MP8840

8-Channel, Voltage Output, 2 MHz, 4 Quadrant Multiplying, 8-Bit DAC with Serial Digital Data Port

FEATURES

- 8 Independent 4-Quadrant Multiplying 8-Bit DACs
- High Speed:
 - Settling Time: 3.5 μs to ± 1 LSB
 - Slew Rate: 4 V/μs
 - Voltage Reference Input Bandwidth:
 2.5 MHz (V_{IN} = 100 mV p-p)
- Low Power: 80 mW (typ)
- DACs Matched to <u>+0.5%</u> (typ)
- Midscale Preset, All DAC Outputs are Zero Volts
- Latch-Up Free
- Greater than 2000 V ESD Protection
- 5 MHz Version: MP7670

APPLICATIONS

- Analog Multiplier Replacement
- High-Frequency Gain Control using DACs
- Convergence Adjustment for Displays and Monitors
- Potentiometer Adjustment Replacement

GENERAL DESCRIPTION

The MP8840 is an 8-channel, 4 quadrant multiplying, 8-bit accurate digital-to-analog converter with a 2.5 MHz input bandwidth. It includes an output drive amplifier per channel capable of driving a \pm 5 mA minimum to a load. DNL of \pm 1/4 LSB (typ) is achieved with a channel-to-channel matching of better than 0.5% (typ). Stability, matching, and precision of the DACs are achieved by using EXAR's thin film technology.

The MP8840 is ideal for direct gain control of high frequency analog signals. The bipolar output amplifier has low noise which

produces a very sharp signal output particularly in display and monitor applications.

A proprietary subranging architecture provides wide signal bandwidth from V_{IN} to output up to 2.5 MHz (typ), fast output settling time, and V_{IN} feedthrough isolation of –60dB (typ).

The MP8840 has a serial data 3-wire standard μ -processor logic interface to reduce pin count, package size, and board wire (space).

The MP8840 is fabricated on a junction isolated, high speed $BiCMOS1^{TM}$ process with thin film resistors.

ORDERING INFORMATION

Package Type	Temperature Range	Part No.		
Plastic Dip	–40 to +85°C	MP8840AN		
SOIC	–40 to +85°C	MP8840AS		

SIMPLIFIED BLOCK DIAGRAM

PIN CONFIGURATIONS

See Packaging Section for Package Dimensions

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION	PIN NO.	NAME	DESCRIPTION
1	V _{OUT} C	DAC C Output	13	V _{OUT} H	DAC H Output
2	V _{OUT} B	DAC B Output	14	V _{IN} G	DAC G Reference Input
3	V _{OUT} A	DAC A Output	15	V _{IN} H	DAC H Reference Input
4	V _{IN} B	DAC B Reference Input	16	LD	Load DAC Register Strobe,
5	V _{IN} A	DAC A Reference Input			Active High Input
6	GND	Ground	17	CLK	Serial Clock Input
7	PR	Preset Input. Active Low	18	SDO	Serial Data Output
8	VwF	DAC E Reference Input	19	V _{SS}	Negative Power Supply
0	V _{IN} E		20	SDI	Serial Data Input
9			21	Vnn	Positive Power Supply
10	VOUTE	DAC E Output	22	VIND	DAC D Reference Input
11	ν _{ουτ} γ	DAC F Output		Vac	
12	V _{OUT} G	DAC G Output	23	VINC	
			24	V _{OUT} D	DAC D Output

ELECTRICAL CHARACTERISTICS TABLE FOR DUAL SUPPLIES

/ / / /

Unless Otherwise Noted: V_{DD} = 5 V, V_{SS} = –5 V, GND = 0 V, $V_{IN}X$ =3 V

			25°C		Tmin to	Tmin to Tmax		
Parameter	Symbol	Min	Тур	Max	Min	Max	Units	Test Conditions/Comments
DC CHARACTERISTICS								
Resolution (All Grades) Differential Non-Linearity Integral Non-Linearity Monotonicity	N DNL INL	8	<u>+</u> 1/4 Guarantee	<u>+</u> 1 <u>+</u> 1 d	8	<u>+</u> 1 <u>+</u> 1	Bits LSB LSB	
DAC OUTPUT								
Output Offset Voltage Range Output Current Capacitive Load	V _{BZE} OVR I _{OUT} CL	-3 <u>+</u> 5	3 <u>+</u> 10	25 3 200	-3 <u>+</u> 5	3 200	mV V mA pF	\overline{PR} = 0, Sets Code = 80 _H ΔV_{OUT} <1 LSB No oscillations
REFERENCE INPUTS								
Input Resistance of one DAC	R _{IN}	5			5		KΩ	R_{IN} (typ) = 15K Ω //Rx Rx = 20K Ω /(1-Code/256)
Input Capacitance ² Voltage Range ¹	C _{IN} IVR	-3	19	30 3	-3	3	pF V	1 20122(1 0000,200)
DYNAMIC CHARACTERISTICS ²								
Input to Output Bandwidth Slew Rate	BW SR	1 1.3	2.5 4.0				MHz V/μs	Code = FS, $V_{IN}X$ = 100 mV p-p Measured 10% to 90%,
V _{IN} Feedthrough Total Harmonic Distortion	F _{DT} T _{HD}		-60 0.02				dB %	$\Delta V_{OUT} X = \pm 6 V$ Code = HS, up to f = 100 kHz $V_{IN} X = 4 V p-p$, Code = FS f = 1 kHz f $p = 80 $ kHz
Spot Noise Voltage Output Settling Time Channel-to-Channel Crosstalk	e _N t _S C _T	60	0.17 3.5	6.0			μV/√Hz μs dB	f = 1 kHz $\pm 1 \text{ LSB}$, Code = 0 to FS Measured between adjacent channels f = 100 kHz
Digital Feedthrough	Q		6				nVs	$V_{IN}X = 0$ V, Code = 0 to FS
DIGITAL INPUTS								
Logic High ³ Logic Low ³ Input Current Input Capacitance ²	V _{IH} V _{IL} I _L C _L	2.4		0.8 <u>+</u> 1 8	2.4	0.8 <u>+</u> 1 8	V V μA pF	
DIGITAL OUTPUTS								
Logic High Logic Low	V _{OH} V _{OL}	3.5		0.4	3.5	0.4		$I_{OH} = -0.4 \text{ mA}$ $I_{OL} = 1.6 \text{ mA}$
POWER SUPPLIES								
Power Supply Range	V _{DD} Vee	4.5 5.5		5.5 4.5	4.5 -5.5	5.5 4.5	V V	
Power Supply Rejection Ratio Positive Negative	PSRR+ PSRR-		0.0002 0.0002	0.01 0.01			%/% %/%	$\frac{PR}{PR} = 0 \text{ V}, \ \Delta V_{DD} = \pm 5\%$ $\frac{PR}{PR} = 0 \text{ V}, \ \Delta V_{SS} = \pm 5\%$

ELECTRICAL CHARACTERISTICS TABLE

Description	Symbol	Min	25 [°] С Тур	Max	Tmin to Tmax Min Max	Units	Conditions
POWER SUPPLIES (CONT'D)							
Power Dissipation Power Supply Current Negative Supply Current	P _{DISS} I _{DD} I _{SS}		80 8 8	150 15 15		mW mA mA	PR = 0 V PR = 0 V PR = 0 V
DIGITAL TIMING SPECIFICATIONS ^{2, 4}							
Input Clock Pulse Width Data Setup Time Data Hold Time CLK to SDO Propagation Delay Load Pulse Width Preset Pulse Width Clock Edge to Load Load Edge to Next Clk Edge	t _{CH} , t _{CL} t _{DS} t _{DH} t _{PD} t _{LD} t _{PR} t _{CKLD} t _{LDCK}	80 40 20 70 50 30 60		120		ns ns ns ns ns ns ns	

NOTES

¹ Maximum input voltage is 2 V less than V_{DD}.

² Guaranteed but not production tested.

³ Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.

⁴ See timing diagram.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2}

V _{DD} to GND	+6.5 V
V _{SS} to GND	–6.5 V
V _{INA-H} to GND V _{DD}	to V_{SS}
V _{OUTA-H} to GND V _{DD}	to V_{SS}
Digital Input & Output Voltage to GND . -0.5 to V_{DD}	+0.5 V
Operating Temperature Range	
Extended Industrial40°C to	+85°C

NOTES:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

² Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.

MP8840

THEORY OF OPERATION

The MP8840 contains 8 independent 4-quadrant multiplying D/A converters with output amplifiers. The design has incorporated a novel approach that provides fast, accurate, low noise, low distortion, small size, and low power in the same device. This device is particularly useful in applications where multipliers are used to perform the gain adjustment function for high frequency analog signal conditioning. Also note that typical multipliers tend to increase noise particularly for low gain settings and have high offsets. The MP8840 design delivers a very low, constant noise, and low offset with digital control through the entire gain range of the D/A converter.

Linearity Characteristics

Each D/A converter in the MP8840 achieves DNL $\leq\pm0.25$ LSB (typ), and gain error $\leq\pm0.5\%$ (typ). Since all 8 channels of MP8840 are fabricated in the same IC, the linearity, gain, and input-output characteristics of all 8 channels match extremely well.

The Logic Interface and Serial Port

The MP8840 is equipped with a serial data 3-wire standard μ -processor logic interface to reduce pin count, package size, and board wire. This interface consists of LD which controls the transfer of data to the selected DAC channels that are fed

through the SDI (serial digital data and address bits) with the CLK (digital input shift register clock). Please refer to the following timing diagrams and truth tables for logic details.

A SDO (serial digital data output driver) is connected to the other side of the input shift register and would save SDI bus space by allowing the daisy chaining of several MP8840s (connecting SDI of device 2 to SDO of device 1).

When the LD signal is low, CLK signal loads the digital input bits (SDI) into the 12-bit shift register. The LD signal going high loads this data into the selected DACs. Also, when the PR signal is low, the output of all DACs would be reset to 0 volts.

Power Supplies and Input Voltage Ranges

The output and input DC ranges are limited to within ± 2 V from each positive and negative supplies. For example, with supplies at ± 5 V, the recommended output range is ± 3 V.

The MP8840 design eliminates any code dependent current change into its GND, hence easing the board level design by eliminating the stringent need for other types of DACs for low GND impedance wiring considerations at board level.

Each output of the MP8840 DAC has an output amplifier driver delivering less than 0.05Ω of output impedance through a push-pull linear output stage. Each output and input characteristics parameter match extremely well, given that all channels are fabricated in the same IC.

LAST —	LAST> FIRST															
LSB D0	D1	D2	D3	D4	D5	D6	MSB	D7	LSB A	0 A1	A2	MS	B A3			
	I								$\overline{}$				/			
											MSB			LSB		
									l		A3	A2	A1	A0	DAC	Updated
	Data									Address	0 0 0 0 0 0 0 1 1	0 0 0 1 1 1 1 0 0	0 0 1 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1	No Ope DAC A DAC B DAC C DAC D DAC E DAC F DAC G DAC G No Ope	eration eration eration
		MSB							LSB							1
		D7	D6	D5	D4	D3	D2	D1	D0	DAC (V _{OUT}	Output = (D/12	Voltag 28 – 1)	ie) x V _{IN}			
		0 0	0 1	–V _{IN} (1/12	28—1) x	V _{IN}										
		0 1 1	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 1	(127) (128) (129)	/128–1 /128–1 /128–1) x V _{IN}) x V _{IN}) x V _{IN}	= 0 V	, (Pres	et Value)	
		1 1	0 1	(254) (255)	/128–1 /128–1) x V _{IN}) x V _{IN}	$\approx V_{II}$	N								

Table 1. Serial Input Format

SDI	CLK	LD	PR	Input Shift Register Operation
X X X X	L ↑ X L		II II	No Operation Shift One Bit In from SDI (Pin 20), Shift One Bit* Out from SDO (Pin 18) All DAC Registers = 80 _H Load Serial Register Data into DAC(X) Register

*Data shifted into the SDI pin appears twelve clocks later at the SDO pin.

Table 2. Control Logic Truth Table

Decimal Input (D)	V _{OUT} (D)	Comments (V _{IN} = 3 V)
0 1 127 128	-3.00 V -2.98 -0.02 0.00	Inverted FS Zero Output
129 254 255	0.02 2.95 2.98	Full Scale (FS)

Table 3. DAC Transfer Function

PERFORMANCE CHARACTERISTICS

Graph 1. Gain (V_{OUT}/V_{IN}) and Feedthrough vs. Frequency

Rev. 1.00

Graph 2. DAC Crosstalk vs. Frequency

Graph 4. Linearity Error vs. **Digital Input Code**

Graph 6. V_{OUT} Full Scale vs. Temperature

T(o)M

Graph 7. Supply Current (I_{DD}) vs. Temperature

XPEXAR

Graph 8. Supply Current (I_{SS}) vs. Temperature

Graph 10. Voltage Noise Density vs. Frequency

24 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) NN24

	INC	HES	MILLIN	METERS
SYMBOL	MIN	MAX	MIN	MAX
А		0.200		5.08
A ₁	0.015		0.38	_
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	1.16	1.280	29.46	32.51
E	0.295	0.325	7.49	8.26
E ₁	0.220	0.310	5.59	7.87
е	0.1	00 BSC	2.5	4 BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.028	0.098	0.711	2.49

Note: (1) The minimum limit for dimensions B1 may be 0.023" (0.58 mm) for all four corner leads only.

	INC	CHES	MILLIN	LLIMETERS		
SYMBOL	MIN	МАХ	MIN	MAX		
A	0.097	0.104	2.464	2.642		
A1	0.0050	0.0115	0.127	0.292		
В	0.014	0.019	0.356	0.483		
С	0.0091	0.0125	0.231	0.318		
D	0.602	0.612	15.29	15.54		
E	0.292	0.299	7.42	7.59		
е	0.0	50 BSC	1.2	7 BSC		
Н	0.400	0.410	10.16	10.41		
h	0.010	0.016	0.254	0.406		
L	0.016	0.035	0.406	0.889		
α	0°	8°	0°	8°		

Notes

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1994 EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

