## **MP87L84**



Low Voltage CMOS 10-Bit 2 MHz Analog-to-Digital Converter

## **FEATURES**

- 3.3 V Operation
- 10-Bit Resolution
- 2 MHz Sampling Rate
- DNL = +1 LSB, INL = +2 LSB
- Internal S/H Function
- V<sub>IN</sub> DC Range: 0 V to V<sub>DD</sub>
   V<sub>REF</sub> DC Range: 1 V to V<sub>DD</sub>
- Low Power: 25 mW (typ)Three-State Digital Outputs
- Latch-Up Free

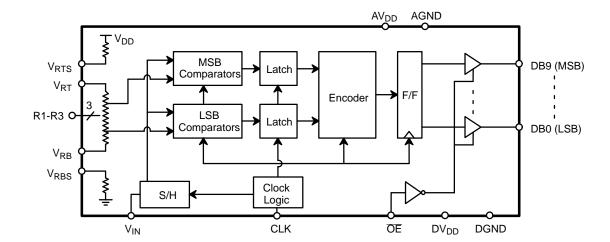
## **APPLICATIONS**

- Digital Color Copiers
- Digital Cellular Telephones
- Precision CCDs and Scanners
- Medical Scanners
- Ultrasonics
- Digital Radio

#### **BENEFITS**

- Simplified Analog Design
- Rugged
- Few External Components, no S/H Needed
- Reduced Board Space

#### **GENERAL DESCRIPTION**


The MP87L84 is a 10-bit, 2 MSPS Analog-to-Digital Converter for applications that require high speed and high accuracy. Designed using an advanced CMOS process, this part offers excellent performance, low power consumption and latch-up free operation.

The MP87L84 uses a subranging architecture to maintain low power consumption at high conversion rates. Our proprietary comparator design achieves a low analog input capacitance. The input circuitry of the MP87L84 includes an on-chip S/H function that allows this part to digitize analog input signals between AGND and  $\mbox{AV}_{\mbox{\scriptsize DD}}.$ 

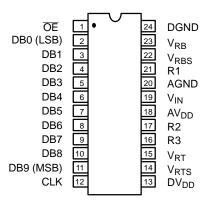
The designer can choose the internally generated reference voltages, or provide external reference voltages to the  $V_{RB}$  and  $V_{RT}$  pins. The internal reference generates 0.6 V at  $V_{RB}$  and 2.4 V at  $V_{RT}$ . Providing external reference voltages allows easy interface to any input signal range between GND and  $V_{DD}$ . This also allows the system to cancel zero scale and full scale errors. The Reference Ladder taps (R1 to R3) can be used to externally trim any INL errors.

This device operates from a single 3.3 V supply. Power consumption from a 3.3 V supply is typically 25 mW at  $F_S$ =2 MHz.

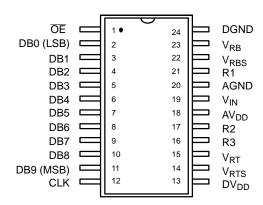
## SIMPLIFIED BLOCK DIAGRAM








## ORDERING INFORMATION


| Package<br>Type | Temperature<br>Range | Part No.  | DNL<br>(LSB) | INL<br>(LSB) |
|-----------------|----------------------|-----------|--------------|--------------|
| Plastic Dip     | –40 to +85°C         | MP87L84AN | ±1           | 2            |
| SOIC            | –40 to +85°C         | MP87L84AS | ±1           | 2            |

## **PIN CONFIGURATIONS**

See Packaging Section for Package Dimensions



24 Pin PDIP (0.300") NN24



24 Pin SOIC (Jedec, 0.300") S24

## **PIN OUT DEFINITIONS**

| PIN NO. | NAME | DESCRIPTION             |  |  |
|---------|------|-------------------------|--|--|
| 1       | ŌĒ   | Output Enable           |  |  |
| 2       | DB0  | Data Output Bit 0 (LSB) |  |  |
| 3       | DB1  | Data Output Bit 1       |  |  |
| 4       | DB2  | Data Output Bit 2       |  |  |
| 5       | DB3  | Data Output Bit 3       |  |  |
| 6       | DB4  | Data Output Bit 4       |  |  |
| 7       | DB5  | Data Output Bit 5       |  |  |
| 8       | DB6  | Data Output Bit 6       |  |  |
| 9       | DB7  | Data Output Bit 7       |  |  |
| 10      | DB8  | Data Output Bit 8       |  |  |
| 11      | DB9  | Data Output Bit 9 (MSB) |  |  |
| 12      | CLK  | Clock Input             |  |  |

| PIN NO. | NAME             | DESCRIPTION               |
|---------|------------------|---------------------------|
| 13      | DV <sub>DD</sub> | Digital Power Supply      |
| 14      | V <sub>RTS</sub> | Top Internal Reference    |
| 15      | $V_{RT}$         | Top of Reference          |
| 16      | R3               | 3/4 Reference Tap Point   |
| 17      | R2               | 1/2 Reference Tap Point   |
| 18      | $AV_{DD}$        | Analog Power Supply       |
| 19      | $V_{IN}$         | Analog Input Voltage      |
| 20      | AGND             | Analog Ground             |
| 21      | R1               | 1/4 Reference Tap Point   |
| 22      | $V_{RBS}$        | Bottom Internal Reference |
| 23      | $V_{RB}$         | Bottom of Reference       |
| 24      | DGND             | Digital Ground            |



## **ELECTRICAL CHARACTERISTICS TABLE**

Unless Otherwise Specified:  $AV_{DD} = DV_{DD} = 3 \text{ V}$ , FS = 2 MHz (50% Duty Cycle),

 $V_{RT} = 2.4, V_{RB} = 0.6, TA = 25^{\circ}C$ 

|                                                              |                                      |             | 25°C       |            |                                       |                                                                                               |
|--------------------------------------------------------------|--------------------------------------|-------------|------------|------------|---------------------------------------|-----------------------------------------------------------------------------------------------|
| Parameter                                                    | Symbol                               | Min         | Тур        | Max        | Units                                 | Test Conditions/Comments                                                                      |
| KEY FEATURES                                                 |                                      |             |            |            |                                       |                                                                                               |
| Resolution                                                   |                                      | 10          |            |            | Bits                                  |                                                                                               |
| Sampling Rate                                                | FS                                   | . •         |            | 2          | MHz                                   |                                                                                               |
| ACCURACY (A Grade) <sup>1</sup>                              |                                      |             |            |            |                                       |                                                                                               |
| Differential Non-Linearity                                   | DNL                                  |             |            | <u>+</u> 1 | LSB                                   |                                                                                               |
| Integral Non-Linearity                                       | INL                                  |             |            | <u>+</u> 2 | LSB                                   | Best Fit Line<br>(Max INL – Min INL)/2                                                        |
| Zero Scale Error                                             | EZS                                  |             | 10         |            | LSB                                   | (Max 1112 11111 1112)/2                                                                       |
| Full Scale Error                                             | EFS                                  |             | 6          |            | LSB                                   |                                                                                               |
| REFERENCE VOLTAGES                                           |                                      |             |            |            |                                       |                                                                                               |
| Positive Ref. Voltage                                        | V <sub>RT</sub>                      |             |            | $AV_DD$    | V                                     |                                                                                               |
| Negative Ref. Voltage Differential Ref. Voltage <sup>3</sup> | $V_{RB}$                             | AGND<br>1.0 |            | $AV_DD$    | V                                     | $V_{REF} = V_{RT} - V_{RB}$                                                                   |
| Ladder Resistance                                            | RL                                   | 1.0         | 375        | טטייי      | Ω                                     | VREF - VRI VRB                                                                                |
| Ladder Temp. Coefficient <sup>2</sup>                        | R <sub>TCO</sub>                     |             | 2000       |            | ppm/°C                                |                                                                                               |
| Top Internal Reference Bottom Internal Reference             | V <sub>RTS</sub><br>V <sub>RBS</sub> |             | 4<br>1     |            | V                                     | V <sub>RT</sub> connected to V <sub>RTS</sub> & V <sub>RB</sub> connected to V <sub>RBS</sub> |
| ANALOG INPUT                                                 | *KB2                                 |             | <u> </u>   |            | , , , , , , , , , , , , , , , , , , , | A KR connected to A KR2                                                                       |
|                                                              |                                      |             |            |            |                                       |                                                                                               |
| Input Bandwidth (–1 dB) <sup>4</sup> Input Voltage Range     | BW<br>V <sub>IN</sub>                | $V_{RB}$    | 5          | $V_{RT}$   | MHz<br>V                              |                                                                                               |
| Input Capacitance Sample <sup>5</sup>                        | C <sub>IN</sub>                      | v RB        | 25         | ٧RI        | pF                                    |                                                                                               |
| Input Capacitance Convert <sup>5</sup>                       |                                      |             | 5          |            | pF                                    |                                                                                               |
| Aperture Delay Aperture Uncertainty (Jitter)                 | t <sub>AP</sub>                      |             | 40<br>50   |            | ns                                    |                                                                                               |
| DIGITAL INPUTS                                               | t <sub>AJ</sub>                      |             | 30         |            | ps                                    |                                                                                               |
|                                                              | .,                                   |             |            |            |                                       |                                                                                               |
| Logical "1" Voltage<br>Logical "0" Voltage                   | V <sub>IH</sub><br>V <sub>IL</sub>   | 2.5         |            | 0.5        | V                                     |                                                                                               |
| DC Leakage Currents <sup>6</sup>                             | I <sub>IN</sub>                      |             |            | 0.0        |                                       | V <sub>IN</sub> =DGND to DV <sub>DD</sub>                                                     |
| CLK                                                          |                                      |             | 5          |            | μΑ                                    |                                                                                               |
| OE (Internal Res to DGND) <sup>7</sup> Input Capacitance     |                                      |             | 15<br>5    |            | μA<br>pF                              |                                                                                               |
| Clock Timing (See Figure 1)                                  |                                      |             | 3          |            |                                       |                                                                                               |
| Clock Period                                                 | 1/FS                                 | 500         |            |            | ns                                    |                                                                                               |
| Rise & Fall Time <sup>8</sup><br>"High" Pulse Width          | t <sub>R</sub> , t <sub>F</sub>      |             | 5<br>250   |            | ns                                    |                                                                                               |
| "Low" Pulse Width                                            | t <sub>PWH</sub><br>t <sub>PWL</sub> |             | 250<br>250 |            | ns<br>ns                              |                                                                                               |
| Duty Cycle                                                   | -F-VVL                               |             | 50         |            | %                                     |                                                                                               |
| DIGITAL OUTPUTS                                              |                                      |             |            |            |                                       | C <sub>OUT</sub> =15 pF                                                                       |
| Logical "1" Voltage                                          | V <sub>OH</sub>                      | 2.5         |            |            | V                                     | I <sub>LOAD</sub> = 1 mA                                                                      |
| Logical "0" Voltage                                          | $V_{OL}$                             |             |            | 0.5        | V                                     | $I_{LOAD} = 1 \text{ mA}$                                                                     |
| 3-state Leakage                                              | loz                                  |             | 10         |            | μA                                    | V <sub>OUT</sub> =DGND to DV <sub>DD</sub>                                                    |
| Data Valid Delay <sup>2</sup> Data Enable Delay              | t <sub>DL</sub><br>t <sub>DEN</sub>  |             | 75<br>45   |            | ns<br>ns                              |                                                                                               |
| Data 3-state Delay                                           | t <sub>DHZ</sub>                     |             | 45         |            | ns                                    |                                                                                               |
|                                                              |                                      |             |            |            |                                       |                                                                                               |



## **ELECTRICAL CHARACTERISTICS TABLE (CONT'D)**

| Description                                                                                                             | Symbol                             | Min | 25°C<br>Typ | Max       | Units   | Conditions |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|-------------|-----------|---------|------------|
| POWER SUPPLIES                                                                                                          |                                    |     |             |           |         |            |
| Operating Voltage (AV <sub>DD</sub> , DV <sub>DD</sub> ) <sup>9</sup><br>Current (AV <sub>DD</sub> + DV <sub>DD</sub> ) | V <sub>DD</sub><br>I <sub>DD</sub> | 3.0 | 3.3         | 3.6<br>12 | V<br>mA |            |

#### NOTES

- Tester measures code transitions by dithering the voltage of the analog input (V<sub>IN</sub>). The difference between the measured and the ideal code width (V<sub>REF</sub>/1024) is the DNL error (*Figure 3*.). The INL error is the maximum distance (in LSBs) from the best fit line to any transition voltage (*Figure 4*.). Accuracy is a function of the sampling rate (FS).
- Guaranteed. Not tested.
- Specified values guarantee functionality. Refer to other parameters for accuracy.
- 4 —1 dB bandwidth is a measure of performance of the A/D input stage (S/H + amplifier). Refer to other parameters for accuracy within the specified bandwidth.
- 5 See V<sub>IN</sub> equivalent circuit (Figure 8.). Switched capacitor analog input requires driver with low output resistance.
- <sup>6</sup> All inputs have diodes to DV<sub>DD</sub> and DGND. Input OE has internal pull down. Input DC currents will not exceed specified limits for any input voltage between DGND and DV<sub>DD</sub>.
- 7 Internal resistor to GND biases unconnected input to active low logical level.
- 8 Condition to meet aperture delay specifications (t<sub>AP</sub>, t<sub>AJ</sub>). Actual rise/fall time can be less stringent with no loss of accuracy.
- 9 The AGND & DGND pins are connected through the silicon substrate. Connect together at the package and to the analog ground plane.

#### Specifications are subject to change without notice

## ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)<sup>1, 2, 3</sup>

| V <sub>DD</sub> to GND+5.5 V                       | Storage Temperature                            |
|----------------------------------------------------|------------------------------------------------|
| $V_{RT}$ & $V_{RB}$ $V_{DD}$ +0.5 to GND –0.5 V    | Package Power Dissipation Rating to 75°C       |
| V <sub>IN</sub> V <sub>DD</sub> +0.5 to GND –0.5 V | PDIP, SOIC 1000 mW                             |
| All Inputs                                         | Derating above 75°C 13mW/°C                    |
| All Outputs V <sub>DD</sub> +0.5 to GND –0.5 V     | Lead Temperature (Soldering 10 seconds) +300°C |

#### NOTES:

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

  Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps
- Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.
- V<sub>DD</sub> refers to AV<sub>DD</sub> and DV<sub>DD</sub>. GND refers to AGND and DGND.





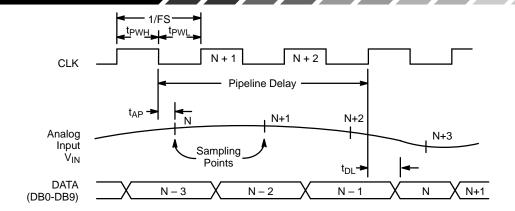



Figure 1. MP87L84 Timing Diagram

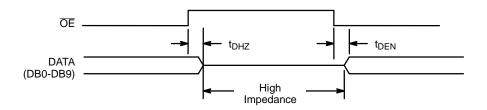
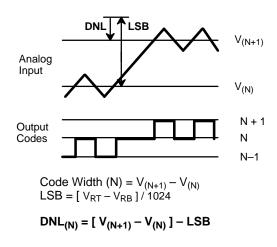




Figure 2. 3-State Timing Diagram





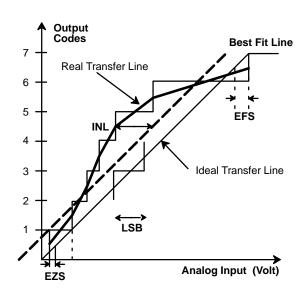
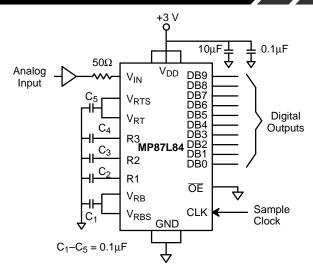




Figure 4. INL Error Calculation





**Figure 5. Typical Circuit Connections** 

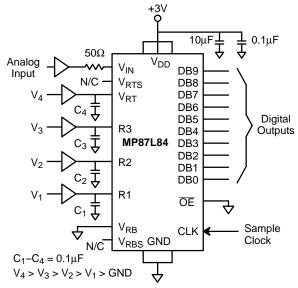



Figure 6. Creating a Piecewise Linear Transfer Function

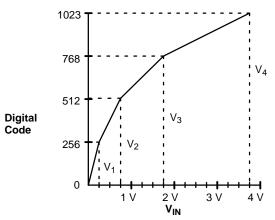



Figure 7. A Piecewise Linear, Logarithmic Transfer Function

## **APPLICATION NOTES**

Signals should not exceed  $AV_{DD}$  +0.5V or go below AGND -0.5V. All pins have internal protection diodes that will protect them from short transients (<100 $\mu$ s) outside the supply range.

AGND and DGND pins are connected internally through the P– substrate. DC voltage differences between these pins will cause undesirable internal substrate currents.

The power supply (AV<sub>DD</sub>) and reference voltage (V<sub>RT</sub> & V<sub>RB</sub>) pins should be decoupled with  $0.1\mu F$  and  $10\mu F$  capacitors to AGND, placed as close to the chip as possible.

The digital outputs should not drive long wires or buses. The capacitive coupling and reflections will contribute noise to the conversion.

## **VIN Analog Input**

This part has a switched capacitor type input circuit. This means that the input impedance changes with the phase of the input clock. *Figure 8.* shows an equivalent input circuit.

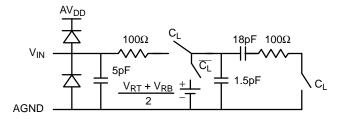
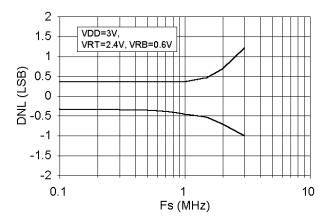



Figure 8. Equivalent Input Circuit

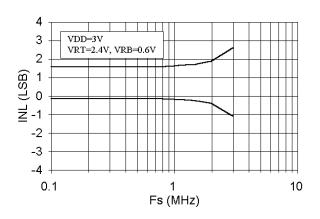
#### **RTS & RBS Internal Bias Resistors**

Two matched resistors are provided on the chip. These resistors can be used to generate on chip reference voltages. Each resistor has a value equal to 1/3 of the reference ladder resistor. By connecting RTS to  $V_{RT}$ , and connecting RBS to  $V_{RB}$ , the reference ladder will be biased to 0.6 V at  $V_{RB}$  and 2.4 V at  $V_{RT}$ .

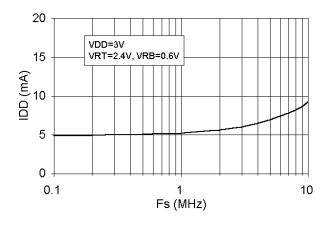
If the internal reference pins  $V_{RTS}$  and/or  $V_{RBS}$  are not used they should be left unconnected.


## R1 thru R3 Reference Ladder Taps

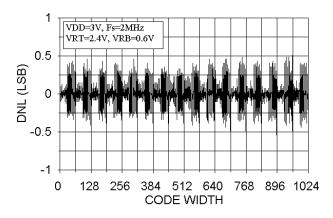
These taps connect to every eighth point along the reference ladder; R1 is 1/4th up from  $V_{RB}$ , R3 is 3/4ths up from  $V_{RB}$  (or 1/4th down from  $V_{RT}$ ). Normally these pins should have 0.1 micro farad capacitors to  $V_{SS}$ , this helps reduce the INL errors by stabilizing the reference ladder voltages. These taps can also be used to alter the transfer curve of the ADC. A four segment, piecewise linear, custom transfer curve can be designed by connecting voltage sources to these pins.



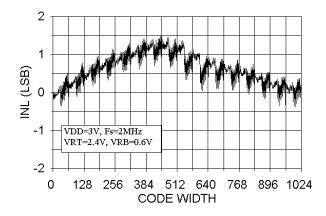




## PERFORMANCE CHARACTERISTICS




Graph 1. DNL vs. Sampling Frequency



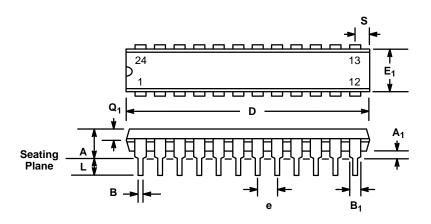

Graph 2. INL vs. Sampling Frequency

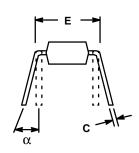


Graph 3. Power Supply Current vs. Sampling Frequency



Graph 4. DNL Error Plot



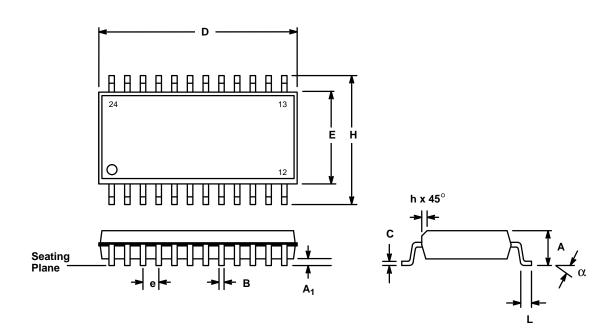


**Graph 5. INL Error Plot** 





## 24 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) NN24






|                    | INC       | HES   | MILLIN | METERS |
|--------------------|-----------|-------|--------|--------|
| SYMBOL             | MIN       | MAX   | MIN    | MAX    |
| А                  |           | 0.200 |        | 5.08   |
| A <sub>1</sub>     | 0.015     | _     | 0.38   | _      |
| В                  | 0.014     | 0.023 | 0.356  | 0.584  |
| B <sub>1</sub> (1) | 0.038     | 0.065 | 0.965  | 1.65   |
| С                  | 0.008     | 0.015 | 0.203  | 0.381  |
| D                  | 1.16      | 1.280 | 29.46  | 32.51  |
| Е                  | 0.295     | 0.325 | 7.49   | 8.26   |
| E <sub>1</sub>     | 0.220     | 0.310 | 5.59   | 7.87   |
| е                  | 0.100 BSC |       | 2.5    | 4 BSC  |
| L                  | 0.115     | 0.150 | 2.92   | 3.81   |
| α                  | 0°        | 15°   | 0°     | 15°    |
| Q <sub>1</sub>     | 0.055     | 0.070 | 1.40   | 1.78   |
| S                  | 0.028     | 0.098 | 0.711  | 2.49   |

Note: (1) The minimum limit for dimensions B1 may be  $0.023^{\circ}$  (0.58 mm) for all four corner leads only.



## 24 LEAD SMALL OUTLINE (300 MIL JEDEC SOIC) S24



|        | INC    | CHES   | MILLIN   | METERS |
|--------|--------|--------|----------|--------|
| SYMBOL | MIN    | MAX    | MIN      | MAX    |
| А      | 0.097  | 0.104  | 2.464    | 2.642  |
| A1     | 0.0050 | 0.0115 | 0.127    | 0.292  |
| В      | 0.014  | 0.019  | 0.356    | 0.483  |
| С      | 0.0091 | 0.0125 | 0.231    | 0.318  |
| D      | 0.602  | 0.612  | 15.29    | 15.54  |
| Е      | 0.292  | 0.299  | 7.42     | 7.59   |
| е      | 0.0    | 50 BSC | 1.27 BSC |        |
| Н      | 0.400  | 0.410  | 10.16    | 10.41  |
| h      | 0.010  | 0.016  | 0.254    | 0.406  |
| L      | 0.016  | 0.035  | 0.406    | 0.889  |
| α      | 0°     | 8°     | 0°       | 8°     |



# **Notes**





# **Notes**





## NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1993 EXAR Corporation Datasheet April 1995

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

**T**@M"