MP7670

8-Channel, Voltage Output, 5 MHz, 4 Quadrant Multiplying 8-Bit D/A Converter with Serial Digital Data Port

FEATURES

- 8 Independent 4-Quadrant Multiplying 8-Bit DACs
- High Speed:
 - Settling Time: 2.5 μ s to \pm 1 LSB (typ)
 - Slew Rate: 5 V/µs (typ)
 - Voltage Reference Input Bandwidth:
 5 MHz (V_{IN} = 100 mV p-p)
- Low Power: 80 mW (typ)
- DACs Matched to +0.5% (typ)
- Power on Preset to Zero Volts for All Outputs
- Midscale Preset, all DAC Outputs are Zero Volts
- Latch-Up Free
- Greater than 2000 V ESD Protection

APPLICATIONS

- Analog Multiplier Replacement
- High-Frequency Gain Control using DACs
- Convergence Adjustment for Displays
 and Monitors

GENERAL DESCRIPTION

The MP7670 is an 8-channel, 4 quadrant multiplying, 8-bit accurate digital-to-analog converter with a 5 MHz input bandwidth. It includes an output drive amplifier per channel capable of driving a \pm 7 mA to a load. DNL of \pm 0.25 LSB is achieved with a channel-to-channel matching of better than 0.5% (typ). Stability, matching, and precision of the DACs are achieved by using MPS' thin film technology.

The MP7670 is ideal for direct gain control of high frequency analog signals. The bipolar output amplifier has low noise which

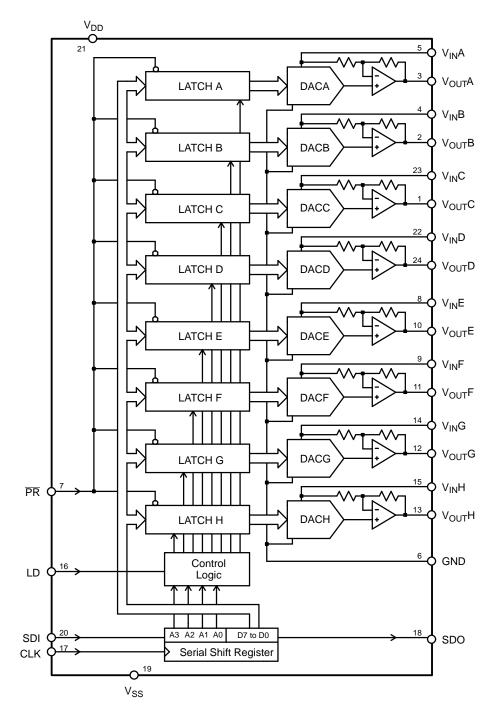
produces a very sharp signal output particularly in display and monitor applications.

A proprietary subranging architecture provides wide signal bandwidth from V_{IN} to output up to 5 MHz (typ), fast output settling time, and V_{IN} feedthrough isolation of –60dB (typ).

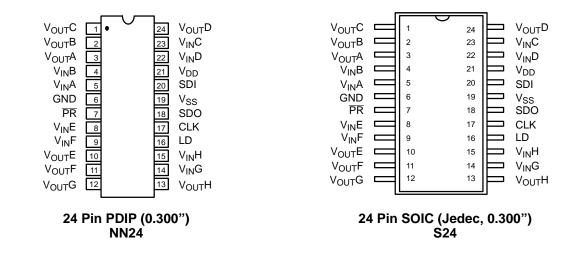
The MP7670 has a serial data 3-wire standard μ -processor logic interface to reduce pin count, package size, and board wire (space).

The MP7670 is fabricated on a junction isolated, high speed BiCMOS1TM process with thin film resistors.

ORDERING INFORMATION


Package Type	Temperature Range	Part No.
Plastic Dip	–40 to +85°C	MP7670AN
SOIC	–40 to +85°C	MP7670AS

SIMPLIFIED BLOCK DIAGRAM



PIN CONFIGURATIONS

See Packaging Section for Package Dimensions

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION	PIN NO.	NAME	DESCRIPTION
1	V _{OUT} C	DAC C Output	13	V _{OUT} H	DAC H Output
2	V _{OUT} B	DAC B Output	14	V _{IN} G	DAC G Reference Input
3	V _{OUT} A	DAC A Output	15	V _{IN} H	DAC H Reference Input
4	V _{IN} B	DAC B Reference Input	16	LD	Load DAC Register Strobe, Active High Input
5 6	V _{IN} A GND	DAC A Reference Input Ground	17	CLK	Serial Clock Input
7	PR	Preset Input, Active Low	18 19	SDO V _{SS}	Serial Data Output Negative Power Supply
8 9	V _{IN} E V _{IN} F	DAC E Reference Input DAC F Reference Input	20	SDI	Seral Data Input
10	V _{OUT} E	DAC E Output	21	V _{DD}	Positive Power Supply
11	V _{OUT} F	DAC F Output	22	V _{IN} D	DAC D Reference Input
12	V _{OUT} G	DAC G Output	23 24	V _{IN} C V _{OUT} D	DAC C Reference Input DAC D Output

ELECTRICAL CHARACTERISTICS TABLE FOR DUAL SUPPLIES Unless Otherwise Noted: $V_{DD} = 5 V$, $V_{SS} = -5 V$, GND = 0 V, $V_{IN}X = 3 V$

			25°C			
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
DC CHARACTERISTICS						
Resolution (All Grades) Differential Non-Linearity Integral Non-Linearity Monotonicity Gain Error	N DNL INL GE	8	<u>+</u> 1/4 Guaranteed <u>+</u> 1/2	±1 ±1	Bits LSB LSB LSB	
DAC OUTPUT						
Output Offset Voltage Range Output Current Capacitive Load	V _{BZE} OVR I _{OUT} CL	-3	3 <u>+</u> 10	25 3 200	mV V mA pF	\overline{PR} = 0, Sets Code = 80 _H ΔV_{OUT} <1 LSB No oscillations
REFERENCE INPUTS						
Input Resistance of one DAC	R _{IN}	5			KΩ	R _{IN} (typ) = 15KΩ//Rx Rx = 20KΩ/(1-Code/256)
Input Capacitance ² Voltage Range ¹	C _{IN} IVR	-3	15	25 3	pF V	
DYNAMIC CHARACTERISTICS ²						
Input to Output Bandwidth Small Signal Input to Output Bandwidth Large Signal Slew Rate V _{IN} Feedthrough Total Harmonic Distortion	BWS BWL SR F _{DT} T _{HD}	2	5 3 5 60 0.02		MHz MHz V/μs dB %	Code = FS, $V_{IN}X = 100 \text{ mVp-p}$ Code = FS, $V_{IN}X = 1 \text{ Vp-p}$ Measured 10% to 90%, $\Delta V_{OUT}X = \pm 6 \text{ V}$ Code = HS, up to f = 100 kHz $V_{IN}X = 4 \text{ V p-p}$, Code = FS
Spot Noise Voltage Output Settling Time Channel-to-Channel Crosstalk Digital Feedthrough	е _N ts Ст Q	60	0.17 2.5 6	5.0	μV/√Hz μs dB nVs	$f = 1 \text{ kHz}, f_{LP} = 80 \text{ kHz}$
DIGITAL INPUTS						
Logic High ³ Logic Low ³ Input Current Input Capacitance ²	V _{IH} V _{IL} I _L C _L	2.4		0.8 ±1 8	V V μA pF	
DIGITAL OUTPUTS						
Logic High Logic Low	V _{OH} V _{OL}	3.5		0.4	V V	I _{OH} = -0.4 mA I _{OL} = 1.6 mA

ELECTRICAL CHARACTERISTICS TABLE

		25°C				
Description	Symbol	Min	Тур	Max	Units	Conditions
POWER SUPPLIES						
Power Supply Range	V _{DD} V _{SS}	4.5 –5.5		5.5 4.5	V V	
Power Supply Rejection Ratio						
Positive	PSRR+		0.0002	0.01	%/%	$PR = 0 V, \ \Delta V_{DD} = \pm 5\%$
Negative	PSRR-		0.0002	0.01	%/%	$\overline{PR} = 0 \text{ V}, \ \Delta V_{SS} = \pm 5\%$
Power Dissipation Power Supply Current	P _{DISS}		80 8	130 13	mW mA	PR = 0 V PR = 0 V
Negative Supply Current	I _{DD} I _{SS}		8	13	mA	$\overline{PR} = 0 V$
DIGITAL TIMING SPECIFICATIONS ^{2, 4}						
Input Clock Pulse Width	t _{CH} , t _{CL}	80			ns	
Data Setup Time	t _{DS}	40			ns	
Data Hold Time	t _{DH}	20			ns	
CLK to SDO Propagation Delay	t _{PD}			120	ns	
Load Pulse Width	t _{LD}	70			ns	
Preset Pulse Width	t _{PR}	50			ns	
Clock Edge to Load Load Edge to Next Clk Edge	t _{CKLD}	30 60			ns ns	
LUAU LUGE IU MEXI CIK EUGE	^t LDCK	60			115	

NOTES

Maximum input voltage is 2 V less than V_{DD}.

² Guaranteed but not production tested.

³ Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur.

⁴ See timing diagram.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)^{1, 2}

V_{DD} to GND $~$
V_{SS} to GND $\hfill \hfill \hfil$
$V_{\text{INA-H}}$ to GND $\ldots \ldots \ldots \ldots \ldots V_{\text{DD}}$ to V_{SS}
V_{OUTA-H} to GND V _{DD} to V _{SS}
Digital Input & Output Voltage to GND . –0.5 to V_{DD} +0.5 V
Operating Temperature Range
Extended Industrial –40°C to +85°C

Maximum Junction Temperature $\ldots \ldots -65^{\circ}C$ to +150°C
Storage Temperature 150°C
Lead Temperature (Soldering 10 seconds) +300°C
Package Power Dissipation Rating @ 75°C
PDIP, SOIC
Derates above 75°C 14mW/°C

NOTES:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps

Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. *All inputs have protection diodes* which will protect the device from short transients outside the supplies of less than 100mA for less than 100µs.

MP7670

THEORY OF OPERATION

The MP7670 contains 8 independent 4-quadrant multiplying D/A converters with output amplifiers. The design has incorporated a novel approach that provides fast, accurate, low noise, low distortion, small size, and low power in the same device. This device is particularly useful in applications where multipliers are used to perform the gain adjustment function for high frequency analog signal conditioning. Also note that typical multipliers tend to increase noise particularly for low gain settings and have high offsets. The MP7670 design delivers a very low, constant noise, and low offset with digital control through the entire gain ranges of the D/A converter.

Linearity Characteristics

Each D/A converter in the MP7670 achieves DNL $\leq \pm 0.25$ LSB (typ), and gain error $\leq \pm 0.2\%$ (typ). Since all 8 channels of MP7670 are fabricated in the same IC, the linearity, gain matching, and input-output characteristics of all 8 channels match extremely well.

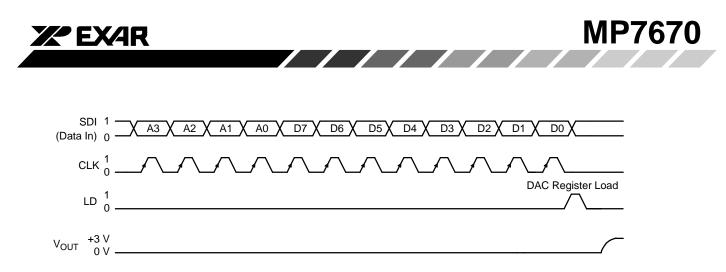
The Logic Interface and Serial Port

The MP7670 is equipped with a serial data 3-wire standard μ -processor logic interface to reduce pin count, package size, and board wire (small size). This interface consists of LD which controls the transfer of data to the selected DAC channels that are fed through the SDI (serial digital data and address bits) with

the CLK (digital input shift register clock). Please refer to the following timing diagrams and truth tables for logic details.

A SDO (serial digital data output driver) is connected to the other side of the input shift register and would save SDI bus space by allowing the daisy chaining of several MP7670s (connecting SDI of device 2 to SDO of device 1).

When the LD signal is low, CLK signal loads the digital input bits (SDI) into the 12-bit shift register. The LD signal going high loads this data into the selected DACs. Also, when the \overline{PR} signal is low, the output of all DACs would be reset to 0 volts.


Power Supplies and Input Voltage Ranges

The MP7670 is capable of functioning with \pm 5V and \pm 3V supplies. The output and input DC ranges are limited to within \pm 2 V from each positive and negative supplies. For example, with supplies at \pm 5V, the recommended output range is \pm 3V.

The MP7670 design eliminates any code dependent current change into its GND, hence easing the board level design by eliminating the stringent need for other types of DACs for low GND impedance wiring considerations at board level.

Each output of the MP7670 DAC has an output amplifier driver delivering less than 0.05Ω of output impedance through a push-pull linear output stage. Each output and input characteristics parameter match extremely well, given that all channels are fabricated in the same IC.

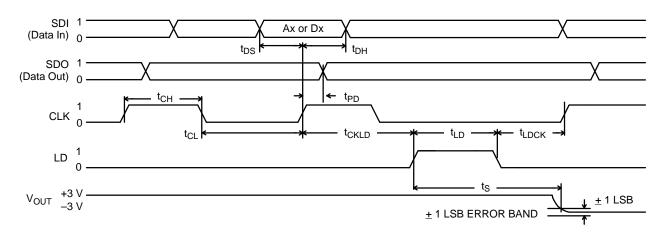
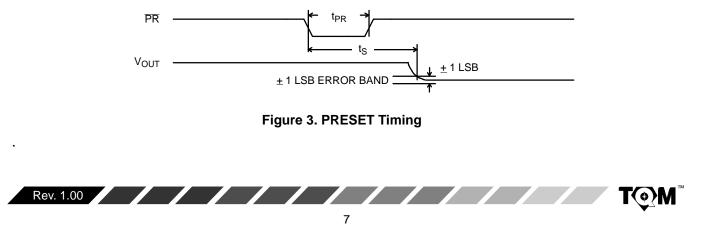



Figure 2. Detail Serial Data Input Timing ($P\overline{R} = "1"$)

LAST —												→	FIRST	-		
LSB D0	D1	D2	D3	D4	D5	D6	MSB	D7	LSB A	D A1	A2	MS	B A3			
								$\overline{}$					/			
											MSB			LSB		
									l	\rightarrow	A3	A2	A1	A0	DAC	Updated
	Data									Address	0 0 0 0 0 0 0 1 1	0 0 0 1 1 1 1 0 0	0 0 1 1 0 1 1 0 1 0 1	0 1 0 1 0 1 0 1 0 1	No Ope DAC A DAC B DAC C DAC D DAC E DAC F DAC G DAC F No Ope	eration
		MSB							LSB							
		D7	D6	D5	D4	D3	D2	D1	D0	DAC (V _{OUT}	Output = (D/1	Voltag 28 – 1	je) x V _{IN}			
		0 0	0 1	–V _{IN} (1/12	28—1) x	VIN										
		0 1 1	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 1	(128/	/128–1 /128–1 /128–1) x V _{IN}	= 0 V	, (Pres	et Value)	
		1 1	1 1	1 1	1 1	' 1 1	1 1	1 1	0 1	(254) (255)	/128—1 /128—1) x V _{IN}) x V _{IN}	$V_{\rm I} \approx V_{\rm II}$	N		

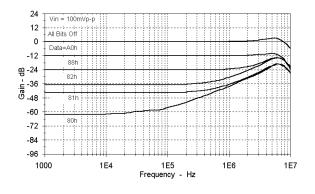
Table 1. Serial Input Format

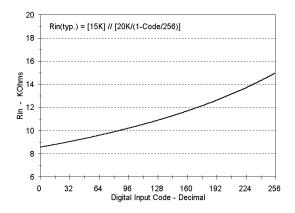
SDI	CLK	LD	PR	Input Shift Register Operation
X X X X	L ↑ X L		II II	No Operation Shift One Bit In from SDI (Pin 20), Shift One Bit* Out from SDO (Pin 18) All DAC Registers = 80 _H Load Serial Register Data into DAC(X) Register

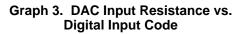
*Data shifted into the SDI pin appears twelve clocks later at the SDO pin.

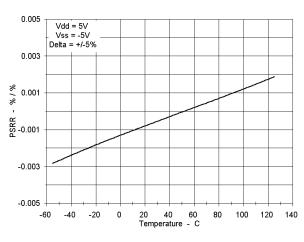
Table 2. Control Logic Truth Table

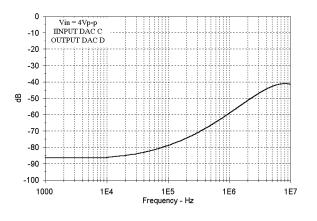
Decimal Input (D)	V _{OUT} (D)	Comments (V _{IN} = 3 V)
0 1 127 128 129 254 255	-3.00 V -2.98 -0.02 0.00 0.02 2.95 2.98	Inverted FS Zero Output Full Scale (FS)

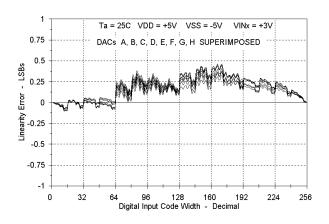

Table 3. DAC Transfer Function

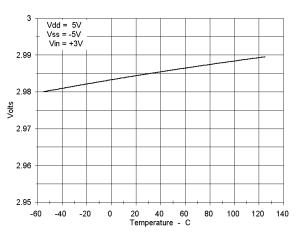




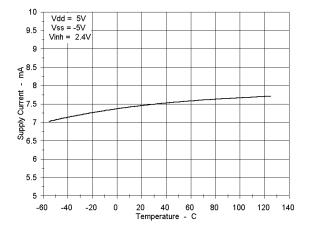

PERFORMANCE CHARACTERISTICS

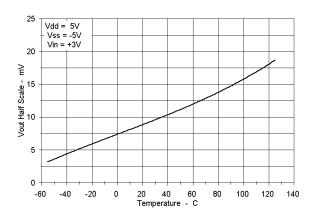

Graph 1. Gain (V_{OUT}/V_{IN}) and Feedthrough vs. Frequency

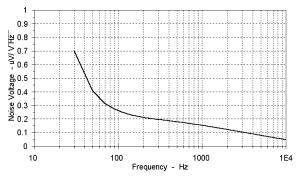


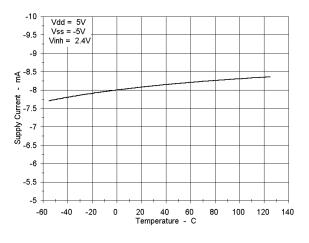


Graph 2. DAC Crosstalk vs. Frequency

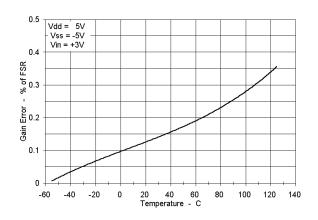

Graph 4. Linearity Error vs. Digital Input Code

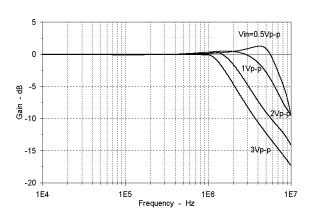

Graph 6. V_{OUT} Full Scale vs. Temperature





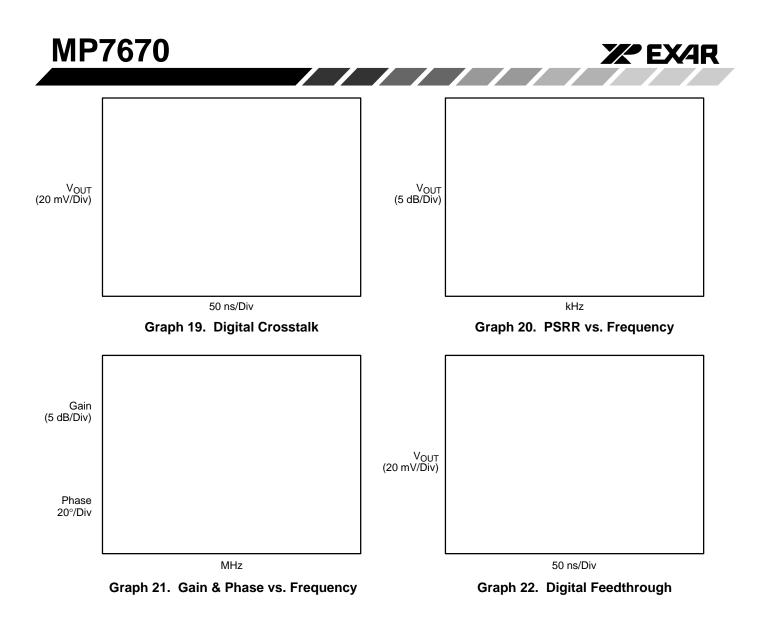
Graph 7. Supply Current (I_{DD}) vs. Temperature

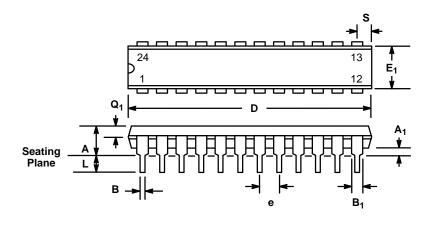

Graph 9. V_{OUT} Offset Error vs. Temperature

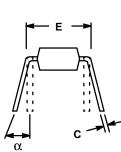


XPEXAR

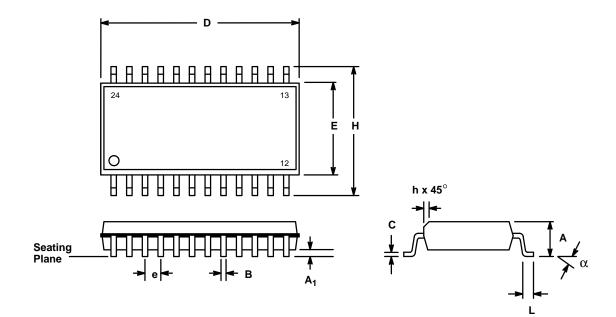

Graph 8. Supply Current (I_{SS}) vs. Temperature







24 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP) NN24


	INC	HES	MILLIN	IETERS
SYMBOL	MIN	МАХ	MIN	MAX
А		0.200		5.08
A ₁	0.015		0.38	_
В	0.014	0.023	0.356	0.584
B ₁ (1)	0.038	0.065	0.965	1.65
С	0.008	0.015	0.203	0.381
D	1.16	1.280	29.46	32.51
E	0.295	0.325	7.49	8.26
E ₁	0.220	0.310	5.59	7.87
е	0.1	00 BSC	2.5	4 BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q ₁	0.055	0.070	1.40	1.78
S	0.028	0.098	0.711	2.49

Note: (1) The minimum limit for dimensions B1 may be 0.023" (0.58 mm) for all four corner leads only.

	INC	CHES	MILLIN	IETERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.097	0.104	2.464	2.642
A1	0.0050	0.0115	0.127	0.292
В	0.014	0.019	0.356	0.483
С	0.0091	0.0125	0.231	0.318
D	0.602	0.612	15.29	15.54
E	0.292	0.299	7.42	7.59
е	0.0	50 BSC	1.2	7 BSC
н	0.400	0.410	10.16	10.41
h	0.010	0.016	0.254	0.406
L	0.016	0.035	0.406	0.889
α	0°	8°	0°	8°

Notes

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1994 EXAR Corporation Datasheet April 1995 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

