V —

Figure 4. System Interface

Four-beat brst-read memory operations that load an eigtridveache block into one of the on-chip caches

are the most common bus transactions in typical systems, followed by burst-write memory operations, I/O
controller interice operations, and single-beat (noncacheable or write-through) memory read and write
operations. Additionallythere can be address-only operatiorarjants of the brst and single-beat
operations (global memory operations that are snooped and atomic memory operaticas)ite)eand
address retry activity (for example, when a snooped read access hits a modified line in the data cache).

Memory accesses can occur in single-beat or four-beat burst data transfers. The address and data buses are
independent for memory accesses to support pipelining and split transactions. The 604 supports b
pipelining and out-of-order splitds transactions. In general, theskpipelining mechanism alis as mayn

as three address tenures to be outstanding before a data tenure is initiated. Address tenures for address-only
transactions can exceed this limit.

Typically, memory accesses are weakly-ordered. Sequences of operations, including load/store string/
multiple instructions, do not necessarily complete in the same order in which they began—maximizing the
efficieng/ of the lus without sacrificing coherepof the data. The 604 alls load operations to precede

store operations eept when a dependenexists, of course). In addition, the 604 yides a separate

gueue for snoop push operations so these operations can access Hiwedd of pweously queued
operations. The 604 dynamically optimizes run-time ordering of load/stofie t@fimprose overall
performance.

In addition, the 604 implements a dates lwrite-only signal@BWO) that can be used for reordering write
operations. AssertingBWO causes the first write operation to occur befoyeraad operations on avgh
processarAlthough this may be used withyawrite operations, it can also be used to reorder a snoop push
operation.

Access to the system intade is granted through axternal arbitration mechanism that al® devices to
compete for bs mastership. This arbitration mechanism isilfle, alloving the 604 to be inggated into
systems that useaxious firness and us-parking procedures tor@d arbitration @erhead. Additional
multiprocessor support is provided through coherency mechanisms that provide snooping, external control
of the on-chip caches and TLBs, and support for a secondary cachevildr®a@rchitecture pvades the
load/store with reseation instruction pair fvarx/stwcx) for atomic memory references and other
operations useful in multiprocessor implementations.

The following sections describe the 60dsbsupport for memory and I/O controller interé operations.
Note that some signals perform different functions depending upon the addressing protocol used.

PowerPC 604 RISC Microprocessor Technical Summary 13

1.2.5.1 Memory Accesses

Memory accesses allotransfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bits in oaelbck gcle. Data

transfers occur in either single-beat transactions orlfeat lnrst transactions. A single-beat transaction
transfers as much as 64 bits. Single-beat transactions are caused by noncached accesses that access memory
directly (that is, reads and writes when caching is disabled, cache-inhibited accesses, and stores in write-
through mode). Burst transactions, whictvafs transfer an entire cache block (32 bytes), are initiated

when a block in the cache is read from or written to menfatgitionally, the 604 supports address-only
transactions used to invalidate entries in other processors’ TLBs and caches.

Typically I/O accesses are performed using the same protocol as memory accesses.

1.2.5.2 Signals
The 604's signals are grouped as follows:

* Address arbitration signals—The 604 uses these signals to arbitrate for address bus mastership.

» Address transfer start signals—These signals indicate thestméster has begun a transaction on
the address bus.

» Address transfer signals—These signals, which consist of the address bus, address parity, and
address parity error signals, are used to transfer the address and to ensure the integrity of the
transfer.

» Transfer attribte signals—These signals pide information about the type of transfeuch as the
transfer size and whether the transaction is bursted, write-through, or cache-inhibited.

» Address transfer termination signals—These signals are used tovéettge the end of the address
phase of the transaction. They also indicate whether a condition exists that requires the address
phase to be repeated.

» Data arbitration signals—The 604 uses these signals to arbitrate for data bus mastership.

» Datatransfer signals—These signals, which consist of the asitddita parityand data parity error
signals, are used to transfer the data and to ensure the integrity of the transfer.

» Data transfer termination signals—Data termination signals are required after each data beat in a
data transfer. In a single-beat transaction, the data termination signals also indicate the end of the
tenure, while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data bealy @ls® indicate whether a conditioxigs that
requires the data phase to be repeated.

» System status signals—These signals include the interrupt signal, checkstop signals, and both soft-
and hard-reset signals. These signals are used to interrupt and,ariales @onditions, to reset the
processor.

* Processor state signals—These signals are used to set the reaon coherencbit and set the
size of the 604’s output buffers.

» Miscellaneous signals—These signals are used in conjunction with such resources as secondary
caches and the time base facility.

» COP inter&ce signals—The common on-chip processor (COP) unit is the master clock control unit
and it provides a serial interface to the system for performing built-in self test (BIST).

» Clock signals—These signals determine the system clock fregidrese signals can also be used
to synchronize multiprocessor systems.

14 PowerPC 604 RISC Microprocessor Technical Summary

NOTE

A bar over a signal name indicates that the signal isvadtiw—for
example, ARTRY (address retry) andS (transfer start). Actie-low
signals are referred to as asserted\(@gtivhen thg are lav and ngated

when thg are high. Signals that are not aetlow, such as APO-AP3
(address s parity signals) and TTO-TT4 (transfer type signals) are
referred to as asserted when they are high and negated when they are low.

1.2.5.3 Signal Configuration
Figure 5 illustrates the logical pin configuration of the 604, showing how the signals are grouped.

1.2.6 Clocking

The 604 has a phase-locked loop (PLL) that generates the internal processor clock. The input, or reference
signal, to the PLL is theus clock. The feedback in the PLL guarantees that the processor clock is phase
locked to the bs clock, rgardless of processxiations, temperature changes, or parasitic capacitances. The
PLL also ensures a 50% duty cycle for the processor clock.

The 604 supports the following processor-to-bus clock frequency ratios—1:1, 1.5:1, 2:1, and 3:1, although
not all ratios are \ailable for all frequencies.ablel shavs the supported processor frequencies for
different bus frequencies.

Table 1. Supported Processor/Bus Frequency Ratios

Bus Supported Processor/Bus Clock Ratios
Frequency
(MHz) 1:1 1.5:1 2:1 31
16.5-33.3 Yes Yes Yes Yes
33.4-50.0 Yes Yes Yes No
50.1-66.6 Yes Yes No No

PowerPC 604 RISC Microprocessor Technical Summary 15

<@ BYS REQUEST 1 1 |«g_DATA BUS GRANT
ADDRESS BUS GRANT DATA BUS WRITE ONLY
ARBITRATION > 1 1. DATA
@ ADDRESS BUS BUSY |1 1 |«g—DRATA BUS BUSY > ARBITRATION
ADDRESS [_ TRANSFER START 1 DATA]
4
START - EXTENDED TRANSFER STA7 1 " DATA PARITY >
B s 8| e > | DATA
1 DATA PARITY ERROR - TRANSFER
[g ADDRESS 32 DATA BUS DISABLE
ADDRESS = ADDRESS PARITY ™ L e -
TRANSFER - -4 -
< ADDRESS PARITY ERROR . 1 |« TRANSFER ACKNOWLEDGH
— 1 |« DATA RETRY DATA
g TRANSFER TYPE o 1| g_TRANSFER ERROR ACK TERMINATION
TRANSFER CODE —
- 3 1 |<«g/NTERRUPT
- TRANSFER SIZE - 3 1 |- SYSTEM RESET INTERRUPTS
TRANSFER < CACHE INHIBIT 1 1 |g_SYSTEM MANAGEMENT
ATTRIBUTE WRITE THROUGH _
- 1 CHECKSTOP INPUT .
- CLOBAL 1 i CHECKSTOP_OUTPUT
@ CACHE SET MEMBER 2 1 P PROCESSOR
|~ 1 RESERVATION » | STATE
[___ADDRESS ACKNOWLEDGE g |4 1|ag—HARD RESET
ADDRESS g ADDRESS RETRY |1 1 |<ag—System Clock —
TERMINATION <@ SHARED 1 CLOCK OUT - CLOCK
4|<g_TEST ACCESS PORT —
1 TEST DATA OUT JTAG / COP
1 |<g—ENABLE TIMEBASE —
»lg—DRIVER MODE
1 g L2 INT
1lg—RUN MISC
1 HALTED >
4 |g—PLL CONFIG
1 |<gANALOG VDD
TOTAL: 171
Figure 5. PowerPC 604 Microprocessor Signal Groups
16 PowerPC 604 RISC Microprocessor Technical Summary

1.3 PowerPC 604 Micr oprocessor Ex ecution Model

This section describes the following characteristics of the 604's execution model:

e The PowerPC architecture

* The 604 register set and programming model
e The 604 instruction set

* The 604 exception model

* Instruction timing on the 604

1.3.1 Levels of the P owerPC Ar chitecture

The PowerPC architecture is derived from the IBM POWER Architecture™ (Performance Optimized with
Enhanced RISC architecture). TheneoPC architecture shares the benefits ofR®&/ER architecture
optimized for single-chip implementations. The architecture deaiglitétes parallel instructiorxecution

and is scalable to take advantage of future technological gains.

The PowerPC architecture consists of the following layers, and adherence to the PowerPC architecture can
be measured in terms of which of the fallog lewels of the architecture is implementedr Example, if a
processor adheres to the virtualieonment architecture, it is assumed that it meets the user instruction set
architecture specification.

» PawverPC user instruction set architecture (UISA)—The UISA definesvtbedéthe architecture
to which user-level software must conform. The UISA defines the base user-level instruction set,
user-level registers, data types, memory conventions, and the memory and programming models
seen by application programmers. Note that the PowerPC architecture refers to user level as
problem state.

» PawerPC virtual emironment architecture (VEA)—The VEA, which is the smallest component of
the PowerPC architecture, defines additional user-level functionality that falls outside typical user-
level software requirements. The VEA describes the memory model for an environment in which
multiple processors or othendees can accesgternal memorydefines aspects of the cache model
and cache control instructions from a ukeeel perspecti®. The resources defined by the VEA are
particularly useful for managing resources in an environment in which other processors and other
devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not
necessarily adhere to the OEA.

* PowerPC operating etironment architecture (OEA)—The OEA defines superisel resources
typically required by an operating system. The OEA defines the PowerPC memory management
model, supervisor-level registers, and the exception model. Note that the PowerPC architecture
refers to the supervisor level as privileged state.

Implementations that conform to theviRyPC OEA also conform to theWwerPC UISA and VEA.

The 604 complies to all threevkds of the PaverPC architecture. Note that theARoPC architecture defines
additional instructions for 64-bit data types. These instructions causegahitistruction exception on the
604. PaverPC processors are alled to hae features that are implementation-specific features alat f
outside, lnt do not conflict with, the ReerPC architecture specification. Examples of features that are
specific to the 604 include the performance monitor and nap mode.

PowerPC 604 RISC Microprocessor Technical Summary 17

The 604 is a high-performance, superscalavd?BC implementation of the RerPC architecture. L&
other PaverPC processors, it adheres to th&/@®®C architecture specificationstlalso has additional
features not defined by the architecture. These features ddeuttsafftware compatibility. The PowerPC
architecture alles optimizing compilers to schedule instructions to maximize performance through
efficient use of the ReerPC instruction set andgister model. The multiple, independereeution units

in the 604 allav compilers to maximize parallelism and instruction throughput. Compilers that tak
advantage of the fiability of the PaverPC architecture can additionally optimize instruction processing of
the PowerPC processors.

1.3.2 Register s and Programming Model

The PaverPC architecture definesgister-to-rgister operations for most computational instructions.
Source operands for these instructions are accessed frongiterseor are provided as immediate values
embedded in the instruction opcode. The thrgeéster instruction format ales specification of a tget
register distinct from the tavsource operands. Load and store instructions transfer data betgistarse
and memory.

During normal ®gecution, a program can access thgisters, shan in Figure6, depending on the
programs access prilege (supervisor or usedetermined by the milege-lewel (PR) bit in the machine

state rgister (MSR)). Note that gisters such as the general-purposgsters (GPRs) and floating-point
registers (FPRs) are accessed through operands that are part of the instructions. Aqgietsrsocesn be

explicit (that is, through the use of specific instructions for that purpose suchvastd8pecial-Purpose
Register intspr) and Move from Special-Purpose Bister (mfspr) instructions) or implicitly as the part of
the execution of an instruction. Some registers are accessed both explicitly and implicitly.

The numbers to the left of the SPRs indicate the number that is used in the syntax of the instruction operands
to access the register.

Figure6 shavs the rgisters implemented in the 604, indicating those that are defined by vilezF
architecture and those that are 604-specific. Note that these are all ofgisteesr&cept the FPRs are 32-
bits wide.

18 PowerPC 604 RISC Microprocessor Technical Summary

-
-

/~ USER MODEL

~

(For Reading)

SUPERVISOR MODEL
OEA

Configuration Registers

N

~

UISA .)
Machine State Hardware Implementation Processor Version
General-Purpose Register Dependent Register Register
Registers
MSR -_HIDO SPR1 008 -_PVR SPR 287
GPRO
GPR1 Memory Management Registers
H Instruction BAT))
° Registers Data BAT Registers Segment Registers
GPR31 IBATOU | SPR 528 DBATOU | SPR 536 SRO
IBATOL | SPR 529 DBATOL | SPR 537 SR1
Floating-Point IBATIU | SPR530 DBATLU | SPR538 :
Registers
IBATIL |SPR531 DBATIL | SPR539 SR15
FPRO IBAT2U | SPR 532 DBAT2U | SPR 540
FPR1 IBAT2L | SPR533 DBAT2L | SPR541
s IBAT3U | SPR 534 DBAT3U | SPR 542 SDR1
* IBAT3L | SPR 535 DBAT3L | SPR 543 SPR 25
FPR31
N _ Performance Monitor
Condition Register Performance . 1 Sampled Data/
Monitor Counters 1 Monitor Control Instruction Address 1
PMC1 | SPR 953 SPR 952 SDA | SPR959
Floating-Point Status PMC2 | SPR 954 SIA | SPR955
and Control Register
Exception Handling Registers
Data Address Register DSISR
XER
DAR SPR 19 DSISR | SPR 18
.
SPRGs Save and Restore
. . Registers
Link Register SPRGO | SPR 272 g
- SPRG1 | SPR273 SRRO | SPR 26
SPRG2 | SPR 274 SRR1 SPR 27
Count Register SPRG3 | SPR275
CTR . .
\ SPRS . Miscellaneous Registers
Time Base Facility
USER MODEL (For Writing) Decrementer
VEA TBL SPR 284 DEC SPR 22
Time Base Facility TBU SPR 285

Instruction Address

TBL TBR 268 Breakpoint Register Register (Optional)
TBU TBR 269 IABR SPR 1010 EAR SPR 282

External Address

J

1 604-specific—not defined by the PowerPC architecture

Figure 6. Programming Model—PowerPC 604 Microprocessor Registers

PowerPC 604 RISC Microprocessor Technical Summary 19

PaverPC processors va two levels of prvilege—supervisor mode of operation (typically used by the
operating ewironment) and one that corresponds to the user mode of operation (used by application
software). As shown in Figu& the programming model incorporates 32 GPRs, 32 FPRs, special-purpose
registers (SPRs), and several miscellaneous registers. Note that each PowerPC implementation has its own
unique set of implementation-dependent registers that are typically used for debugging, configuration, and
other implementation-specific operations.

Some rgisters are accessible only by supervisoel software. This division allows the operating system
to control the application gmonment (preiding virtual memory and protecting operating-system and
critical machine resources). Instructions that control the state of the prodéssaddress translation
mechanism, and supervisor registers can be executed only when the processor is in supervisor mode.

The following sections summarize the PowerPC registers that are implemented in the 604.

1.3.2.1 General-Purpose Registers (GPRSs)

The PaverPC architecture defines 32 ukmrl, general-purpose gesters (GPRs). Thesegisters are

either 32 bits wide in 32-bit Re@rPC implementations and 64 bits wide in 64-bitw&dC
implementations. The 604 also has 12 GPR renaiffiers, which preide a vay to huffer data intended for

the GPRs, reducing stalls when the results of one instruction are required by a subsequent instruction. The
use of rename buffers is not defined by the PowerPC architecture, and they are transparent to the user with
respect to the architecture. The GPRs and their associated renfiere sere as the data source or
destination for instructions executed in the 1Us.

1.3.2.2 Floating-Point Registers (FPRS)

The PaverPC architecture also defines 32 floating-poigisters (FPRs). These 64-bigrgters typically

are used to prade source and tget operands for usével, floating-point instructions. As with the GPRs,

the 604 also has eight FPR renanuéfdrs, which preide a vay to huffer data intended for the FPRs,
reducing stalls when the results of one instruction are required by a subsequent instruction. The rename
buffers are not defined by the WerPC architecture. The FPRs and their associated rensfeestcan

contain data objects of either single- or double-precision floating-point formats.

1.3.2.3 Condition Register (CR)

The CR is a 32-bit usdevel register that consists of eight fehit fields that reflect the results of certain
operations, such as wm integger and floating-point compare, arithmetic, and logical instructions, and
provide a mechanism for testing and branching. The 604 also has eight CR reifi@nse Wwhich provide

a way to buffer data intended for the CR. The rename buffers are not defined by the PowerPC architecture.

1.3.2.4 Floating-Point Status and Control Register (FPSCR)

The floating-point status and controfigter (FPSCR) is a us&vel register that contains allxeeption
signal bits, gception summary bitsxeeption enable bits, and rounding control bits needed for compliance
with the IEEE 754 standard.

1.3.2.5 Machine State Register (MSR)

The machine stategister (MSR) is a supervistevel register that defines the state of the proceSdue
contents of this gster are s;ed when an»>xeption is takn and restored when theception handling
completes. The 604 implements the MSR as a 32giiter; 64-bit PaverPC processors use a 64-bit MSR
that provide a superset of the 32-bit functionality.

20 PowerPC 604 RISC Microprocessor Technical Summary

1.3.2.6 Segment Registers (SRs)
For memory management, 32-bit PowerPC implementations use sixteen 32-bit segment registers (SRs).

1.3.2.7 Special-Purpose Registers (SPRS)

The PeoverPC operating etronment architecture defines numerous special-purpgssters that seeva
variety of functions, such as miding controls, indicating status, configuring the processuat performing
special operations. Some SPRs are accessed implicitly as paecafieg certain instructions. All SPRs
can be accessed by using the move to/from special purpose register instrotpnsndmfspr.

In the 604, all SPRs are 32 bits wide.

1.3.2.8 User-Level SPRs
The following SPRs are accessible by user-level software:

Link register (LR)—The link register can be used to provide the branch target address and to hold
the return address after branch and link instructions. The LR is 32 bits wide.

Count rgister (CTR)—The CTR is decremented and tested automatically as a result of branch and
count instructions. The CTR is 32 bits wide.

XER—The 32-bit XER contains the integer carry and overflow bits.

The time base registers (TBL and TBU) can be read by user-level software, but can be written to
only by supervisor-level software.

1.3.2.9 Supervisor-Level SPRs

The 604 also contains SPRs that can be accessed only by sudexdbsoftware. These registers consist
of the following:

The 32-bit data DSISR defines the cause of data access and alignment exceptions.

The data address register (DAR) is a 32-bit register that holds the address of an access after an
alignment or data access exception.

Decrementer register (DEC) is a 32-bit decrementing counter that provides a mechanism for
causing a decrementeqeption after a programmable dellythe 604, the decrementer frequenc
is 1/4th of the bus clock frequency (as is the time base frequency).

The 32-bit SDRL1 register specifies the page table format used in logical-to-physical address
translation for pages.

The machine status save/restore register 0 (SRRO) is a 32-bit register that is used by the 604 for
saving the address of the instruction that causedstbeption, and the address to return to when a
Return From Interruptr{i) instruction is executed.

The machine status save/restore register 1 (SRR1) is a 32-bit register used to save machine status
on exceptions and to restore machine status whelin Erstruction is executed.

SPRGO-SPRG3 registers are 32-bit registers provided for operating system use.

The external access register (EAR) is a 32-bit register that controls access to the external control
facility through the External Control In Word IndexextigvX) and External Control Out Word
Indexed €cowy) instructions.

The processor version register (PVR) is a 32-bit, read-only register that identifies the version
(model) and revision level of the PowerPC processor.

The time base registers (TBL and TBU) together provide a 64-bit time base register. The registers
are implemented as a 64-bit counter, with the least-significant bit being the most frequently
incremented. The PowerPC architecture defines that the time base frequency be provided as a

PowerPC 604 RISC Microprocessor Technical Summary 21

subdvision of the processor clock frequgni the 604. the time base frequeie 1/4th of the bs
clock frequency (as is the decrementer frequency). Counting is enabled by the Time Base Enable
signal TBE).

» Block address translation (BAT) registers—The PowerPC architecture defines 16 BAT registers,
divided into four pairs of data BATs (DBATS) and four pairs of instruction BATs (IBATS).

The 604 includes the following registers not defined by the PowerPC architecture:

» Instruction address breakpoint register (IABR)—This register can be used to cause a breakpoint
exception to occur if a specified instruction address is encountered.

» Data address breakpoint register (DABR)—This register can be used to cause a breakpoint
exception to occur if a specified data address is encountered.

» Hardware implementation-dependent register O (HIDO)—This register is used to control various
functions within the 604, such as enabling checkstop conditions, and locking, enabling, and
invalidating the instruction and data caches.

» Processor identification register (PIR)—The PIR is a supervisor-level register that has a right-
justified, fourbit field that holds a processor identification tag used to identify a particular 604. This
tag is used to identify the processor in multiple-master implementations.

« Performance monitor counter registers (PMC1 and PMC2). The counters are used to record the
number of times a certain event has occurred.

» Performance monitor control register (MMCRO)—This is used for enabling various performance
monitoring interrupt conditions and establishes the function of the counters.

« Sampled instruction address and sampled data address registers (SIA and SDA)—These registers
hold the addresses for instruction and data used by the performance monitoring interrupt.

Note that while it is not guaranteed that the implementation of HiBtegs is consistent among PowerPC
processors, other processors may be implemented with similar or identical HID registers.

1.3.3 Instruction Set and Ad dressing Modes
The following subsections describe the PowerPC instruction set and addressing modes in general.

1.3.3.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as singbeel(32-bit) opcodes. Instruction formats are consistent
among all instruction types, permittindiefent decoding to occur in parallel with operand accesses. This
fixed instruction length and consistent format greatly simplifies instruction pipelining.

1.3.3.1.1 Instruction Set
The 604 implements the entireviRrPC instruction set (for 32-bit implementations) and most optional
PowerPC instructions. The PowerPC instructions can be grouped into the following general categories:
» Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions

— Integer compare instructions

— Logical instructions

— Integer rotate and shift instructions

* Floating-point instructions—These include floating-point computational instructions, as well as
instructions that affect the FPSCR. Floating-point instructions include the following:

— Floating-point arithmetic instructions

22 PowerPC 604 RISC Microprocessor Technical Summary

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions

— Floating-point compare instructions

— Floating-point move instructions

— Floating-point status and control instructions

— Optional floating-point instructions (listed with the optional instructions below)

The 604 supports all IEEE 754-1985 floating-point data types (normalized, denormalized, NaN,
zero, and infinity) in hardware, eliminating the latency incurred by software exception routines.

The PoverPC architecture also supports a non-IEEE mode, controlled by a bitin the FPSCR. In this
mode, denormalized numbers, NaNs, and some |IBEdroperations are not required to conform

to IEEE standards and can execute faster. Note that all single-precision arithmetic instructions are
performed using a double-precision format. The floating-point pipeline is a single-pass
implementation for double-precision products. A single-precision instruction using only single-
precision operands in double-precision format performs the same as its double-precisaargqui

» Load/store instructions—These include integer and floating-point load and store instructions.

— Integer load and store instructions
— Integer load and store multiple instructions
— Integer load and store string instructions
— Floating-point load and store
» Flow control instructions—These include branching instructions, condition register logical
instructions, trap instructions, and other instructions that affect the instruction flow.
— Branch and trap instructions
— System call andi instructions
— Condition register logical instructions

» Synchronization instructions—The PowerPC architecture defines instructions for memory
synchronizing, especially useful for multiprocessing:

— Load and store with reservation instructions—These UISA-defined instructions provide
primitives for synchronization operations such as test and set, compareagndrssivcompare
memory.

— The Synchronize instructiosyng—This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by multiple devices.

— The Enforce In-Order Eecution of I/O instructiondjeio—Theeieioinstruction, defined by
the VEA, can be used instead of #ymcinstruction when only memory references seen by
I/O devices need to be ordered.

» Processor control instructions—These instructions are used for synchronizing memory accesses
and managing caches, TLBs, and segment registers. These instructions include move to/from
special-purpose register instructionstgpr andmfspr).

* Memory/cache control instructions—These instructions provide control of caches, TLBs, and
segment registers.

— User- and supervisor-level cache instructions
— Segment register manipulation instructions
— Translation lookaside buffer management instructions

PowerPC 604 RISC Microprocessor Technical Summary 23

» Optional instructions—the 604 implements the following optional instructions:

— Theeciwx/ecowxinstruction pair

— The TLB Synchronize instructionligsync)

— Optional graphics instructions:
— Store Floating-Point as Integer Word Indexsifiyx)
— Floating Reciprocal Estimate Singfest)
— Floating Reciprocal Square Root Estimditsqite)
— Floating Selectfgel)

Note that this grouping of the instructions does not indicate whiebudon unit gecutes a particular
instruction or group of instructions.

Integer instructions operate on byte, hatird, and word operands. Floating-point instructions operate on
single-precision (one ovd) and double-precision (one doublerd) floating-point operands. ThewerPC
architecture uses instructions that are four bytes long artaligned. It preides for byte, half-wrd, and
word operand loads and stores between memory and a set of 32 GPRs. Ivades pvovword and double-
word operand loads and stores between memory and a set of 32 FPRs.

Computational instructions do not modify memoFg use a memory operand in a computation and then
modify the same or another memory location, the memory contents must be loadedjisteia neodified,
and then written back to the target location with specific store instructions.

PaverPC processors follothe program flae when thg are in the normalxecution state. Heever the
flow of instructions can be interrupted directly by tleaution of an instruction or by an asynchronous
ewvent. Either kind of xception may cause one ofveeal components of the system saftesto be invoked.

1.3.3.1.2 Calculating Effective Addresses

The efective address (EA) is the 32-bit address computed by the processor xetettirgg a memory
access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

» EA=(A|0) + offset (including offset = 0) (register indirect with immediate index)
 EA =(rA|0) +rB (register indirect with index)

These simple addressing modes alldicieint address generation for memory accesses. Calculation of the
effective address for aligned transfers occurs in a single clock cycle.

For a memory access instruction, if the sum of thecéfe address and the operand lengtbeeds the
maximum effectie address, the storage operand is considered to wrap around from the mafeutive ef
address to effective address O.

Effective address computations for both data and instruction accesses use 32-bit unsigned binary arithmetic.
A carry from bit O is ignored in the 604.

1.3.4 Exception Model

The folloving subsections describe the weoPC e&ception model and the 604 implementation,
respectively.

The PaverPC &ception mechanism allgs the processor to change to supervisor state as a restitrobé
signals, errors, or unusual conditions arising in tkecetion of instructions. Wherxeeptions occyr
information about the state of the processorveddo various mgsters and the processogies execution

24 PowerPC 604 RISC Microprocessor Technical Summary

at an address (exception vector) predetermined for each exception and the processor changes to supervisor
mode.

Although multiple &ception conditions can map to a singteeption \ector a more specific condition may
be determined byxamining a rgister associated with thexaeption—for @ample, the DSISR and the
FPSCR. Additionally, specific exception conditions can be explicitly enabled or disabled by software.

The PoverPC architecture requires thadceptions be handled in program order; therefore, although a
particular PaverPC processor may recogniz&eption conditions out of ordeexceptions are handled
strictly in order When an instruction-causedoception is recognized, grunexecuted instructions that
appear earlier in the instruction stream, includingtaat hae not yet entered theecute state, are required

to complete before thexeeption is takn. Ary exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized wherdhe (unless theare
masked), bt the processor graduallywered devn, and the reordenffer is drained. The address of the
next sequential instruction is wad in SRRO so»ecution can resume in the correct cahtehen the
exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machinexategtlor, only onexaeption is
handled at a time. If, forxample, a single instruction encounters multipteeption conditions, those
conditions are encountered sequentiadlfter the &ception handler handles axception, the instruction
execution continues until the xeexception condition is encountered. This method of recognizing and
handling exception conditions sequentially guarantees that exceptions are recoverable.

Exception handlers shouldvesthe information stored in SRRO and SRR1 early togmitehe program state
from being lost due to a system reset or machine che@pgon or to an instruction-causecteption in
the exception handler.

The PowerPC architecture supports four types of exceptions:

« Synchronous, precise—These are caused by instructions. All instruction-caused exceptions are
handled precisely; that is, the machine state at the time the exception occurs is known and can be
completely restored.

* Synchronous, imprecise—The PowerPC architecture defines two imprecise floating-point
exception modes, recoverable and nonrecoverable. The 604 implements only the imprecise
nonrecoverable mode. The imprecise, recoverable mode is treated as the precise mode in the 604.

» Asynchronous—The OEA portion of thewerPC architecture definesdwypes of asynchronous
exceptions:

— Asynchronous, maskable—The PowerPC architecture defines the external interrupt and
decrementer interrupt which are maskable and asynchronous exceptions. In the 604, and in
many PaverPC processors, the haahe interrupt is generated by the assertion of the Interrupt
(INT) signal, which is not defined by the architecture. In addition, the 604 implements one
additional interrupt, the system management interrupt, which performs similarly iaeheaé
interrupt, and is generated by the assertion of the System Management InEBVi)signal.

When these exceptions occur, their handling is postponed until all instructions, and any
exceptions associated with those instructions, complete execution.

— Asynchronous, nonmaskable—There are two nonmaskable asynchronous exceptions that are
imprecise: system reset and machine check exceptions. Note that the OEA portion of the
PaverPC architecture, which definesihthese gceptions verk, does not define the causes or
the signals used to cause these exceptions. These exceptions may not be recoverable, or may
provide a limited degree of recoverability for diagnostic purpose.

PowerPC 604 RISC Microprocessor Technical Summary 25

The PaverPC architecture defines dwbits in the machine stategister (MSR)—FEO and FEl1—that
determine how floating-poinkeeptions are handled. There are four combinations of bit settings, of which
the 604 implements three. These are as follows:

» Ignore exceptions mode (FEO = FE1 = 0). In this mode, the instruction dispatch logic feeds the FPU
as fast as possible and the FPU uses an internal pipeline to allow overlapped execution of
instructions. In this mode, floating-point exception conditions return a predefined value instead of
causing an exception.

* Precise interrupt mode (FEO = 1; FE1 = x). This mode includes both the precise mode and imprecise
recoverable mode defined in the PowerPC architecture. In this mode, a floating-point instruction
that causes a floating-point exception brings the machine to a precise state. In doing so, the 604
takes floating-point exceptions as defined by the PowerPC architecture.

» Imprecise nonrea@rable mode (FEO = 0; FE1 = 1). In this mode, when a floating-point instruction
causes a floating point exception, the save restore register 0 (SRR0) may point to an instruction
following the instruction that caused the exception.

The 604 exception classes are shown in Table 2.

Table 2. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine check
System reset

Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Floating-point exceptions (imprecise nonrecoverable mode)

The 604's exceptions, and conditions that cause them, are listed in Table 3.

26 PowerPC 604 RISC Microprocessor Technical Summary

Table 3. Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved

00000

System reset

00100

A system reset is caused by the assertion of either the soft reset or hard reset
signal.

Machine check

00200

A machine check exception is signaled by the assertion of a qualified TEA
indication on the 604 bus, or the machine check input (MCP) signal. If the
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus or in the instruction or data caches.

The assertion of the TEA signal is determined by load and store operations
initiated by the processor; however, it is expected that the TEA signal would be
used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

Data access

00300

The cause of a data access exception can be determined by the bit settings in

the DSISR, listed as follows:

0 Setif aload or store instruction results in an I/O controller interface
exception; otherwise cleared.

1 Setif the translation of an attempted access is not found in the primary table
entry group (PTEG), or in the rehashed secondary PTEG, or in the range of
a BAT register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] = 1, set by an eciwx , ecowx , lwarx , or stwcx . instruction; otherwise
cleared. Set by an eciwx or ecowx instruction if the access is to an address
that is marked as write-through.

6 Set for a store operation and cleared for a load operation.

9 Set if an EA matches the address in the DABR while in one of the three
compare modes.

10Set if the segment table search fails to find a translation for the effective
address; otherwise cleared.

11Set if eciwx or ecowx is used and EAR[E] is cleared.

Instruction
access

00400

An instruction access exception is caused when an instruction fetch cannot be

performed for any of the following reasons:

« The effective address cannot be translated. That is, there is a page fault for
this portion of the translation, so an instruction access exception must be
taken to retrieve the translation from a storage device such as a hard disk
drive.

* The fetch access is to an I/O controller interface segment.

« The fetch access violates memory protection. If the key bits (Ks and Kp) bits
in the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

PowerPC 604 RISC Microprocessor Technical Summary 27

Table 3. Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

External
interrupt

00500

An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 604 stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Alignment

00600

An alignment exception is caused when the processor cannot perform a
memory access for the following reasons:

A floating-point load, store, Imw, stmw, lwarx , or stwcx. instruction is not word-
aligned.

A dcbz instruction refers to a page that is marked either cache-inhibited or
write-through.

A dcbz instruction has executed when the 604 data cache is locked or disabled.
An access is not naturally aligned in little-endian mode.

An ecowx or eciwx is not word-aligned.

An Imw, stmw, Iswi, Iswx , stswi, or stswx is issued in little-endian mode.

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

« Floating-point exceptions—A floating-point enabled exception condition
causes an exception when FPSCR[FEX] is set and depends on the values in
MSR[FEQ] and MSR[FEL1].

FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

¢ lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).

¢ Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSR[PR] = 1.

« Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1.

Reserved

00AO0—-00BFF

System call

00Co0

A system call exception occurs when a System Call (sc) instruction is executed.

Trace

00D00

Either the MSR[SE] = 1 and any instruction (except rfi) successfully completed
or MSR[BE] = 1 and a branch instruction is completed.

28

PowerPC 604 RISC Microprocessor Technical Summary

Table 3. Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)

Floating-point 00EOO Defined by the PowerPC architecture, but not required in the 604.

assist

Reserved OOE10-00EFF | —

Performance 00F00 The performance monitoring interrupt is a 604-specific excepting and is used

monitoring with the 604 performance monitor, described in Section 1.5, “Performance

interrupt Monitor.”
The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR EE bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF —

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits 0 to

address 29) in the IABR matches the next instruction to complete in the completion unit,

breakpoint and the IABR enable bit (bit 30) is set to 1.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMI

management input signal is asserted. This exception is provided for use with the nap mode,

interrupt which is described in Section 1.4, “Power Management—Nap Mode.”

Reserved 01500-02FFF —

Reserved 01000-02FFF Reserved, implementation-specific exceptions. These are not implemented in
the 604.

1.3.5 Instruction Timing

As shavn in Figure7, the common pipeline of the 604 has six stages through which all instructions must
pass. Some instructions ocgumultiple stages simultaneously and someviiddial execution units hee
additional stages.df example, the floating-point pipeline consists of three stages through which all
floating-point instructions must pass.

PowerPC 604 RISC Microprocessor Technical Summary 29

Fetch (IF)

Y

Decode (ID)
\
(Four-instruction dispatch per clock in Dispatch (DS)
any combination) .
Execute Stage
SClul SClU2 MCIU FPU BPU LSU

T

Complete (C)

Y
Writeback (W)

Figure 7. Pipeline Diagram

The common pipeline stages are as follows:

Instruction fetch (IF)—During the IF stage, the fetch unit loads the decode queue (DEQ) with
instructions from the instruction cache and determines from what address the next instruction
should be fetched.

Instruction decode (ID)—During the ID stage, all time-critical decoding is performed on
instructions in the dispatch queue (DISQ). The remaining decode operations are performed during
the instruction dispatch stage.

Instruction dispatch (DS)—During the dispatch stage, the decoding that is not time-critical is
performed on the instructions provided by the previous ID stage. Logic associated with this stage
determines when an instruction can be dispatched to the appropriate execution unit. At the end of
the DS stage, instructions and their operands are latched intcetheien input latches or into the

unit's reservation station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

Execute (E)—While the execution stage is viewed as a common stage in the 604 instruction
pipeline, the instruction flow is split among the six execution units, some of which consist of
multiple pipelines. An instruction may enter theeute stage from either the dispatch stage or the
execution unit’s dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the appropriate rename
buffer entry and notifies the completion stage that the instruction has finished execution.

30

PowerPC 604 RISC Microprocessor Technical Summary

The «ecution unit reports grinternal eceptions to the completion stage and continxesugion,
recardless of thexa@eption. Under some circumstances, results can be written directly togiste tar
registers, bypassing the rename buffers.

» Complete (C)—The completion stage ensures that the correct machine state is maintained by
monitoring instructions in the completion buffer and the status of instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer (ROB). Results may be
written back from the renamefbers to the rgister as early as the complete stage. If the completion
logic detects an instruction containing exception status or if a branch has been mispredicted, all
subsequent instructions are cancelleg,rasults in renameuffers are discarded, and instructions
are fetched from the correct instruction stream.

The CR, CTR, and LR are also updated during the complete stage.

» Writeback (W)—The writeback stage is used to write baghkr#ormation from the renameuifiers
that was not written back during the complete stage.

All instructions are fully pipelinedxeept for divide operations and some igeg multiply operations. The
integer multiplier is a three-stage pipeline. bpge divide instructions iterate in stagedwf the multiplier.
SPR operations can execute in the MCIU in parallel with multiply and divide operations.

The floating-point pipeline has three stages. Floating-point divide operations iterate in the first stage.

1.4 Power Management—Nap Mode

The 604 pruides a pwer-saing mode, called nap mode, in which all internal processing andieration

is suspended. Softwe initiates nap mode by setting the MSR{Pbit. After this bit is set, the 604
suspends instruction dispatch andite for all actiity in progress, including as® and pending us
transactions, to complete. It then poweramddhe internal clocks, and indicates nap mode by asserting the
HALTED output signal.

When the 604 is in nap mode, all internal\atyistops &cept for decrementetime base, and interrupt
logic, and the 604 does not snoas lactvity unless the system asserts théNRinput signal. Asserting the
RUN signal causes the HALTED signal to be negated.

Nap mode is exited (clocks resume and MSR[POW] cleared) when any asynchronous interrupt is detected.

1.5 Performance Monitor

The 604 incorporates a performance moniaility that system designers can use to help bring upigdeb

and optimize softare performance, especially in multiprocessing systems. The performance monitor is a
software-accessible mechanism thatvides detailed information concerning the dispatotgcation,
completion, and memory access of PowerPC instructions.

The performance monitor controlgister (MMCRO) can be used to specify the conditions for which a
performance monitoring interrupt is &k For example, one such condition is associated with one of the
counter rgisters (PMC1 or PMC2) incrementing until the most significant bit indicategativee\alue.
Additionally. the sampled instruction address and sampled data addyis$srse(SIA and SB) are used

to hold addresses for instruction and data related to the performance monitoring interrupt.

PowerPC 604 RISC Microprocessor Technical Summary 31

Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or implied
copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this document.

The PowerPC 604 microprocessor embodies the intellectual property of IBM and of Motorola. However, neither party assumes any responsibility or liability as to
any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party. Neither party is to be considered an agent or
representative of the other party, and neither has granted any right or authority to the other to assume or create any express or implied obligations on its behalf.
Information such as errata sheets and data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the microprocessor may vary
as between IBM and Motorola. Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that party.

Both IBM and Motorola reserve the right to modify this manual and/or any of the products as described herein without further notice. Nothing in this manual, nor
in any of the errata sheets, data sheets, and other supporting documentation, shall be interpreted as conveying an express or implied warranty, representation, or
guarantee regarding the suitability of the products for any particular purpose. The parties do not assume any liability or obligation for damages of any kind arising
out of the application or use of these materials. Any warranty or other obligations as to the products described herein shall be undertaken solely by the marketing
party to the customer, under a separate sale agreement between the marketing party and the customer. In the absence of such an agreement, no liability is
assumed by the marketing party for any damages, actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer application by
customer’s technical experts. Neither IBM nor Motorola convey any license under their respective intellectual property rights nor the rights of others. The products
described in this manual are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death
may occur. Should customer purchase or use the products for any such unintended or unauthorized application, customer shall indemnify and hold IBM and
Motorola and their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if
such claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

IBM is a registered trademark, and IBM Microelectronics, PawerPL . PowerPC, PowerPC Architecture, POWER Architecture, and PowerPC 604 are
trademarks of International Business Machines Corp.

Motorola Literature Distribution Centers:

USA: Motorola Literature Distribution, P.O. Box 20912, Phoenix, Arizona 85036.

EUROPE: Motorola Ltd., European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd., 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

Technical Information : Motorola Inc. Semiconductor Products Sector Technical Responsiveness Center; (800) 521-6274.
Document Comments : FAX (512) 891-2638, Attn: RISC Applications Engineering.

IBM Microelectronics:

USA: IBM Microelectronics, Mail Stop A25/862-1, PowerPC Marketing, 1000 River Street, Essex Junction, VT 05452-4299;
Tel.: (800) PowerPC [(800) 769-3772]; FAX (800) POWERfax [(800) 769-3732].

EUROPE: IBM Microelectronics, PowerPC Marketing, Dept. 1045, 224 Boulevard J.F. Kennedy, 91105 Corbeil-Essonnes
CEDEX, France; Tel. (33) 1-60-88 5167; FAX (33) 1-60-88 4920.

JAPAN: IBM Microelectronics, PowerPC Marketing, Dept., R0260, 800 Ichimiyake, Yasu-cho, Yasu-gun, Shinga-ken, Japan
520-23; Tel. (81) 775-87-4745; FAX (81) 775-87-4735.

IBM Microelectronics @ AMOTORDLA

