MP7696

CMOS

Very Low Power, 9-Bit Analog-to-Digital Converter

FEATURES

- · Sampling Rates from 1 kHz to 2 MHz
- DNL better than 1/2 LSB (typ) up to 1 MHz
- Very Low Power CMOS 30 mW (typ)
- . Monotonic; No Missing Codes
- Interface to any Input Range between GND and V_{DD}
- . No S/H needed for Input Signals Less Than 10 kHz
- Single Power Supply (4 to 6.5 Volts)
- Latch-Up Free
- High ESD Protection: 4000 Volts Minimum
- For New Designs use MP8784 or MP8795

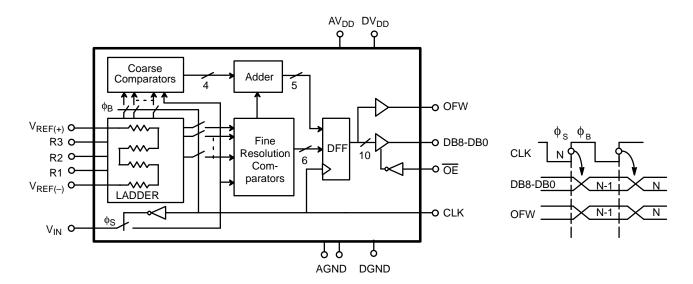
BENEFITS

- Reduced Board Space (Small Package)
- Reduced External Parts, No Sample/Hold Needed
- Suitable for Battery & Power Critical Applications
- Designer Can Adapt Input Range & Scaling

APPLICATIONS

- Low Power A/D Applications
- High Resolution Imaging
- Multiplexed Data Acquisition
- Radar Pulse Analysis

GENERAL DESCRIPTION

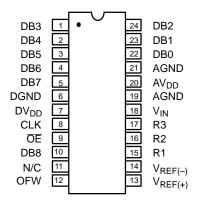

The MP7696 is a 9-bit CMOS Analog-to-Digital Converter designed for precision applications demanding *Low Power Consumption*. The input architecture of the MP7696 allows direct interface to any analog input range between AGND and AV_{DD} (0 to 2 V, 1 to 4 V, 0 to 5 V, etc.). The user simply sets $V_{REF(+)}$ and $V_{REF(-)}$ to encompass the desired input range.

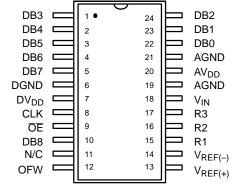
The MP7696 uses a two-step flash technique. The first

segment converts the 3 MSBs and consists of 8 autobalanced comparators, latches, an encoder, and buffer storage registers. The second segment converts the remaining 6 LSBs.

With 30 mW power dissipation, the MP7696 achieves its excellent performance due to the inherent high speed of our proprietary 2μ Refractory Molybdenum CMOS Process.

SIMPLIFIED BLOCK AND TIMING DIAGRAM





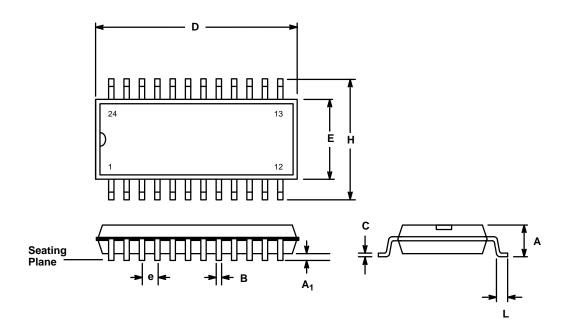
ORDERING INFORMATION

Package Type	Temperature Range	Part No.	DNL (LSB)	INL (LSB)
Plastic Dip	−40 to +85°C	MP7696AN	±1	1
SOIC	–40 to +85°C	MP7696AS	±1	1

PIN CONFIGURATIONS

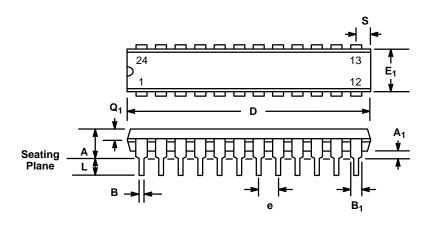
24 Pin PDIP (0.300") NN24

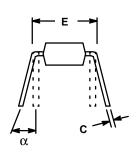
24 Pin SOIC (EIAJ, 0.335") R24


PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION	
1	DB3	Data Output Bit 3	
2	DB4	Data Output Bit 4	
3	DB5	Data Output Bit 5	
4	DB6	Data Output Bit 6	
5	DB7	Data Output Bit 7	
6	DGND	Digital Ground	
7	DV_DD	Digital V _{DD}	
8	CLK	Clock Input	
9	ŌĒ	Output Enable (Active Low)	
10	DB8	Data Output Bit 8 (MSB)	
11	N/C	No Connection	
12	OFW	Overflow Output	

PIN NO.	NAME	DESCRIPTION
13	V _{REF(+)}	Upper Reference Voltage
14	V _{REF(-)}	Lower Reference Voltage
15	R1	Reference Ladder Tap
16	R2	Reference Ladder Tap
17	R3	Reference Ladder Tap
18	V _{IN}	Analog Signal Input
19	AGND	Analog Ground
20	AV _{DD}	Analog V _{DD}
21	AGND	Analog Ground
22	DB0	Data Output Bit 0 (LSB)
23	DB1	Data Output Bit 1
24	DB2	Data Output Bit 2


24 LEAD SMALL OUTLINE (335 MIL EIAJ SOIC) R24



	MILLIMETERS		INCHES	
SYMBOL	MIN	MAX	MIN	MAX
А	2.60	2.80	0.102	0.110
A1	0.2 (typ.)		0.008 (typ.)	
В	0.3	0.50	.012	0.020
С	0.10	0.20	0.004	0.008
D	15.0	15.4	0.590	0.606
E	8.3	8.5	0.327	0.335
е	1.27 (typ.)		0.050 (typ.)	
Η	11.5	12.1	0.453	0.477
L	0.8	1.2	0.031	0.047

24 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) NN24

	INCHES		MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX
А		0.200	_	5.08
A ₁	0.015	_	0.38	_
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	1.16	1.280	29.46	32.51
Е	0.295	0.325	7.49	8.26
E ₁	0.220	0.310	5.59	7.87
е	0.100 BSC		2.54 BSC	
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.028	0.098	0.711	2.49

Note: (1) The minimum limit for dimensions B1 may be 0.023° (0.58 mm) for all four corner leads only.

Notes

Notes

Notes

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright EXAR Corporation Datasheet April 1995

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

T®M