MP87092

CMOS 750 KSPS, 12-Bit Analog-to-Digital Converter with Serial Logic Interface Port

FEATURES

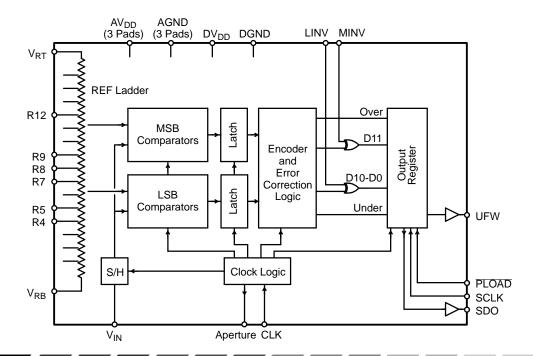
- 12-Bit Monotonic ADC with DNL = +1 LSB, INL = +2 LSB
- SNR > 66 dB
- Sampling Frequency ≤ 750 kHz
- Internal Track and Hold
- Single 5 V Supply
- Rail-to-Rail Input Range
- V_{REF} Range: 1.5 V to V_{DD}
- CMOS Low Power: 175 mW (typ)
- Binary and Two's Complement Digital Output Mode
- Serial Port

- Underflow Outputs
- Precision Aperture Output
- 6 Reference Resistor Taps
- Latch-Up Free

APPLICATIONS

- Control Systems
- Instrumentation
- DAS
- Sonar

GENERAL DESCRIPTION

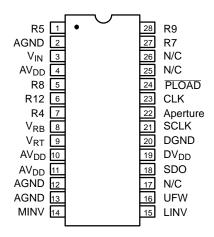

The MP87092 is a 12-bit 750 kHz subranging Analog-to-Digital Converter with an internal track and hold.

The MP87092 operates with a single supply ranging from +3 V to +5 V while consuming less than 175 mW of power (typical). Separate pins for V_{RT} and V_{RB} allow flexibility for analog input

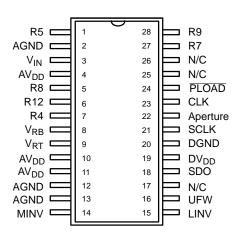
 (V_{IN}) and the reference voltage range (ΔV_{REF}) .

Data is presented at the output port every clock cycle after a 3 cycle pipeline delay. The digital output port is equipped with a serial data port. LINV and MINV enable binary and 2's complement data formatting. Access is provided to 6 ladder tap pins, providing for transfer function adjustment.

SIMPLIFIED BLOCK DIAGRAM



ORDERING INFORMATION


Package Type	Temperature Range	Part No.	DNL (LSB)	INL (LSB)
PDIP	−40 to +85°C	MP87092AN	±1	2 1/2
SOIC	−40 to +85°C	MP87092AS	±1	2 1/2

PIN CONFIGURATIONS

See Packaging Section for Package Dimensions

28 Pin SOIC (EIAJ 0.335") R28

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION		
1	R5	Ref. Resistor Ladder Tap (5/16 V _{REF})		
2	AGND	Analog Ground		
3	V _{IN}	Analog Input		
4	AV_DD	Analog Positive Supply		
5	R8	Ref. Resistor Ladder Tap (1/2 V _{REF})		
6	R12	Ref. Resistor Ladder Tap (3/4 V _{REF})		
7	R4	Ref. Resistor Ladder Tap (1/4 V _{REF})		
8	V_{RB}	Negative Reference		
9	V_{RT}	Positive Reference		
10	AV_DD	Analog Positive Supply		
11	AV_DD	Analog Positive Supply		
12	AGND	Analog Ground		
13	AGND	Analog Ground		
14	MINV	Invert MSB (Active High)		
1	1			

PIN NO.	NAME	DESCRIPTION			
15	LINV	Invert LSB (Active High)			
16	UFW	Underflow Bit			
17	N/C	No Connection			
18	SDO	Serial Data Out			
19	DV_DD	Digital Positive Supply			
20	DGND	Digital Ground			
21	SCLK	Serial Clock			
22	Aperture	Aperture Delay Sync			
23	CLK	Clock			
24	PLOAD	Serial Shift Register Data Load			
25	N/C	No Connection			
26	N/C	No Connection			
27	R7	Ref. Resistor Ladder Tap (7/16 V _{REF})			
28	R9	Ref. Resistor Ladder Tap (9/16 V _{REF})			

ELECTRICAL CHARACTERISTICS TABLE

Unless Otherwise Specified: $AV_{DD} = DV_{DD} = 5 V$, FS = 750 kHz (50% Duty Cycle),

 $V_{REF(+)}$ = 5.0 V, $V_{REF(-)}$ = AGND, TA = 25°C, V_{IN} Connected through 39 Ω

	25°C						
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments	
KEY FEATURES							
Resolution Sampling Rate	FS	12		750	Bits kHz		
ACCURACY ¹							
Differential Non-Linearity Integral Non-Linearity (<i>See Graph 3</i> .) Zero Scale Error Full Scale Error	DNL INL EZS EFS		±1/2 ±2 +20 -20	±1 ±3	LSB LSB LSB	Best Fit Line (Max INL – Min INL)/2	
REFERENCE VOLTAGES							
Positive Ref. Voltage Negative Ref. Voltage Differential Ref. Voltage ³ Ladder Resistance	V _{RT} V _{RB} V _{REF} R _L	1.5 AGND 1.5	550	AV _{DD}	V V V	4.5 to 5 V is recommended for specified performance	
ANALOG INPUT							
Input Bandwidth (–3 dB) ⁴ Input Voltage Range Input Capacitance Sample ⁵ Input Capacitance Convert ⁵ Aperture Delay from Clock	BW V _{IN} C _{IN}	V _{REF(-)}	10 50 8 20	V _{REF(+)}	MHz V p-p pF pF ns		
DIGITAL INPUTS							
Logical "1" Voltage Logical "0" Voltage Leakage Currents ⁶ CLK, MINV, LINV Input Capacitance Clock Timing Clock Period Rise & Fall Time ⁷ "High" Time "Low" Time Duty Cycle Serial Register Timing Shift Clock Period Shift Clock to Data Delay Minimum Pulse Width PLOAD Clock↑ to PLOAD↓ For	VIH VIL IIN ts tR, tF tPWH tPWL tsC tsD ts	1.33 665 665 110	2.4 0.8 10 5 15		V V μA pF μs ns ns ns ns ns	V _{IN} =DGND to DV _{DD}	
Valid D11	t _{CP}		0		ns		
DIGITAL OUTPUTS Logical "1" Voltage Logical "1" Source Current Logical "0" Voltage Logical "0" Sink Current Tristate Leakage Data Valid Delay ²	VOH IOH VOL IOL IOZ tDL		DV _{DD} -0.5 4 0.5 4 1 30		V mA V mA μA ns	$C_{OUT}=15 \text{ pF}$ $I_{LOAD}=4 \text{ mA}$ $V_{OH}=DV_{DD}-0.5$ $I_{LOAD}=4 \text{ mA}$ $V_{OL}=0.5 \text{ V}$ $V_{OUT}=DGND \text{ to } DV_{DD}$	

ELECTRICAL CHARACTERISTICS TABLE (CONT'D)

			25°C			
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
POWER SUPPLIES ⁸						
Operating Voltage (AV _{DD} , DV _{DD}) Current (AV _{DD} + DV _{DD})	V _{DD} I _{DD}		5 35	45	V mA	
AC PARAMETERS						
Signal Noise Ratio	SNR	66			dB	V _{IN} = 5 Vp-p, 1 kHz

NOTES

- Tester measures code transitions by dithering the voltage of the analog input (V_{IN}). The difference between the measured and the ideal code width (V_{REF}/4096) is the DNL error. The INL error is the maximum distance (in LSBs) from the best fit line to any transition voltage. Accuracy is a function of the sampling rate (FS).
- 2 Guaranteed. Not tested.
- Specified values guarantee functionality. Refer to other parameters for accuracy.
- 4 —3 dB bandwidth is a measure of performance of the A/D input stage (S/H + amplifier). Refer to other parameters for accuracy within the specified bandwidth.
- ⁵ A 39Ω resistor should be put in series with V_{IN} to dampen transients associated with inductive output impedance of typical op amps.
- All inputs have diodes to DV_{DD} and DGND. Input(s) MINV and LINV have internal pull down(s). Input DC currents will not exceed specified limits for any input voltage between DGND and DV_{DD}.
- Condition to meet aperture delay specifications (t_{AP}, t_{AJ}). Actual rise/fall time can be less stringent with no loss of accuracy.
- 8 AGND & DGND pins are internally connected through the silicon substrate.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2, 3}

V _{DD} to GND 7 V	Lead Temperature (Soldering 10 seconds) +300°C
V _{RT} & V _{RB}	Package Power Dissipation Rating @ 75°C
All Inputs	rackage rower Dissipation Rating @ 75 C
Digital Outputs V _{DD} +0.5 to GND –0.5 V	PDIP. SOIC 1000mW
Storage Temperature	Derates above 75°C 14mW/°C

NOTES:

- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
- Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100mA for less than 100μs.
- V_{DD} refers to AV_{DD} and DV_{DD}. GND refers to AGND and DGND.

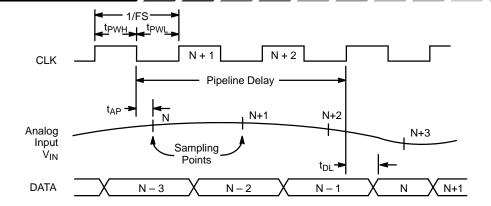


Figure 1. MP87092 Timing Diagram

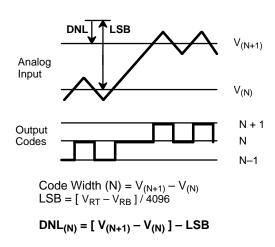


Figure 2. DNL Measurement

UFW: Underflow (Output)

This signal indicates when the Analog Input (V_{IN}) goes outside the V_{RB} range, and is normally at a low logic level. When $V_{IN} < V_{RB}$, UFW will go high and the data bits will show negative full scale (i.e. all 0's if MINV & LINV are low).

SDO: Serial Data output

After the internal shift register is updated using the PLOAD signal, the SDO pin outputs the A/D result starting with the MSB (which appears just after the PLOAD strobe). Each bit is output on the rising edge of SCLK.

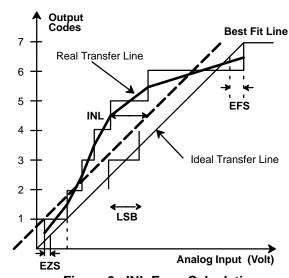


Figure 3. INL Error Calculation

SCLK: Serial Data Port Clock

The SCLK controls the output of the serial port through SDO. SDO is updated on every rising edge of SCLK. The PLOAD signal will override the SCLK signal.

PLOAD:

Serial data port shift register load: When PLOAD is low (i.e. level triggered not edge triggered) the current parallel data will be loaded into the shift register. PLOAD overrides SCLK. When PLOAD is high, the data can be shifted out through the SDO pin with SCLK.

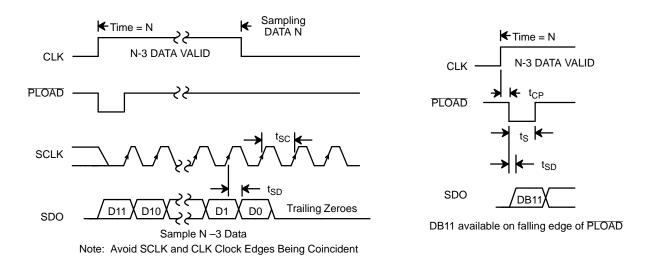


Figure 4. Serial Port Timing Chart

APERTURE: Aperture Delay Sync (output)

This signal is high when the internal sample/hold function is sampling V_{IN} , and goes low when it is in the hold mode (when the ADC is comparing the stored input value to the reference lad-

der). The value of V_{IN} at the high to low transition of APERTURE is the value that will be digitized. A system can monitor this signal and adjust the CLK to accurately synchronize the sampling point to an external event.

MINV LINV	0	0 1	1 0	1
V _{RT} ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' V _{IN} mid scale	111 11 111 10 100 01 100 00	100 00 100 01 111 10 111 11	011 11 011 10 	000 00 000 01 10 011 11
V _{RB}	011 11 	000 00 10 011 11	111 11 	100 00 10 111 11
	binary	inverted 2's complement	2's complement	inverted binary

Table 1. Output Data Format Truth Table

MINV & LINV: Digital Output Format (inputs)

These signals control the format of the digital output data bits DB0 – DB11. Normally both pins are held low so the data is in straight binary format (all 0's when $V_{IN}\!\!=\!\!V_{RB};$ all 1's when $V_{IN}\!\!=\!\!V_{RT}).$ If MINV is pulled high then the MSB (DB11) will be inverted. If LINV is pulled high then the LSBs (DB0 – DB10) will be inverted. The OFW and UFW bits are not affected by these signals.

MINV & LINV are meant to be static digital signals. If they are to change during operation they should only change when the CLK is low (assuming PHASE is high, if PHASE is low then these signals should only change when CLK is high). Changing MINV and/or LINV on the wrong phase of the CLK will not hurt anything, but the effects on the digital outputs will not be seen until the output latch of the output register is enabled. MINV and LINV have internal pull down devices. Please see the simplified logic circuit *NO TAG*

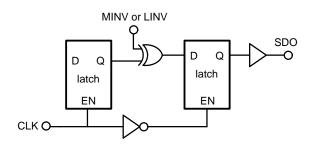


Figure 5. MINV, LINV Simplified Logic Circuit

VIN Analog Input

This part has a switched capacitor type input circuit. This means that the input impedance changes with the phase of the input clock. V_{IN} is sampled at the high to low clock transition. The diagram *NO TAG* shows an equivalent input circuit.

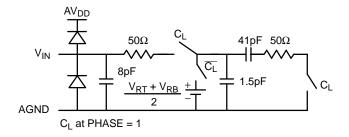


Figure 6. Equivalent Input Circuit

Reference Ladder Taps

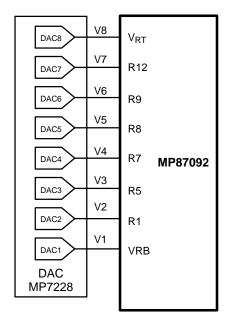
These taps connect to every sixteenth point along the reference ladder; R4 is 4/16th up from $V_{RB},\,R7$ is 7/16ths up from $V_{RB}.$ These taps can be used to alter the transfer curve of the ADC. The internal interconnect resistance from the pin to the ladder is less than 3Ω for the even numbered taps, (i.e. R4,R6, etc.) and is approximately 10Ω for the odd numbered taps.

Altering the transfer curve may be desirable to enhance or minimize the probability of codes for a certain range of V_{IN} .

Sometimes this is referred to as probability density function shaping, or histogram shaping.

0.8~V maximum per tap is recommended for applications above $85^{\circ}C$. Up to 1.6~V is allowed for applications under $85^{\circ}C$.

APPLICATION NOTES

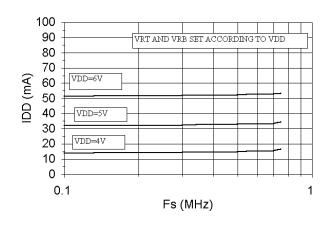

 V_{IN} signals should not exceed AV_DD +0.5V or go below AGND -0.5V. All pins have internal protection diodes that will protect them from short transients (<100 μs) outside the supply range.

AGND and DGND pins are connected internally through the P– substrate. DC voltage differences between any AGND or DGND pins will cause undesirable internal substrate currents.

The power supply (V_{DD}) and reference voltage (V_{RT} & V_{RB}) pins should be decoupled with $0.1\mu F$ and $10\mu F$ capacitors to AGND, placed as close to the chip as possible.

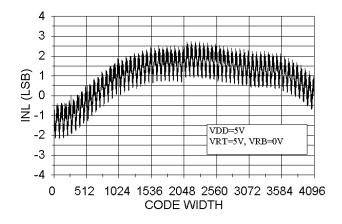
The digital outputs should not drive long wires or buses. The capacitive coupling and reflections will contribute noise to the conversion.

The reference tap pins (R1-R12) can be used to create piecewise-linear transfer functions. By forcing voltages on these pins, an 8 segment transfer function can be made. See *NO TAG*



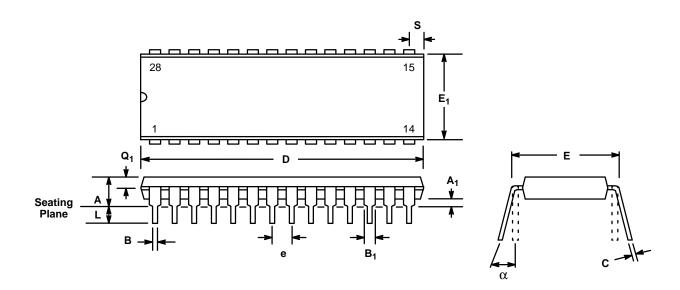
Only the Ladder detail shown.

Figure 7. A/D with Programmed Ladder Control for Creating a Piecewise Linear Transfer Function


PERFORMANCE CHARACTERISTICS

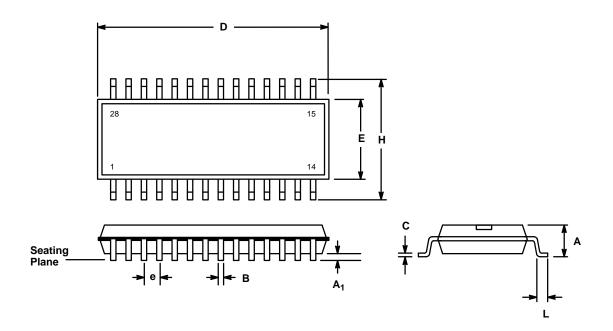
2 1.5 VDD=5V VRT=5V,VRB=0V 0.5 0 0.5 -1 -1.5 -2 0 512 1024 1536 2048 2560 3072 3584 4096 CODE WIDTH

Graph 1. I_{DD} vs. F_S


Graph 2. DNL Error Plot

Graph 3. INL Error Plot

28 LEAD PLASTIC DUAL-IN-LINE (600 MIL PDIP) N28



	INC	HES	MILLIN	METERS
SYMBOL	MIN	MAX	MIN	MAX
Α		0.232		5.893
A ₁	0.015	_	0.381	_
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	1.380	1.490	35.05	37.85
Е	0.585	0.625	14.86	15.88
E ₁	0.500	0.610	12.70	15.49
е	0.10	00 BSC	2.5	4 BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.020	0.100	1.508	2.54

Note: (1) The minimum limit for dimensions B1 may be 0.023" (0.58 mm) for all four corner leads only.

28 LEAD SMALL OUTLINE (335 MIL EIAJ SOIC) R28

	MILLIN	METERS	INC	HES
SYMBOL	MIN	MAX	MIN	MAX
А	2.60	2.80	0.102	0.110
A ₁	0.2	2 (typ.)	0.00)8 (typ.)
В	0.3	0.5	0.012	0.020
С	0.10	0.20	0.004	0.008
D	17.6	18.0	0.693	0.709
Е	8.3	8.5	0.327	0.335
е	1.2	1.27 (typ.)		60 (typ.)
Н	11.5	12.1	0.453	0.477
L	0.8	1.2	0.031	0.047

Notes

NOTICE

/ / / / / / /

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1994 EXAR Corporation Datasheet April 1995

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

T@M"