

MP7680

5 V CMOS 12-Bit Quad Double-Buffered Multiplying Digital-to-Analog Converter

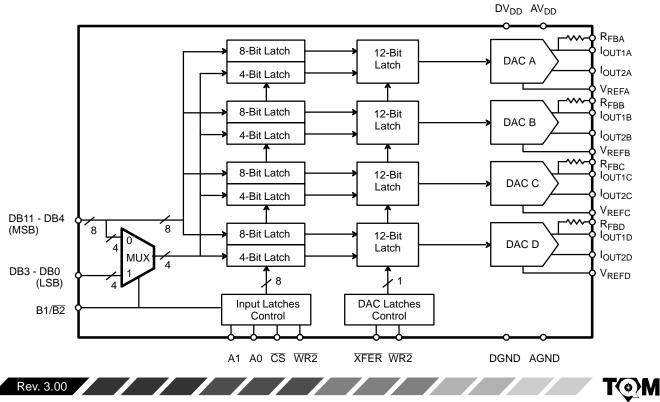
FEATURES

- MPS Pioneered Segmented DAC Approach
- Four Double-Buffered 12-bit DACs on a Single Chip
- Independent Reference Inputs
- Lowest Gain Error in a Multiple DAC Chip
- Guaranteed Monotonic All Grades, All Temperatures
- TTL/5 V CMOS Compatible Inputs
- Industry Standard Digital Interface
- Four Quadrant Multiplication
- Latch-Up Free

BENEFITS

- Reduced Board Space; Lower System Cost.
- Independent Control of DACs
- Excellent DAC-to-DAC Matching and Tracking

APPLICATIONS

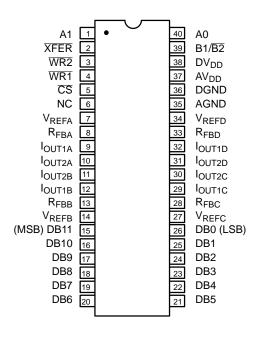

- Function Generators
- Automatic Test Equipment
- Precision Process Controls
- Recording Studio Control Boards

GENERAL DESCRIPTION

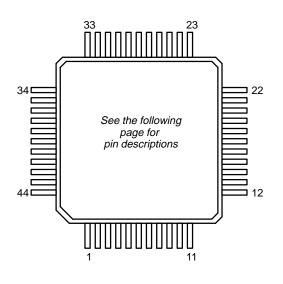
The MP7680 and the integrate four 12-bit four-quadrant-multiplying DACs with independent reference inputs and excellent matching characteristics. The MP7680 grades offer 1/2, 1 and 2 LSB of relative accuracy. The superior

offers a low 2 LSB of gain error.

Each DAC has double-buffering (an 8 and 4-bit latch and a 12-bit latch) between the data bus (DB11 - DB0) and the DAC. The internal 4-bit mux allows the use of 8 or 16-bit buses. The flexible latch control logic allows to update one or more DACs simultaneously.



SIMPLIFIED BLOCK DIAGRAM


ORDERING INFORMATION

Package Type	Temperature Range	Part No.	INL (LSB)	DNL (LSB)	Gain Error (LSB)
Plastic Dip	–40 to +85°C	MP7680JN	<u>+</u> 2	<u>+</u> 4	<u>+</u> 16
Plastic Dip	–40 to +85°C	MP7680KN	<u>+</u> 1	<u>+</u> 2	<u>+</u> 16
Ceramic Dip	–40 to +85°C	MP7680JD	<u>+</u> 2	<u>+</u> 4	<u>+</u> 16
Ceramic Dip	–40 to +85°C	MP7680KD	<u>+</u> 1	<u>+</u> 2	<u>+</u> 16
PQFP	–40 to +85°C	MP7680JE	<u>+</u> 2	<u>+</u> 4	<u>+</u> 16
PQFP	–40 to +85°C	MP7680KE	<u>+</u> 1	<u>+</u> 2	<u>+</u> 16
Ceramic Dip	–55 to +125°C	MP7680SD	<u>+</u> 2	<u>+</u> 4	<u>+</u> 16

PIN CONFIGURATIONS

40 Pin PDIP, CDIP (0.600") N40, D40

44 Pin PQFP Q44

PIN OUT DEFINITIONS

40 Pin PDIP, CDIP

PIN NO.	NAME	DESCRIPTION
1	A1	DAC Address Bit 1
2	XFER	Transfer: Updates all DAC's
3	WR2	Write 2: Gates the XFER Function
4	WR1	Write 1: Gates the DAC Selection
5	CS	Chip Select
6	NC	No Connection
7	V _{REFA}	Reference Input for DAC A
8	R _{FBA}	Feedback Resistor for DAC A
9	I _{OUT1A}	Current Output A
10	I _{OUT2A}	Complement of Output A
11	I _{OUT2B}	Complement of Output B
12	I _{OUT1B}	Current Output B
13	R _{FBB}	Feedback Resistor for DAC B
14	V _{REFB}	Reference Input for DAC B
15 – 26	DB11 to DB0	Input Data Bits 11 (MSB) to 0 (LSB)
27	V _{REFC}	Reference input for DAC C
28	R _{FBC}	Feedback Resistor for DAC C
29	I _{OUT1C}	Current Output C
30	I _{OUT2C}	Complement of Output C
31	I _{OUT2D}	Complement of Output D
32	I _{OUT1D}	Current Output D
33	R _{FBD}	Feedback Resistor for DAC D
34	V _{REFD}	Reference input for DAC D
35	AGND	Analog Ground
36	DGND	Digital Ground
37	AV _{DD}	Analog Power Supply
38	DV_DD	Digital Power Supply
39	B1/B2	Select Input Format (8/4 or 12 bits in)
40	A0	DAC Address Bit 0

44 Pin P	44 Pin PQFP					
PIN NO.	NAME	DESCRIPTION				
1	NC	No Connection				
2	V _{REFA}	Reference Input for DAC A				
3	R _{FBA}	Feedback Resistor for DAC A				
4	I _{OUT1A}	Current Output A				
5	I _{OUT2A}	Complement of Output A				
6	NC	No Connection				
7	I _{OUT2B}	Complement of Output B				
8	I _{OUT1B}	Current Output B				
9	R _{FBB}	Feedback Resistor for DAC B				
10	V _{REFB}	Reference Input for DAC B				
11- 16	DB11 to DB6	Input Data Bits 11 (MSB) to 6				
17	NC	No Connection				
18- 23	DB5- DB0	Input Data Bits 5 to 0 (LSB)				
24	V _{REFC}	Reference input for DAC C				
25	R _{FBC}	Feedback Resistor for DAC C				
26	I _{OUT1C}	Current Output C				
27	I _{OUT2C}	Complement of Output C				
28	NC	No Connection				
29	I _{OUT2D}	Complement of Output D				
30	I _{OUT1D}	Current Output D				
31	R _{FBD}	Feedback Resistor for DAC D				
32	V _{REFD}	Reference input for DAC D				
33	AGND	Analog Ground				
34	DGND	Digital Ground				
35	AV _{DD}	Analog Power Supply				
36	DV_DD	Digital Power Supply				
37	B1/B2	Select Input Format (8/4 or 12 bits in)				
38	A0	DAC Address Bit 0				
39	NC	No Connection				
40	A1	DAC Address Bit 1				
41	XFER	Transfer: Updates all DAC's				
42	WR2	Write 2: Gates the $\overline{\text{XFER}}$ Function				
43	WR1	Write 1: Gates the DAC Selection				
44	CS	Chip Select				

Rev. 3.00

ELECTRICAL CHARACTERISTICS

(V_{DD} = + 5 V, V_{REF} = +10 V, I_{OUT1} = I_{OUT2} = DGND = AGND = 0 V Unless Otherwise Noted)

/ / / / / /

Parameter	Symbol	Min	25°C Typ	Мах	Tmin to Min	o Tmax Max	Units	Test Conditions/Comments
STATIC PERFORMANCE ¹			71					
		10						
Resolution (All Grades)	N	12			12		Bits	
Integral Non-Linearity (Relative Accuracy)	INL						LSB	Best Fit Straight Line Spec. (Max INL – Min INL) / 2
К				<u>+</u> 1		<u>+</u> 1		
J, S				<u>+</u> 2		<u>+</u> 2		
Differential Non-Linearity K	DNL			<u>+</u> 1		<u>+</u> 2.0	LSB	
J, S				<u>+</u> 4		<u>+</u> 4.0		
Gain Error	GE						LSB	Using Internal R _{FB}
K J, S				<u>+</u> 16 <u>+</u> 16		<u>+</u> 16 <u>+</u> 16		
Gain Temperature Coefficient ²	TC _{GE}			_		<u>+</u> 2	ppm/°C	Δ Gain/ Δ Temperature
Power Supply Rejection Ratio	PSRR			<u>+</u> 50		<u>+</u> 70	ppm/%	$ \Delta Gain/\Delta V_{DD} \Delta V_{DD} = \pm 5\%$
Output Leakage Current	Ι _{Ουτ}			<u>+</u> 50		<u>+</u> 200	nA	$I_{OUT1} V_{IN} = 0 V$ $I_{OUT2} V_{IN} = V_{DD}$
DYNAMIC PERFORMANCE ²								R _L =100Ω, C _{EXT} =13pF
Current Settling Time	t _S		1.0				μs	Full scale change to 1/2 LSB
REFERENCE INPUT								
Input Resistance Voltage Input Range ²	R _{IN} V _{IN}	3	5 <u>+</u> 10	7 <u>+</u> 25	3	7	kΩ V	
DIGITAL INPUTS								
Input High Voltage	V _{IH}	2.4			2.4		v	
Input Low Voltage	V _{IL}	2.4		0.8	2.4	0.8	V	
Input Current Input Capacitance ²	I _{LKG}			<u>+</u> 1		<u>+</u> 4	μA	$V_{IN} = 0 V and V_{DD}$
Data Control	C _{IN} C _{IN}		7.0 7.0				pF pF	
ANALOG OUTPUTS ²								
Output Capacitance								
	C _{OUT1} C _{OUT1}		100 50				pF pF	DAC all 1's DAC all 0's
	C _{OUT2}		50				pF	DAC all 1's
	C _{OUT2}		100				pF	DAC all 0's

ELECTRICAL CHARACTERISTICS (CONT'D)

Parameter	Symbol	Min	25°C Typ Max	Tmin to Min	o Tmax Max	Units	Test Conditions/Comments
POWER SUPPLY ⁴							
Functional Voltage Range Supply Current	V _{DD} I _{DD}	4.5	5.5 2 1	4.5	5.5 2 1	V mA mA	Digital inputs = V _{IL} or V _{IH} Digital inputs = 0 or 5 V
TIMING CHARACTERISTICS ^{2, 3}							
Write Pulse Width Chip Select Set-Up Time Address Set-Up Time Chip Select and Address Hold Time Latch Select Set-Up Time Latch Select Hold Time Data Valid Set-Up Time Data Valid Hold Time Transfer Pulse Width Write Cycle (per DAC)	twr tcs tas tbs tbh tDs toh txfer twc	75 100 100 0 120 100 0 65 175		85 120 120 0 150 15 120 0 75 200		ns ns ns ns ns ns ns ns ns ns	

NOTES:

¹ Full Scale Range (FSR) is 10V for unipolar mode.

² Guaranteed but not production tested.

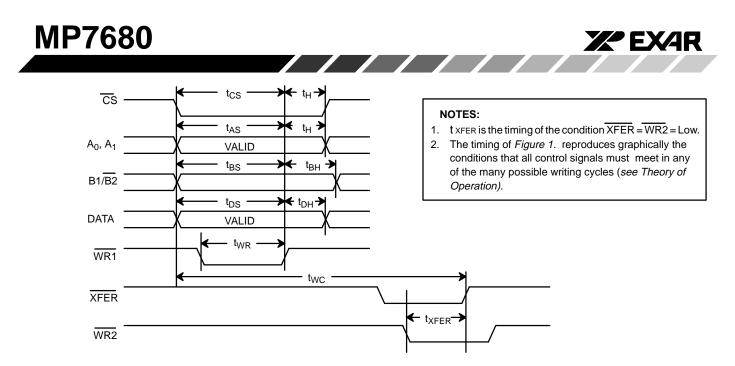
³ See timing diagram (*Figure 1.*).

⁴ DV_{DD} and AV_{DD} are connected through the silicon substrate. Connect together at the package. DC voltage differences will cause undesirable internal currents.

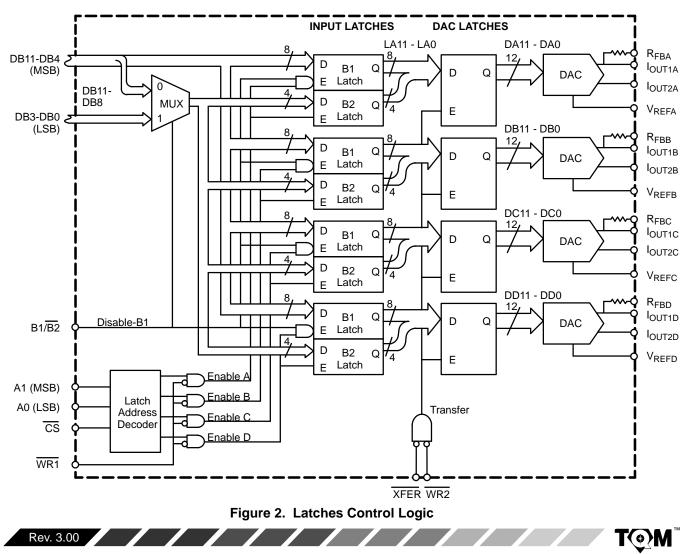
Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2}

V _{DD} to AGND	–0.5 to +7 V
V _{DD} to DGND	–0.5 to +7 V
Digital Input Voltage to DGND	GND –0.5 to V_{DD} +0.5 V
Any I _{OUT1} , I _{OUT2} to AGND	GND –0.5 to V _{DD} +0.5 V
Any V _{REF} to AGND	<u>+</u> 25 V
AGND to DGND	<u>+</u> 1 V
(Functionality Guaranteed <u>+0.5 V</u>)	


<u>-</u> 25 V
50°C
00°C
0mW
W/°C

NOTES:


Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100μs.

XP EXAR

Digital Interface

Figure 2. shows the internal control logic. The logic that controls the writing of the input latches and the one that controls the DAC latches are completely separated. It is easy to understand how the MP7680/80A works by understanding each basic operation.

Writing to Input Latches

By keeping B1/B2 = high, a 12-bit bus has direct access to the 12 bits of the input latches. The condition $\overline{CS} = \overline{WR1} = 0$ loads the values contained in the data bus DB11-DB0 into the input latch addresses by A₁, A₀ (*Figure* 3a, *Table 1.*).

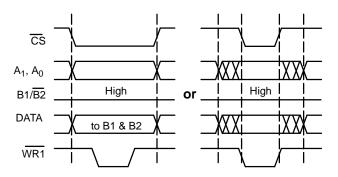

A 1	A ₀	SELECTED DAC
0	0	A
0	1	В
1	0	С
1	1	D

Table 1. DAC Selection

An 8-bit bus must use two cycles. The second cycle is like the first one with the difference that B1/B2 = low (*Figure 3b*). During the second cycle the condition B1/B2 = low muxes DB11-DB8 to the B2 latches (*Figure 2*.).

Two important notes:

- Timing diagrams show the inputs CS, A₁, A₀, DB11-DB0 to be stable during the entire writing cycle. In reality all the above signals can change (*Figure 3a*) as long as they meet the timing conditions specified in the Electrical Characteristic Table.
- Only 16-bit bus cycles are shown in the next few examples of interface timing. It is possible to generate an 8-bit interface timing by replacing a single 12-bit write cycle (*Figure 3a*) with a double 8-bit write cycles (*Figure 3b*).
 8-bit applications should ground inputs DB3-DB0.

MP7680

Figure 3a. 12 Bit Write Cycle

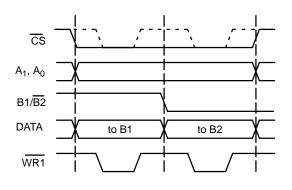
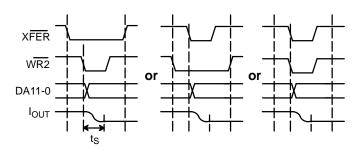
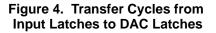




Figure 3b. 8-Bit Double Write Cycle

Figure 3. Write Cycles to Input Latches

MP7680

CS

= 0

Valid

= 1

Valid

A_{0,} A₁

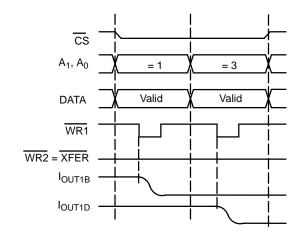
DATA WR1

XFER=WR2

IOUT1A, B, C, D

Transferring Data to the DAC Latches

Once one or all of the input latches have been loaded, the condition XFER = WR2= low transfers the content of ALL the input latches in the DAC latches. The output of the DAC latches (DA11-DA0) changes and the DAC current (IOUT) will reach a new stable value within the settling time t_S (Figure 4.).


Examples of DACs updating sequences:

- 1) Simultaneous updates of any number of DACs. The system uses from one (two) to four (eight) cycles to write from a 12 (8) bit bus into B1/B2 latches. One transfer cycle updates the output of all DACs (Figure 5.)
- 2) Individual DAC update. The condition $\overline{WR2} = \overline{XFER} =$ low makes the DAC latches transparent. A writing to the B1/B2 latches updates the DAC outputs (Figure 6.).
- 3) Automatic transfer to DAC latches. An 8-bit bus can update any DAC with two cycles by connecting $\overline{WR1}$ = WR2 and B1/B2= XFER. This is the correct individual DAC update for 8-bit busses (Figure 7.).
- 4) Transfer by a second device. A processor may load the input latches while the final XFER pulse is left to another device.

= 2

Valid

= 3

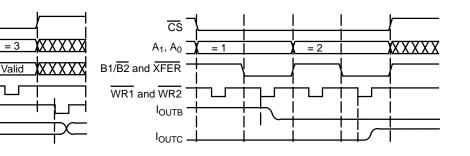


Figure 5. Simultaneous Updates of DACs

APPLICATION NOTES Refer to Section 8 for Applications Information

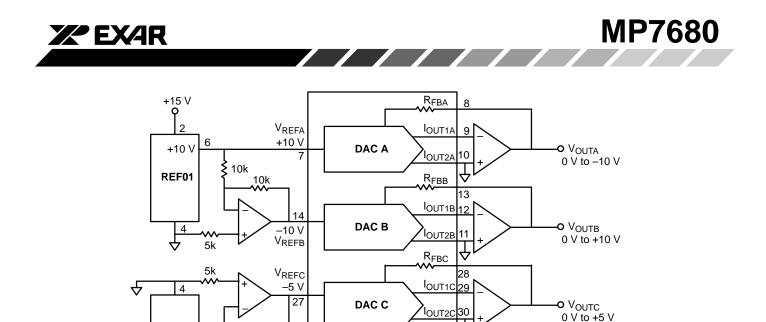
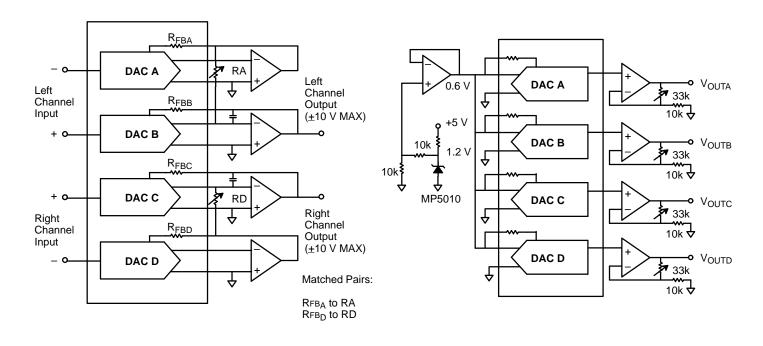


Figure 8. Digitally Programmable Quad Voltage Output +10 V, +5 V

DAC D


Ŷ

33 OUT1D32

Ŷ

R_{FBD}

IOUT2D 31

REF02

+5 V

2

δ +15 V 6

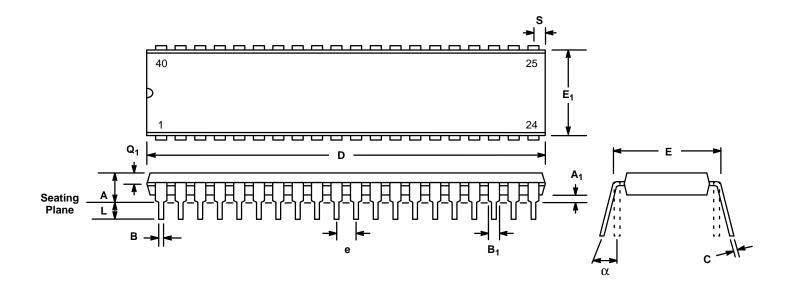
₹ 10k^{10k}

34

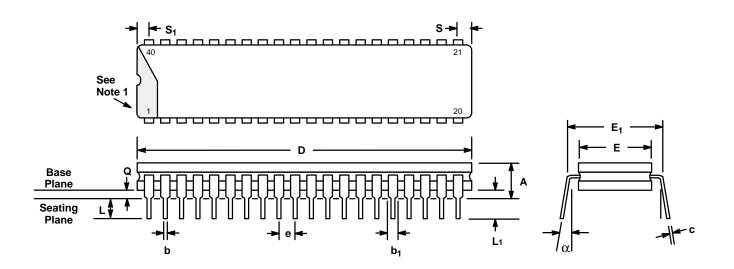
+5 V

 V_{REFD}

Figure 10. Quad DAC for Single +5 V Supply


o V_{OUTD}

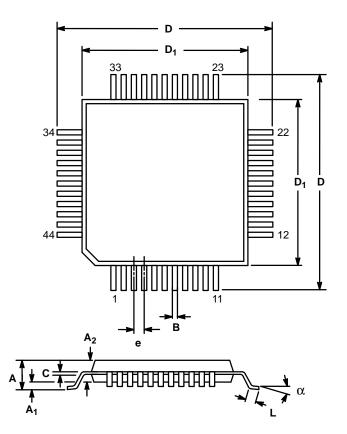
0 V to -5 V


	INC	HES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	MAX
А		0.225		5.72
A ₁	0.015		0.381	
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	1.980	2.095	50.3	53.2
E	0.585	0.625	14.86	15.88
E ₁	0.510	0.620	12.95	15.75
е	0.1	00 BSC	2.5	4 BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.020	0.098	0.508	2.49

Note:	(1)	The minimum limit for dimensions B1 may be 0.023"
	. ,	(0.58 mm) for all four corner leads only.

40 LEAD CERAMIC DUAL-IN-LINE (600 MIL CDIP) D40

	INCHES		MILLIN	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
А		0.225		5.72		
b	0.014	0.023	0.356	0.584		
b ₁	0.038	0.065	0.965	1.65	2	
с	0.008	0.015	0.203	0.381	—	
D		2.096		53.24	4	
Е	0.510	0.620	12.95	15.75	4	
E ₁	0.590	0.630	14.99	16.00	7	
е	0.1	00 BSC	2.5	4 BSC	5	
L	0.125	0.200	3.18	5.08	_	
L ₁	0.150		3.81		—	
Q	0.015	0.070	0.381	1.78	3	
S	_	0.098		2.49	6	
S ₁	0.005	_	0.13		6	
α	0°	15°	0°	15°	—	


NOTES

- 1. Index area; a notch or a lead one identification mark is located adjacent to lead one and is within the shaded area shown.
- 2. The minimum limit for dimension b_1 may be 0.023 (0.58 mm) for all four corner leads only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- 5. The basic lead spacing is 0.100 inch (2.54 mm) between centerlines.
- 6. Applies to all four corners.
- 7. This is measured to outside of lead, not center.

44 LEAD PLASTIC QUAD FLAT PACK (14mm x 14mm PQFP, METRIC) Q44

	MILLIMETERS		INC	CHES		
SYMBOL	MIN	MAX	MIN	МАХ		
А		3.15		0.124		
A ₁	0.25	_	0.01	_		
A ₂	2.6	2.8	0.102	0.110		
В	0.3	0.4	0.012	0.016		
С	0.13	0.23	0.005	0.009		
D	16.95	17.45	0.667	0.687		
D ₁	13.9	14.1	0.547	0.555		
е	1.0	0 BSC	0.03	9 BSC		
L	0.65	1.03	0.026	0.040		
α	0°	7°	0°	7°		
Coplanarity = 4 mil max.						

Notes

Notes

Notes

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

