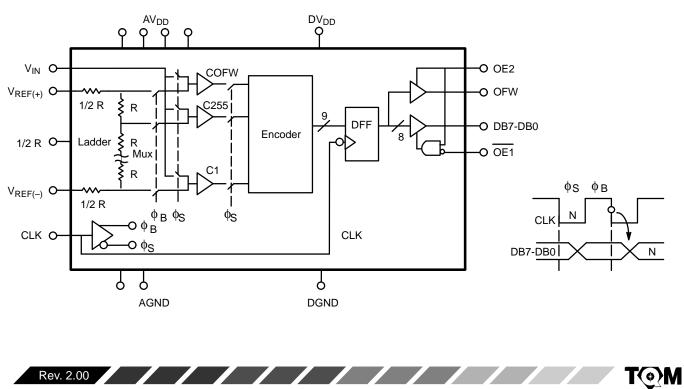


CMOS 8-Bit Video Analog-to-Digital Converter

FEATURES

- 10 MHz Input Bandwidth (-0.3 dB)
- SNR > 44 dB @ Fin 2.4 MHz
- 1.2 to 5.0 Volts (Peak to Peak) Input Range
- 1/2 LSB Dynamic DNL at 14.4 MHz
- 3/4 LSB Dynamic DNL at 17.7 MHz
- Monotonic. No Missing Codes
- Latch Up Free CMOS Technology
- High ESD Protection 4000 Volts Minimum

BENEFITS


- Optimized Combination of Performance, Power, Packaging and Cost for Video Digitizing Applications
- Excellent Video Digitizing Performance
- Smaller Board Space
- Lower System Power

GENERAL DESCRIPTION

The MP8780 is a CMOS 8-bit high speed Analog-to-Digital Converter designed and specified for applications in imaging and video digitizing. With Signal to Noise Ratio greater than 44 dB in the Video Input Bandwidth and encode rates up to 20 MHz, the MP8780 easily meets the requirements needed to digitize standard American and European video signals.

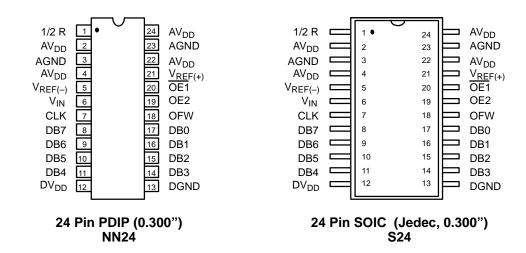
A fast digital interface simplifies connection to most modern DSP and CPU chips.

Careful design and layout have reduced static sensitivity, while our proprietary latch-up free process virtually eliminates the need for many of the diode protection schemes used in the past.

1

SIMPLIFIED BLOCK AND TIMING DIAGRAM

MP8780



ORDERING INFORMATION

Package Type	Temperature Range	Part No.	DNL (LSB)	INL (LSB)
Plastic Dip	–40 to +85°C	MP8780JN	±1	1 1/2
SOIC	–40 to +85°C	MP8780JS	±1	1 1/2

PIN CONFIGURATIONS

See Packaging Section for Package Dimensions

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION	PIN NO.	NAME	DESCRIPTION
1	1/2R	50% Point of Reference on	13	DGND	Digital Ground
		Resistance Ladder	14	DB3	Data Output Bit 3
2	AV _{DD}	Analog Power Supply Voltage	15	DB2	Data Output Bit 2
3	AGND	Analog Ground	16	DB1	Data Output Bit 1
4	AV _{DD}	Analog Power Supply Voltage	17	DB0	Data Output Bit 0 (LSB)
5	V _{REF(-)}	Lower Reference Voltage Input	18	OFW	Overflow flag
6	V _{IN}	Analog Input Voltage	19	OE2	Output Enable Control Pin
7	CLK	Sampling Clock Input	20	OE1	Output Enable Control Pin
8	DB7	Data Output Bit 7 (MSB)	-	-	•
9	DB6	Data Output Bit 6	21	V _{REF(+)}	Upper Reference Voltage Input
10	DB5	Data Output Bit 5	22	AV _{DD}	Analog Power Supply Voltage
-	-	·	23	AGND	Analog Ground
11	DB4	Data Output Bit 4	24	AV _{DD}	Analog Power Supply Voltage
12	DV _{DD}	Digital Power Supply Voltage		2.5	

Rev. 2.00

ELECTRICAL CHARACTERISTICS

Unless Otherwise Specified: $AV_{DD} = DV_{DD} = 5 V$, $F_S = 15 MHz$ (Duty Cycle: 1/3 Sample & 2/3 Balance) $V_{REF(+)} = 2.5 V$, $V_{REF(-)} = GND$, Temp = $25^{\circ}C$

			MP8780	J		
Parameter	Symbol	Min	Тур	Max	Units	Conditions
RESOLUTION		8			Bits	
ACCURACY ¹						
Differential Non-Linearity Integral Non-Linearity Zero Scale Error Full Scale Error DNL ⁶ INL ⁶	DNL INL EZS EFS DNL INL		1/2 1 -27 12 1/4 3/4	1 1 1/2	LSB LSB mV mV LSB LSB	F _S = 10MHz F _S = 10MHz
DYNAMIC ACCURACY ⁶						
(Histogram Test) Differential Non-Linearity Differential Non-Linearity Differential Non-Linearity Differential Non-Linearity			1/2 1/2 3/4 3/4		LSB LSB LSB LSB	F _S F _{IN} V _{REF} (MHz) (MHz) (V) 14.4 2.0 4 14.4 2.0 2.5 17.7 2.0 4 17.7 2.0 2.5
REFERENCE VOLTAGES						
Positive Ref. Voltage Negative Ref. Voltage Differential Ref. Voltage Ladder Resistance Ladder Temp. Coefficient ⁶	V _{REF(+)} V _{REF(-)} V _{REF} R _L R _{TCO}	GND 1.2 180	\ 225	V _{DD} √ _{DD} –GND 285 2000	V V Ω ppm/°C	
ANALOG INPUT ^{2, 6}						
Input Voltage Range Input Impedance (<i>See Figure 3.</i>) Aperture Aperture Delay Aperture Uncertainty Clock Kickback Pulse Input Bandwidth (–0.3 dB)	V _{IN} C _{INA} t _{AP} t _{AJ} BW	V _{REF(-)}	50 15 45 10 20 10	V _{REF(+)}	V pF ns ps pA∙s pA•s MHz	V _{REF} =2.5 V V _{REF} =4.0 V
DIGITAL INPUTS ³ (Tmin to Tmax)						
Logical "1" Voltage Logical "0" Voltage Current (CLK) Current (-0E1: Res to GND) Current (0E2: Res to V _{DD}) Input Capacitance ⁶	V _{IH} V _{IL} C _{IND}	2.0 -100 -5 -50	5	0.8 100 50 5	V V μΑ μΑ ρF	V _{IN} =0 to V _{DD} V _{IN} =0 to V _{DD} V _{IN} =0 to V _{DD}
Clock Timing (<i>See Figure 1.</i>) ⁶						
Rise & Fall Time ⁴ "High" Time (Autozero/Autobalance) "Low" Time (Sampling)	t _R , t _F t _B t _S	20 20		8	ns ns ns	

ELECTRICAL CHARACTERISTICS TABLE CONT'D

Description	Symbol	Min	MP8780J	Мах	Units	Conditions
Description	Symbol	IVIIN	Тур	wax	Units	Conditions
DIGITAL OUTPUTS						C _{OUT} =15 pF
Logical "1" Voltage Logical "1" Source Current Logical "0" Voltage Logical "0" Sink Current 3-state Leakage Min Data Hold Time (<i>See Figure 1.</i>) ⁶ Max Data Valid Delay ⁶ Data Enable Delay (<i>See Figure 2.</i>) ⁶ Data Tristate Delay ⁶	V _{OH} I _{OH} I _{OL} I _{OZ} t _{HLD} t _{DL} t _{DEN}	V _{DD} 0.5 4 -10 12	15 30	0.4 10 33 20 20	V MA V MA uA ns ns ns ns ns	V _{OUT} =0 to V _{DD}
POWER SUPPLIES ⁷ Operating Voltage ⁵ I _{DD}	V _{DD} I _{DD}	4	50	6 85	V mA	
AC PARAMETERS ⁶						
Differential Gain Error Differential Phase Error			2 1		% Degree	F _S = 3 x NTSC
Signal Noise Ratio (RMS/RMS)	SNR		46 44		dB dB	Fs F _{IN} (<u>MHz)</u> (<u>MHz)</u> 14.4 2.4 17.7 2.4

NOTES:

Linearity (DNL, INL) is a function of clock frequency. INL is specified as the best straight line fit. See characterization chart.

2 See VIN Input Equivalent Circuit (Figure 3.). Switched capacitor analog input requires input buffer with lowest output resistance possible.

3 All inputs have current leakage to V_{DD} and GND. OE2 has pull-up transistor. OE1 has pull-down transistors. These DC currents will not exceed the specified values for any input voltage between 0 and V_{DD}. CLK Input spec to meet MP8780 aperture specifications. Actual rise/fall timing can be less stringent with no loss of accuracy.

4

5 Specified values guarantee functional device. Refer to other parameters for accuracy.

6 Guaranteed. Not production tested.

7 DV_{DD} and AV_{DD} are connected through the silicon substrate. Connect together at the package.

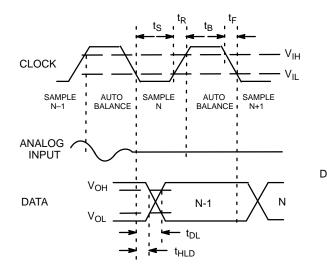
Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2}

V _{DD} to GND	+7 V
V _{REF(+)} & V _{REF(-)}	GND –0.5 to V_DD +0.5 V
V _{IN}	GND –0.5 to V _{DD} +0.5 V
All Inputs	GND –0.5 to V_DD +0.5 V
All Outputs	GND –0.5 to V_DD +0.5 V

Storage Temperature
Lead Temperature (Soldering 10 seconds) +300°C
Package Power Dissipation Rating to 75°C
PDIP, SOIC 1000mW
Derates above 75°C 13mW/°C

NOTES:


Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2 Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.

TIMING DIAGRAMS

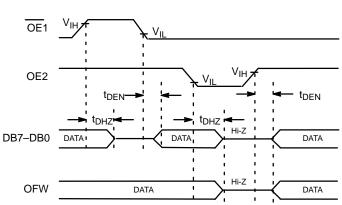


Figure 1. MP8780 Timing Diagram

Figure 2. Output Enable/Disable Timing Diagram

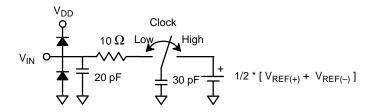


Figure 3. Analog Input Equivalent Circuit

MP8780

THEORY OF OPERATION

The MP8780 converts analog voltages into 256 digital codes by encoding the outputs of 255 comparators. A 256th comparator is used to generate the overflow bit. The conversion is synchronous with the sample clock. A complete conversion cycle is accomplished in 1.5 cycles. Data is transferred from the comparator latches to the output register each cycle at the same time the input is sampled.

The clock signal generates the two internal phases, ϕ_B (CLK high = balance) and ϕ_S (CLK low = sample). Phase B connects the comparators to the reference tap points. Phase S connects the comparators to the analog input voltage.

The reference resistance ladder is a series of 257 resistors. The first and the last resistor of the ladder are half the value of the others so that the following relations apply:

 $R_{REF} = 256 * R$ $V_{REF} = V_{REF(+)} - V_{REF(-)} = 256 * LSB$

The ideal transfer function for MP8780 is shown in Figure 4.

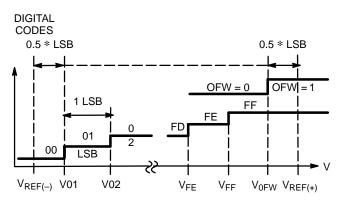


Figure 4. Ideal A/D Transfer Function

The overflow transition (V_{0FW}) takes place at:

 $V_{IN} = V_{OFW} = V_{REF(-)} = 0.5 \text{ LSB}$

Thus the first and the last transitions for the data bits take place at:

$$V_{IN} = V01 = V_{REF(-)} + 0.5 * LSB$$

$$V_{IN} = V_{FF} = V_{REF(+)} - 1.5 * LSB$$

$$LSB = V_{REF}/256 = (V_{FF} - V01) / 254$$

Note that the overflow transition is a flag and has no impact on the data bits.

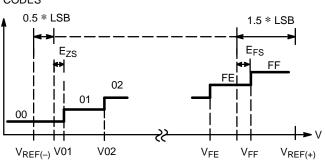


Figure 5. Real A/D Transfer Curve

The formulas define the various error relationships for Differential Non-linearity (DNL), Integral Non-Linearity (INL) and zero and full scale errors (E_{ZS} , E_{FS}).

DNL (01) = V02 - V01 - LSB : : : DNL (FE) = V_{FF} - V_{FE} - LSB E_{FS} (full scale error) = V_{FF} - [V_{REF(+)} - 1.5 * LSB] E_{ZS} (zero scale error) = V₀₁ - [V_{REF(-)} + 0.5 * LSB] INL (i) = Σ DNL (i) *Figure 5* shows the effect of the zero scale and full scale of

Figure 5. shows the effect of the zero scale and full scale error terms.

Systems that adjust the V_{REF} voltages only increase the DNL accuracy at the two extreme points. In the MP8780, such adjustments have little impact at frequencies lower than 10 MHz. Refer to the characterization data for frequency dependence.

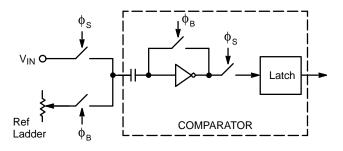
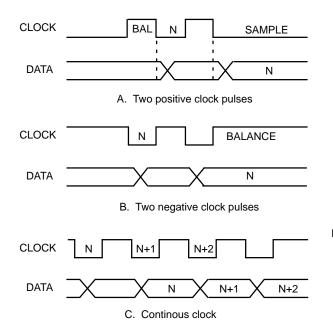


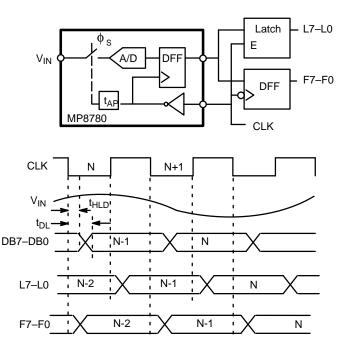
Figure 6. MP8780 Comparator

OE1	OE2	OFW	DB0-DB7
Х	0	High Z	High Z
1	1	Valid	High Z
0	1	Valid	Valid


Table 1. Output Enable Logic

The MP8780 uses the balance phase (ϕ_B) to charge one plate of the capacitors to the reference ladder tap point and the other to the inverter/comparator trigger point. During the sample phase (ϕ_S), one plate of the capacitors switches to V_{IN} . The change in voltage ($V_{IN}-V_{TAP}$) transfers across the capacitor and forces the inverter into one of the two possible logic states. A latch (connected to the comparator during ϕ_S) restores and propagates the digital level to the decode logic.

The rising edge of the CLK input marks the end of the sampling phase (ϕ_S). Internal delay of the clock circuitry will delay the actual instant when ϕ_S disconnects the latch from the comparator. This delay is called aperture delay (t_{AP}).


Figure 7. Relationship of Data to Clock

A system can clock the MP8780 continuously or it may choose to give clock pulses intermittently when a conversion is desired. The timing of *Figure 7B.* keeps the MP8780 comparators in balance and ready to sample the analog input. This mode draws the most current from AV_{DD}. The timing of *Figure 7A* leaves the comparator inputs floating (and AC coupled to the V_{IN} input) and a balance phase is needed before a valid sampling phase. In this mode, I_{DD} varies because of the floating

The aperture delay is not constant but changes from one cycle to the next. Internal thermal noise, power supply noise and slow input clock edges are major contributors to this variation. The aperture jitter (t_{AJ}) is the variation of the aperture delay distribution.

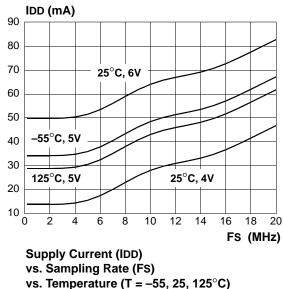
This uncertainty shows as digital code errors if the input slew rate multiplied by t_{AJ} is of the same order of magnitude as the LSB. That is, if (dv/dt) $*\,t_{AJ} \approx V_{REF}/256$, an internal 1 LSB of error results.

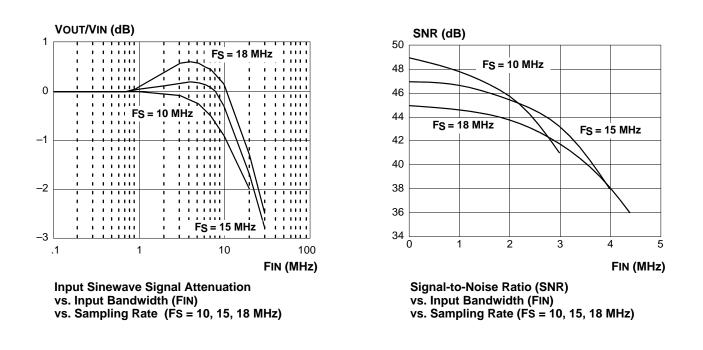
The logic encodes the 255 bits into a binary code and latches the data in a D-type flip-flop for output. The inputs $\overline{OE1}$ and OE2 control the output buffers in an asynchronous mode.

Figure 8. MP8780 Functional Equivalent Circuit and Interface Timing

comparator inputs.

If another DFF is to follow the ADC, we recommend that the system latches the data at the negative going edge of the clock. This will work at any frequency. If the system must latch with the positive going edge, then care must be taken to avoid the overlay of the clock edge with the changing outputs. If a latch follows the ADC, the positive half of the clock used as enable signal guarantees stable output at the end of the enable pulse.





CHARACTERIZATION CHARTS

Unless Otherwise Specified: V_{DD} = 5 V, F_S = 15 MHz (50% Duty Cycle) $V_{REF(+)}$ = 2.5 V, $V_{REF(-)}$ = GND, Temp = 25°C

vs. Supply Voltage (VDD = 4, 5, 6V)

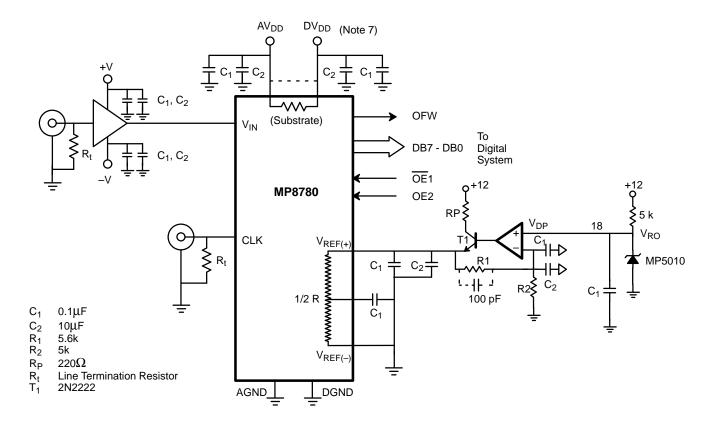


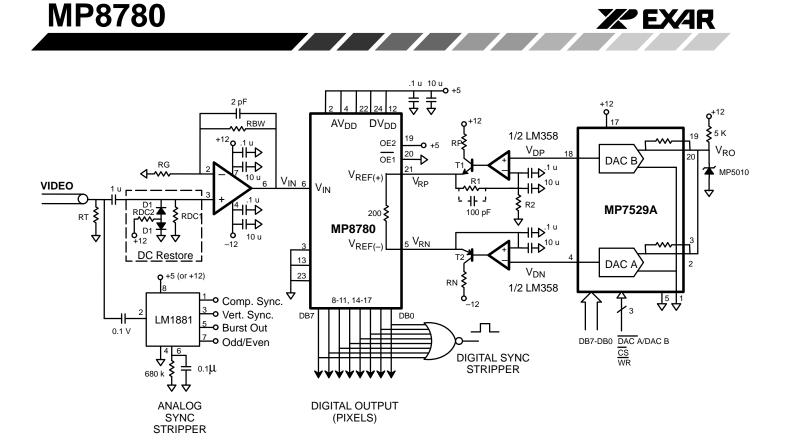
Figure 9. Typical Circuit Connections

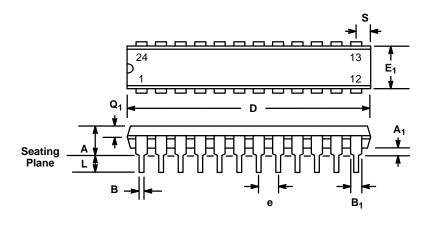
The following information will be useful in maximizing the performance of the MP8780.

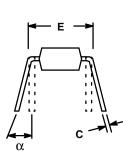
- 1. No signals should exceed V_{DD} +0.5 V or GND –0.5 V.
- 2. Any input pin which can see a signal below GND or above V_{DD} should be protected by diode clamps (1N4148 or HP5082-2835) from input pin to the supplies. All MP8780 inputs have input protection diodes which will protect the device from short transients outside the supply range.
- 3. The design of a PC board will affect the accuracy of MP8780. Use of wire wrap is not recommended.
- 4. The analog input signal (VIN) is quite sensitive and should be properly routed and terminated. It should be shielded from the clock and digital outputs so as to minimize cross coupling and noise pickup.
- 5. The analog input should be driven by a low impedance (less than 50 Ω).
- 6. Analog and digital ground planes should be substantial and common at one point only. The ground plane should act as a

shield for parasitics and not a return path for signals. Separate low impedance ground paths will reduce noise levels.

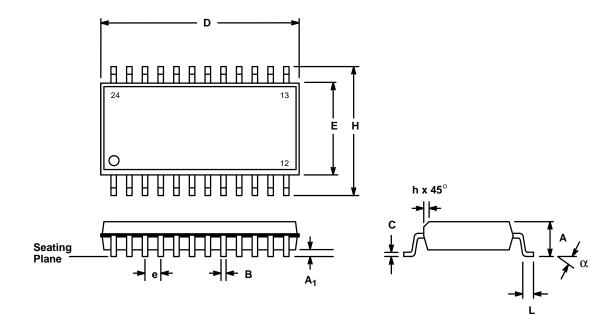
- 7. DV_{DD} should not be shared with other digital circuitry to avoid conversion errors caused by digital supply transients. In case a separate DV_{DD} for the MP8780 cannot be provided, then DV_{DD} should be connected to AV_{DD} next to the MP8780.
- 8. DV_{DD} and AV_{DD} are connected inside the MP8780 through the N - doped silicon substrate. Any DC voltage difference between DV_DD and AV_DD will cause undesirable internal currents.
- 9. Each power supply and reference voltage pin should be decoupled with a ceramic $(0.1\mu F)$ and a tantalum $(10\mu F)$ capacitor as close to the device as possible.
- 10. The digital output should not be driving long wires as the capacitive coupling and reflection will contribute noise to the conversion. When driving distant loads, buffers should be used.




Figure 10. Video Digitizer


- 1N4148 (any diode would do) D_1
- 2N3903, 2N3904 2N3905, 2N3906
- T_1 T_2 U_1 EL2030 (others under test)
- R_{T} 75Ω
- R_{BW} 750Ω
- 750Ω R_{G}^{D}
- R_{DC1} 100k Ω
- R_{DC2} 100k Ω R_1 5.6k
- R₂ 5k
- R_P 220Ω
- 390Ω R_N

24 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) NN24


	INCHES		MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	MAX
А		0.200		5.08
A ₁	0.015		0.38	_
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	1.16	1.280	29.46	32.51
Е	0.295	0.325	7.49	8.26
E ₁	0.220	0.310	5.59	7.87
е	0.100 BSC		2.54 BSC	
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.028	0.098	0.711	2.49

Note: (1) The minimum limit for dimensions B1 may be 0.023" (0.58 mm) for all four corner leads only.

	INCHES		MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.097	0.104	2.464	2.642
A1	0.0050	0.0115	0.127	0.292
В	0.014	0.019	0.356	0.483
С	0.0091	0.0125	0.231	0.318
D	0.602	0.612	15.29	15.54
E	0.292	0.299	7.42	7.59
е	0.0	50 BSC	1.2	7 BSC
н	0.400	0.410	10.16	10.41
h	0.010	0.016	0.254	0.406
L	0.016	0.035	0.406	0.889
α	0°	8°	0°	8°

Notes

Notes

Notes

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

