

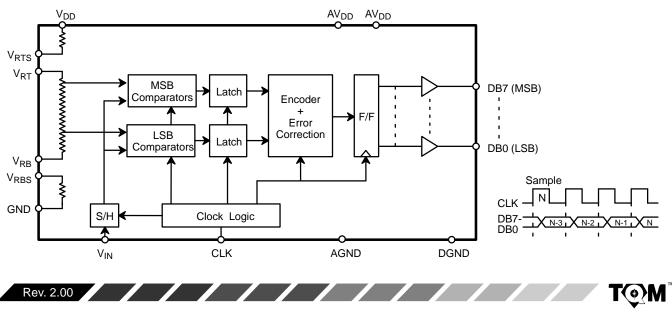
FEATURES

- 3.3 Volt Operation
- 8-Bit Resolution
- Small 20 Pin SOIC, PDIP & SSOP Packages
- DNL = <u>+</u>1/2 LSB, INL = <u>+</u>1 LSB (typ)
- Internal S/H Function
- VIN DC Range: 0 V to VDD
- V_{REF} DC Range: 1 V to V_{DD}
- Low Power: 20 mW typ. (excluding reference)
- Latch-Up Free

APPLICATIONS

- Digital Radio
- Cellular Telephones
- CCD's and Scanners
- Hand Held and Battery Powered Data Acquisition

GENERAL DESCRIPTION


The MP87L75 is an 8-bit Analog-to-Digital Converter in a small 20 pin SOIC package that operates at 3.3 V. Designed using an advanced CMOS process, this part offers excellent performance, low power consumption and latch-up free operation.

This device uses a two-step flash architecture to maintain low power consumption at high conversion rates. The input circuitry of the MP87L75 includes an on-chip S/H function and allows the user to digitize analog input signals between GND and V_{DD} . Careful design and chip layout have achieved a low analog input capacitance. This reduces "kickback" and eases the requirements of the buffer/amplifier used to drive the MP87L75.

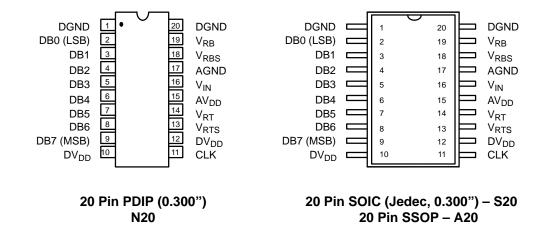
The designer can choose the internally generated reference voltages by connecting V_{RB} to V_{RBS} and V_{RT} to V_{RTS}, or provide external reference voltages to the V_{RB} and V_{RT} pins. The internal reference generates 0.4 V at V_{RB} and 1.72 V at V_{RT}. Providing external reference voltages allows easy interface to any input signal range between GND and V_{DD}. This also allows the system to adjust these voltages to cancel zero scale and full scale errors, or to change the input range as needed.

The device operates from a single +3.3 V supply \pm 10%. Power consumption is 20 mW at FS = 10 MHz.

Specified for operation over the commercial / industrial (-40 to +85°C) temperature range, the MP87L75 is available in Plastic dual-in-line (PDIP), Surface Mount (SOIC), and Shrunk small outline (SSOP) packages.

SIMPLIFIED BLOCK AND TIMING DIAGRAM

MP87L75


Low Voltage CMOS 8-Bit High Speed Analog-to-Digital Converter

ORDERING INFORMATION

Package Type	Temperature Range	Part No.	DNL (LSB)	INL (LSB)
SOIC	–40 to +85°C	MP87L75AS	±1/2	1 1/2
SSOP	–40 to +85°C	MP87L75AQ	±1/2	1 1/2
PDIP	–40 to +85°C	MP87L75AN	±1/2	1 1/2

PIN CONFIGURATIONS

See Packaging Section for Package Dimensions

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION		
1	DGND	Digital Ground		
2	DB0	Data Output Bit 0 (LSB)		
3	DB1	Data Output Bit 1		
4	DB2	Data Output Bit 2		
5	DB3	Data Output Bit 3		
6	DB4	Data Output Bit 4		
7	DB5	Data Output Bit 5		
8	DB6	Data Output Bit 6		
9	DB7	Data Output Bit 7 (MSB)		
10	DV _{DD}	Digital Power Supply		

PIN NO.	NAME	DESCRIPTION		
11	CLK	Sample Clock		
12	DV _{DD}	Digital Power Supply		
13	V _{RTS}	Internal Top Ladder Bias		
14	V _{RT}	Top Reference		
15	AV _{DD}	Analog Power Supply		
16	V _{IN}	Analog Input		
17	AGND	Analog Ground		
18	V _{RBS}	Internal Bottom Ladder Bias		
19	V _{RB}	Bottom Reference		
20	DGND	Digital Ground		

ELECTRICAL CHARACTERISTICS TABLE

Unless Otherwise Specified: $AV_{DD} = DV_{DD} = 3.3 V$, FS = 6 MHz (50% Duty Cycle),

 V_{RT} = 2.5 V, V_{RB} = 0.5 V, T_A = 25°C

			25°C			
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
KEY FEATURES						
Resolution		8			Bits	
Sampling Rate	FS			10	MHz	
ACCURACY (A Grade) ¹						
Differential Non-Linearity	DNL			$\pm 1/2$	LSB	
Integral Non-Linearity	INL			1 1/2	LSB	Best Fit Line (Min INL – Max INL)/2
REFERENCE VOLTAGES						
Differential Ref. Voltage ³	V _{REF}	1.0		AV _{DD}	V	V _{REF} = V _{RT} – V _{RB}
Ladder Resistance	RL		350		Ω	
Ladder Temp. Coefficient Self Bias 1	R _{TCO}		2000		ppm/°C	
Short V_{RB} and V_{RBS}	V _{RB}		0.4		V	
Short V_{RT} and V_{RTS} Self Bias 2	V _{RT} -V _{RB}		1.32		V	
V _{RB} = AGND,	V _{RT}		1.52		V	
Short V_{RT} and V_{RTS}						
ANALOG INPUT						
Input Bandwidth (-1 dB) ⁴	BW		5		MHz	
Input Voltage Range	V _{IN}	V _{RB}		V _{RT}	V	
Input Capacitance ⁵	C _{IN}		16		pF	
Aperture Delay	t _{AP}		30		ns	
DIGITAL INPUTS						
Logical "1" Voltage	V _{IH}	2.5			V	
Logical "0" Voltage	V _{IL}			0.5	V	
DC Leakage Currents ⁶	I _{IN}					V _{IN} =DGND to DV _{DD}
CLK			5		μA	
Input Capacitance			5		pF	
Clock Timing (See Figure 1.) ⁷	1/50		100			
Clock Period High Pulse Width	1/FS		100 50		ns ns	
Low Pulse Width	t _{PWH} t _{PWL}		50 50		ns	
DIGITAL OUTPUTS	"F VVL					C _{OUT} =15 pF
					, , , , , , , , , , , , , , , , , , ,	
Logical "1" Voltage	V _{OH}	2.5		0.5	V V	$I_{LOAD} = 1 \text{ mA}$
Logical "0" Voltage Data Valid Delay	V _{OL}		30	0.5	v ns	I _{LOAD} = 1 mA
	t _{DL}		50		115	

/ / / / /

ELECTRICAL CHARACTERISTICS TABLE (CONT'D)

Description	Symbol	Min	25 [°] С Тур	Max	Units	Conditions
POWER SUPPLIES						
Operating Voltage (AV _{DD} , DV _{DD}) Current	V _{DD} I _{DD}	3	3.3 6	3.6 12	V mA	Does not include ref. current

NOTES

Tester measures code transitions by dithering the voltage of the analog input (V_{IN}). The difference between the measured and the ideal code width (V_{REF} /256) is the DNL error (*Figure 2.*). The INL error is the maximum distance (in LSBs) from the best fit line to any transition voltage (Figure 3.). Accuracy is a function of the sampling rate (FS).

2 Guaranteed. Not tested.

- 3 Specified values guarantee functionality. Refer to other parameters for accuracy.
- 4 -1 dB bandwidth is a measure of performance of the A/D input stage (S/H + amplifier). Refer to other parameters for accuracy within the specified bandwidth.
- 5 See V_{IN} input equivalent circuit (Figure 4.). Switched capacitor analog input requires driver with low output resistance.

6 All inputs have diodes to V_{DD} and GND. Input DC currents will not exceed specified limits for any input voltage between GND and V_{DD}. 7 t_R , t_F should be limited to >5 ns for best results.

8 AGND & DGND pins are connected through the silicon substrate. Connect together at the package and to the analog ground plane.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2, 3}

V _{DD} to GND 5.5 V	Storage Temperature
V_{RT} & V_{RB} V_{DD} +0.5 to GND –0.5 V	Lead Temperature (Soldering 10 seconds) +300°C
V _{IN} V _{DD} +0.5 to GND –0.5 V	Package Power Dissipation Rating @ 75°C
All Inputs	SOIC, SSOP, PDIP 700 mW
All Outputs $\dots \dots \dots$	Derates above 75°C 9mW/°C

NOTES:

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2 Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100mA for less than 100 μ s. V_{DD} refers to AV_{DD} and DV_{DD}. GND refers to AGND and DGND.
- 3

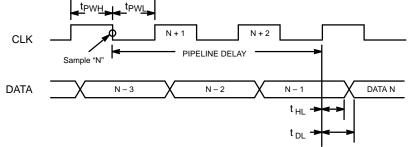
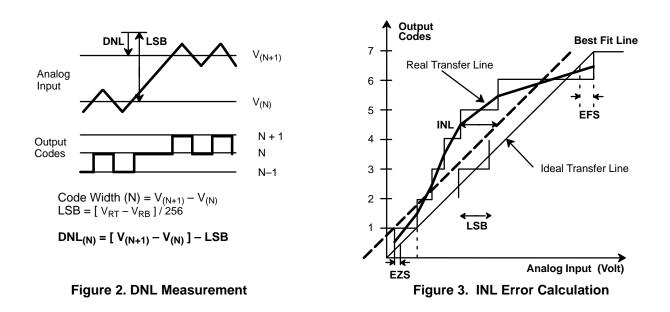



Figure 1. MP87L75 Timing Diagram

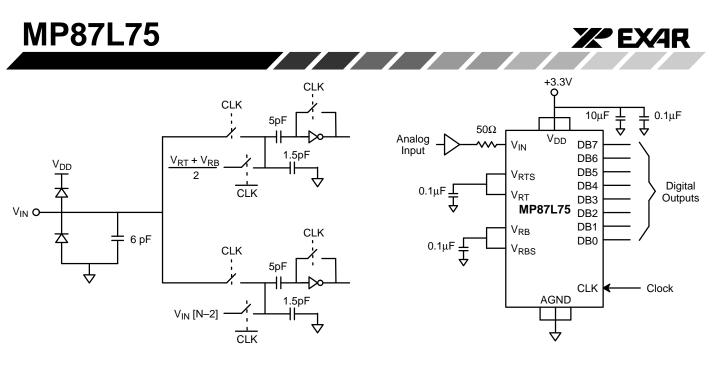


Figure 4. Equivalent Input Circuit

APPLICATION NOTES

Signals should not exceed AV_{DD} or DV_{DD} +0.5V or go below AV_{DD} or DV_{DD} –0.5V. All pins have internal protection diodes that will protect them from short transients (<100 μ s) outside the supply range.

AGND and DGND pins are connected internally through the P–substrate. DC voltage differences between these pins will cause undesirable internal substrate currents.

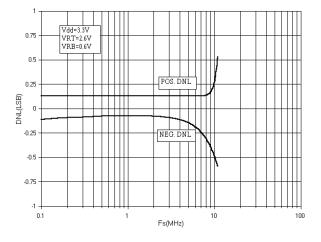
The power supply (AV_{DD}) and reference voltage $(V_{RT} \& V_{RB})$ pins should be decoupled with 0.1µF and 10µF capacitors to AGND, placed as close to the chip as possible.

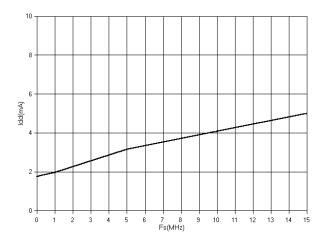
The digital outputs should not drive long wires or buses. The

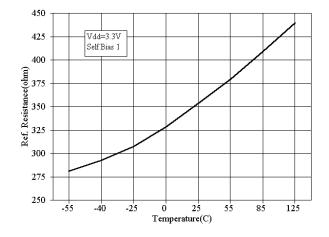
capacitive coupling and reflections will contribute noise to the conversion.

It is possible for the data valid delay (t_{DL}) to be equal to or greater than the high pulse width of the sampling clock (t_{PWH}) , See *Figure 1*. This can cause timing related errors. For sample rates above 8 MSPS use only the rising edge of the sample clock (CLK) to latch data from the MP87L75 to other parts of the system.

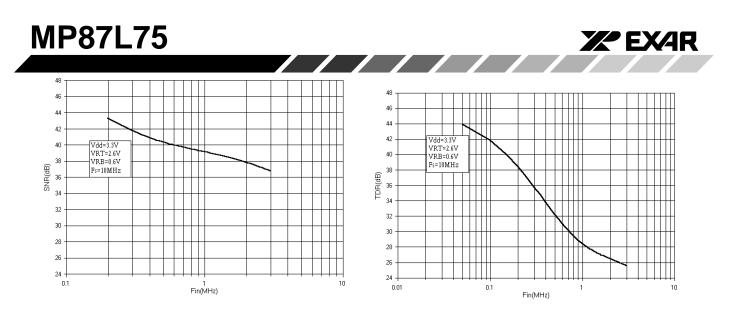
The reference can be biased internally by shorting V_{RT} to V_{RTS} and V_{RB} to V_{RBS}. This will generate 0.36 V at V_{RB} and 1.56 V at V_{RT} (see *Figure 5.)*.


If the internal reference pins V_{RTS} and/or V_{RBS} are not used they should be left unconnected.

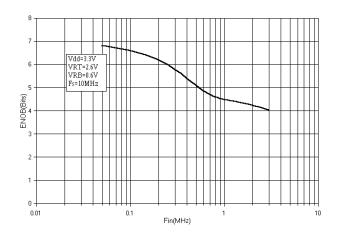

PERFORMANCE CHARACTERISTICS


Graph 1. DNL vs. Sampling Frequency

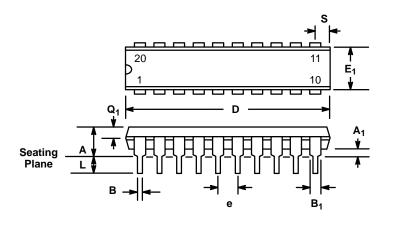
Graph 2. INL vs. Sampling Frequency

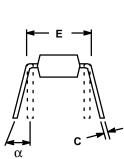


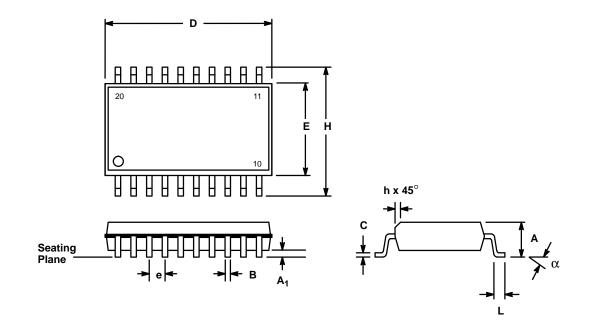

Graph 3. Supply Current vs. Sampling Frequency


Graph 4. Reference Resistance vs. Temperature

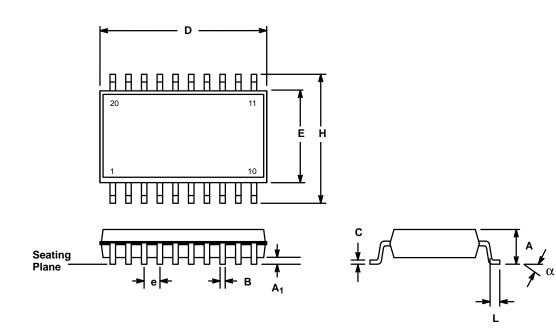
Graph 6. SINAD vs. Input Frequency




Graph 7. ENOB vs. Input Frequency


	INC	HES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	МАХ
А		0.200		5.08
A ₁	0.015		0.38	
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	0.945	1.060	24.0	26.92
E	0.295	0.325	7.49	8.26
E ₁	0.220	0.310	5.59	7.87
е	0.1	00 BSC	2.5	4 BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.040	0.080	1.02	2.03

Note: (1) The minimum limit for dimensions B1 may be 0.023" (0.58 mm) for all four corner leads only.



	INC	CHES	MILLIN	IETERS
SYMBOL	MIN	МАХ	MIN	MAX
А	0.097	0.104	2.464	2.642
A ₁	0.0050	0.0115	0.127	0.292
В	0.014	0.019	0.356	0.483
С	0.0091	0.0125	0.231	0.318
D	0.500	0.510	12.70	12.95
E	0.292	0.299	7.42	7.59
е	0.0	50 BSC	1.2	7 BSC
н	0.400	0.410	10.16	10.41
h	0.010	0.016	0.254	0.406
L	0.016	0.035	0.406	0.889
α	0°	8°	0°	8°

20 LEAD SHRINK SMALL OUTLINE PACKAGE (SSOP) A20

	MILLIN	METERS	INC	CHES
SYMBOL	MIN	МАХ	MIN	MAX
А	1.73	2.05	0.068	0.081
A ₁	0.05	0.21	0.002	0.008
В	0.20	0.40	0.008	0.016
С	0.13	0.25	0.005	0.010
D	7.07	7.40	0.278	0.291
E	5.20	5.38	0.205	0.212
е	0.6	5 BSC	0.02	56 BSC
Н	7.65	8.1	0.301	0.319
L	0.45	0.95	0.018	0.037
α	0°	8°	0°	8°

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1993 EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

