

## **FEATURES**

- Sampling Rates up to 3 MHz
- Requires NO SAMPLE AND HOLD for CCD Outputs or for Signals less than 100 kHz
- Single Supply Voltage
- Low Power Consumption (100 mW typ)
- Latch-Up Free

# **APPLICATIONS**

- Data Acquisition Systems
- Computer Peripherals
- Scanners
- Process Control

## **GENERAL DESCRIPTION**

The MP7783 is a CMOS 8-Bit two step Analog-to-Digital Converter designed for precision applications requiring conversion times under a micro-second. Featuring a built in Track and Hold function, input signals to 100 kHz can be digitized with confidence. Integral and differential non-linearities are typically less than 1/4 LSB, with a clock frequency of 2 MHz

and a supply of 5 volts.

Built on EXAR's proprietary CMOS technology, the conversion is done in two segments. The first segment converts the 3 MSBs while the second segment converts the five LSBs. An overflow bit is provided for applications requiring 9-bit resolution by using two devices in cascade.



## SIMPLIFIED BLOCK DIAGRAM





# **ORDERING INFORMATION**

| Package<br>Type | Temperature<br>Range | Part No. | DNL<br>(LSB) | INL<br>(LSB) |
|-----------------|----------------------|----------|--------------|--------------|
| Plastic Dip     | –40 to +85°C         | MP7783JN | ±3/4         | ±3/4         |
| SOIC            | –40 to +85°C         | MP7783JS | ±3/4         | ±3/4         |

## **PIN CONFIGURATIONS**



### **PIN OUT DEFINITIONS**

| PIN NO. | NAME                | DESCRIPTION                       | PIN NO. | NAME | DESCRIPTION             |
|---------|---------------------|-----------------------------------|---------|------|-------------------------|
| 1       | OE2                 | Output Enable Control 2           | 13      | AGND | Analog Ground           |
| 2       | PHASE               | Sampling Clock Phase Control      | 14      | DGND | Digital Ground          |
| 3       | CLK                 | Clock Input                       | 15      | DB0  | Data Output Bit 0 (LSB) |
| 4       | $DV_DD$             | Power Supply for Digital Circuits | 16      | DB1  | Data Output Bit 1       |
| 5       | AV <sub>DD</sub>    | Power Supply for Analog Circuits  | 17      | DB2  | Data Output Bit 2       |
| 6       | V <sub>REF(+)</sub> | Reference Voltage (+) Input       | 18      | DB3  | Data Output Bit 3       |
| 7       | V <sub>REF(-)</sub> | Reference Voltage (-) Input       | 19      | DB4  | Data Output Bit 4       |
| 8       | R1                  | 1/16th Point of Ladder R Matrix   | 20      | DB5  | Data Output Bit 5       |
| 9       | R2                  | 5/16th Point of Ladder R Matrix   | 21      | DB6  | Data Output Bit 6       |
| 10      | R3                  | 9/16th Point of Ladder R Matrix   | 22      | DB7  | Data Output Bit 7 (MSB) |
| 11      | R4                  | 13/16th Point of Ladder R Matrix  | 23      | OFW  | Digital Output Overflow |
| 12      | V <sub>IN</sub>     | Analog Input                      | 24      | OE1  | Output Enable Control 1 |





# ELECTRICAL CHARACTERISTICS TABLE

Unless Otherwise Specified:  $AV_{DD} = DV_{DD} = 5 V$ ,  $F_S = 2.5 MHz$  (50% Duty Cycle),

 $V_{REF(+)} = 4.1, V_{REF(-)} = AGND, T_A = 25^{\circ}C$ 

| Parameter                                                                                                                                                                                                                                   | Symbol                                                                                                                            | Min                      | 25°C<br>Typ Max                                   | Tmin te<br>Min                  | o Tmax<br>Max                            | Units                                | Test Conditions/Comments                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|---------------------------------|------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------|
| KEY FEATURES                                                                                                                                                                                                                                |                                                                                                                                   |                          |                                                   |                                 |                                          |                                      |                                                                                                   |
| Resolution<br>Sampling Rate <sup>1</sup>                                                                                                                                                                                                    | F <sub>S</sub>                                                                                                                    | 8<br>0.001               | 3.0                                               | 8<br>0.001                      | 3.0                                      | Bits<br>MHz                          |                                                                                                   |
| ACCURACY (J Grade) <sup>2</sup>                                                                                                                                                                                                             |                                                                                                                                   |                          |                                                   |                                 |                                          |                                      |                                                                                                   |
| Differential Non-Linearity<br>Integral Non-Linearity                                                                                                                                                                                        | DNL<br>INL                                                                                                                        |                          | <u>+</u> 3/4<br><u>+</u> 3/4                      |                                 | <u>+</u> 3/4<br><u>+</u> 3/4             | LSB<br>LSB                           | Best Fit Line                                                                                     |
| REFERENCE VOLTAGES                                                                                                                                                                                                                          |                                                                                                                                   |                          |                                                   |                                 |                                          |                                      |                                                                                                   |
| Positive Ref. Voltage <sup>3</sup><br>Negative Ref. Voltage<br>Differential Ref. Voltage<br>Ladder Resistance<br>Ladder Temp. Coefficient <sup>4</sup>                                                                                      | V <sub>REF(+)</sub><br>V <sub>REF(-)</sub><br>V <sub>REF</sub><br>R <sub>L</sub><br>R <sub>TCO</sub>                              | AGND<br>AV<br>500        | AV <sub>DD</sub><br>/ <sub>DD</sub> -AGND<br>1500 | AGND<br>AV <sub>DD</sub><br>300 | V <sub>DD</sub><br>-AGND<br>1950<br>3000 | V<br>V<br>Ω<br>ppm/°C                |                                                                                                   |
| ANALOG INPUT <sup>4</sup>                                                                                                                                                                                                                   |                                                                                                                                   |                          |                                                   |                                 |                                          |                                      |                                                                                                   |
| Input Voltage Range<br>Input Impedance<br>Input Capacitance Sample <sup>6</sup><br>Aperture Delay <sup>7</sup><br>Aperture Uncertainty (Jitter) <sup>7</sup>                                                                                | V <sub>IN</sub><br>Z <sub>IN</sub><br>C <sub>IN</sub><br>t <sub>AP</sub>                                                          | V <sub>REF(-)</sub>      | V <sub>REF(+)</sub><br>10<br>50<br>55<br>200      | V <sub>REF(-)</sub>             | V <sub>REF(+)</sub>                      | V p-p<br>MΩ<br>pF<br>ns<br>ps        |                                                                                                   |
| DIGITAL INPUTS                                                                                                                                                                                                                              |                                                                                                                                   |                          |                                                   |                                 |                                          |                                      |                                                                                                   |
| Logical "1" Voltage<br>Logical "0" Voltage<br>Leakage Currents <sup>8</sup><br>CLK<br>Input Capacitance <sup>4</sup><br>Clock Timing <i>(See Figure 1.)</i><br>Clock Period<br>"High" Time<br>"Low" Time<br>Duty Cycle                      | V <sub>IH</sub><br>V <sub>IL</sub><br>I <sub>IN</sub><br>C <sub>IN</sub><br>t <sub>S</sub><br>t <sub>H</sub><br>t <sub>L</sub>    | 3.5<br>400<br>200<br>200 | 0.4<br>±50<br>5                                   | 3.5<br>400<br>200<br>200        | 0.4<br><u>+</u> 50                       | V<br>V<br>pF<br>ns<br>ns<br>ns<br>%  | V <sub>IN</sub> =DGND to DV <sub>DD</sub>                                                         |
| DIGITAL OUTPUTS                                                                                                                                                                                                                             |                                                                                                                                   |                          |                                                   |                                 |                                          |                                      | C <sub>OUT</sub> =5 pF                                                                            |
| Logical "1" Voltage<br>Logical "0" Voltage<br>3-state Leakage<br>Data Valid Delay <sup>4</sup><br>Data Enable Delay <sup>4</sup><br>Data 3-state Delay <sup>4</sup><br>Digital Output Delay <sup>4</sup><br>Output Capacitance <sup>4</sup> | V <sub>OH</sub><br>V <sub>OL</sub><br>I <sub>OZ</sub><br>t <sub>DL</sub><br>t <sub>DHZ</sub><br>t <sub>D</sub><br>C <sub>OL</sub> | 4.6                      | 0.4<br><u>+</u> 50<br>55<br>20<br>26<br>55<br>5   | 4.6                             | 0.4<br><u>+</u> 60                       | V<br>V<br>ns<br>ns<br>ns<br>ns<br>ns | $I_{LOAD} = -1.0 \text{ mA}$<br>$I_{LOAD} = 2.0 \text{ mA}$<br>$V_{OUT}=DGND \text{ to } DV_{DD}$ |







# ELECTRICAL CHARACTERISTICS TABLE CONT'D

|                                                                                                            |                                    | 25°C |     | Tmin to Tmax |             |         |                          |
|------------------------------------------------------------------------------------------------------------|------------------------------------|------|-----|--------------|-------------|---------|--------------------------|
| Parameter                                                                                                  | Symbol                             | Min  | Тур | Max          | Min Max     | Units   | Test Conditions/Comments |
| POWER SUPPLIES <sup>9</sup>                                                                                |                                    |      |     |              |             |         |                          |
| Operating Voltage (AV <sub>DD</sub> , DV <sub>DD</sub> )<br>Current (AV <sub>DD</sub> + DV <sub>DD</sub> ) | V <sub>DD</sub><br>I <sub>DD</sub> | 4.0  | 5.0 | 6.0<br>20.0  | 6.0<br>36.0 | V<br>mA |                          |

#### NOTES

<sup>1</sup> Maximum samping frequency is the frequency which will still meet the non-linearity specification. However, the device is capable of higher frequency operation.

<sup>2</sup> Tester measures code transitions by dithering the voltage of the analog input (V<sub>IN</sub>). The difference between the measured and the ideal code width (V<sub>REF</sub>/256) is the DNL error (*Figure 3.*). The INL error is the maximum distance (in LSBs) from the best fit line to any transition voltage (*Figure 4.*). Accuracy is a function of the sampling rate (F<sub>S</sub>).

<sup>3</sup> For best results, it is recommended that the reference voltage be limited to  $AV_{DD} = 0.5 V$ .

<sup>4</sup> Guaranteed. Not tested.

<sup>5</sup> Specified values guarantee functionality. Refer to other parameters for accuracy.

<sup>6</sup> See V<sub>IN</sub> input equivalent circuit (*Figure 5.*). Switched capacitor analog input requires driver with low output resistance.

All inputs have diodes to DGND. Input DC currents will not exceed specified limits for any input voltage between DGND and DV<sub>DD</sub>.

<sup>8</sup> Condition to meet aperture delay specifications ( $t_{AP}$ ,  $t_{AJ}$ ). Actual rise/fall time can be less stringent with no loss of accuracy.

<sup>9</sup> DV<sub>DD</sub> and AV<sub>DD</sub> are connected through the silicon substrate. Connect together at the package and to the analog supply. DGND should be tied to AGND at the package.

#### Specifications are subject to change without notice

## ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)<sup>1, 2, 3</sup>

| V <sub>DD</sub> (to GND)                                         | Operating Temperature 0 to +70°C                           |
|------------------------------------------------------------------|------------------------------------------------------------|
| V <sub>REF(+)</sub> & V <sub>REF(-)</sub> V <sub>DD</sub> to GND | Storage Temperature $\hdots -65^\circ C$ to +150°C         |
| V <sub>IN</sub> GND –0.5 to V <sub>DD</sub> +0.5 V               | Lead Temperature (Soldering 10 secs) $\dots +300^{\circ}C$ |
| Digital Inputs GND –0.5 to V <sub>DD</sub> +0.5 V                | Package Power Dissipation Rating to 75°C<br>PDIP, SOIC     |
| Digital Outputs $\dots$ GND –0.5 to V <sub>DD</sub> +0.5 V       | Derates above 75°C 13mW/°C                                 |

#### NOTES:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100μs.

 $^{3}$  V<sub>DD</sub> refers to AV<sub>DD</sub> and DV<sub>DD</sub>. GND refers to AGND and DGND.









**MP7783** 

Figure 1. MP7783 Timing Diagram





Figure 3. DNL Measurement

Rev. 1.00









### **DEVICE OPERATION**

*Figure 1.* shows the timing information for the MP7783. A reference voltage is applied between the V<sub>REF(+)</sub> and V<sub>REF(-)</sub> which drives 256 resistors and switches with 4 voltage taps. These taps drive the inverting inputs of comparators. There are four control lines: Clock,  $\overline{OE1}$ , OE2 and phase. The phase line determines the polarity of the clock.

With phase = 1, the "sample" occurs during the high period of the clock cycle, and the "auto-balance" occurs during the low period of the clock. The "sample" is queued and pipelined through a series of registers and latches. It appears at the output after 2 clock periods and time delay (Td). After the sample is acquired the data is valid for every clock period. The  $\overline{OE1}$  will independently disable the 8 data bit buffers when it is in a high state. The truth table (*Table 1.*) summarizes this effect.

Figure 6. shows waveforms with the phase line high and low.



Figure 6. Timing Diagram

| OE1 | OE2 | DB7 - DB0 | OFW     |
|-----|-----|-----------|---------|
| 0   | 1   | Valid     | Valid   |
| 1   | 1   | 3-state   | Valid   |
| Х   | 0   | 3-state   | 3-state |

Table 1. Truth Table







**MP7783** 

Figure 7. MP7783 9-Bit Resolution Configuration



1



### LINEARITY ADJUSTMENT

As noted in the specifications, integral non-linearity can be adjusted externally to enhance performance. While the setup may seem a little awkward, we have found that it can prove beneficial for high speed applications requiring 1/4 LSB at room temperature and 1/2 LSB over temperature.

Referring to *Figure 9.*, the reference resistor taps for 1/16th, 5/16ths, 9/16ths and 13/16ths of  $V_{REF}$  are brought out separately. In normal applications the user simply ties a 0.1  $\mu$ F capacitor to ground at each of these nodes to provide a measure of

filtering when the comparators are "zeroed" to their respective reference voltage points along the continuous ladder network. To compensate for comparator loading and other subtle errors associated with the distributed resistance of the ladder, the user can connect a "true" voltage source at each node and trim for optimized performance. As shown in *Figure 10.*, a series of op amps is used to set the proper voltage at each node. The value is best determined empirically by setting the nominal value for the node (e.g. 1/16th of V<sub>REF</sub> at R1) and then fine tuning to significantly reduce the integral error.

**XPEXAR** 

T(\$)M









## **APPLICATION NOTES:**

The following information will be useful in maximizing the performance of the MP7783.

- This device may be susceptible to latch-up. All signals must not exceed DV<sub>DD</sub> or DGND, or AV<sub>DD</sub> or AGND at any time. Power should always be applied before any input signal is connected to avoid a latch-up condition.
- 2. The design of the PC layout and assembly will seriously affect the accuracy of the MP7783. <u>Use of wire wrap is not recommended.</u>
- 3. The analog input signal ( $V_{IN}$ ) is quite sensitive and should be properly routed and terminated. It should be shielded from the clock and digital outputs so as to minimize cross coupling and noise pickup.
- 4. The analog input should be driven with a buffer Op Amp  $(Z_{OUT} \leq 50 \ \Omega)$ .
- 5. The use of a large shield plane is highly recommended, connected only at one point and connected to virtual ground.

- 6. The power supplies and reference voltages should be decoupled with ceramic (0.01 to  $0.1\mu$ F) and tantalum ( $10\mu$ F) capacitors as close to the device as possible.
- 7. The digital output should not drive long wires. The capacitive coupling and reflection will contribute noise to the conversion. When driving distant loads, buffers should be used.



- a. The minimum clock rate at 50% Duty Cycle is 10 kHz.
- b. The minimum clock rate at non-50% Duty cycle may be DC as long as  $\phi 2$  is kept to less than 5  $\mu$ s.









## PERFORMANCE CHARACTERISTICS



Graph 1. Supply Current vs. Sampling Frequency



Graph 3. INL vs. Sampling Frequency







Graph 2. DNL vs. Sampling Frequency



Graph 4. DNL vs. Reference Voltage

















Graph 14. DNL Error Plot



**Graph 15. INL Error Plot** 









|                    | INC   | HES    | MILLIN | METERS |
|--------------------|-------|--------|--------|--------|
| SYMBOL             | MIN   | MAX    | MIN    | МАХ    |
| A                  |       | 0.225  |        | 5.72   |
| A <sub>1</sub>     | 0.015 |        | 0.38   |        |
| В                  | 0.014 | 0.023  | 0.356  | 0.584  |
| B <sub>1</sub> (1) | 0.038 | 0.065  | 0.965  | 1.65   |
| С                  | 0.008 | 0.015  | 0.203  | 0.381  |
| D                  | 1.160 | 1.290  | 29.46  | 32.77  |
| E                  | 0.585 | 0.625  | 14.86  | 15.88  |
| E <sub>1</sub>     | 0.500 | 0.610  | 12.70  | 15.49  |
| е                  | 0.1   | 00 BSC | 2.5    | 4 BSC  |
| L                  | 0.115 | 0.150  | 2.92   | 3.81   |
| α                  | 0°    | 15°    | 0°     | 15°    |
| Q <sub>1</sub>     | 0.055 | 0.070  | 1.40   | 1.78   |
| S                  | 0.040 | 0.098  | 1.02   | 2.49   |

Note: (1) The minimum limit for dimensions B1 may be 0.023" (0.58 mm) for all four corner leads only.









|        | MILLIM | IETERS   | INC   | CHES      |
|--------|--------|----------|-------|-----------|
| SYMBOL | MIN    | МАХ      | MIN   | MAX       |
| А      | 2.60   | 2.80     | 0.102 | 0.110     |
| A1     | 0.2    | (typ.)   | 0.00  | )8 (typ.) |
| В      | 0.3    | 0.50     | .012  | 0.020     |
| С      | 0.10   | 0.20     | 0.004 | 0.008     |
| D      | 15.0   | 15.4     | 0.590 | 0.606     |
| E      | 8.3    | 8.5      | 0.327 | 0.335     |
| е      | 1.2    | 7 (typ.) | 0.05  | 50 (typ.) |
| Н      | 11.5   | 12.1     | 0.453 | 0.477     |
| L      | 0.8    | 1.2      | 0.031 | 0.047     |





Notes





### NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

